
PHYSICAL REVIEW C VOLUME 44, NUMBER 6

Scattering of GeV electrons by nuclear matter
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The cross section for inclusive electron scattering by nuclear matter is calculated at high momentum
transfers using a microscopic spectral function, and compared with that extrapolated from data on labo-
ratory nuclei. It is found that the cross section obtained with the plane-wave impulse approximation is
close to the observed data at large values of the energy loss, but too small at low values. In this regime
final-state interactions are important; after including their effects theory and data are in fair agreement.
It is necessary to treat nucleon-nucleon correlations consistently in estimating the final-state interactions.
The effects of possible time dependence of the nucleon-nucleon cross section, giving rise to nuclear tran-
sparency, are also investigated. The y scaling of the response function is discussed to further elucidate
the role of final-state interactions.

I. INTRODUCTION

The many-body theory of nuclei [1,2], based on the as-
sumption that nuclei can be treated as bound states of in-
teracting nonrelativistic nucleons, has been successful [3]
in explaining a number of nuclear properties. Scattering
of 100—1000 MeV electrons, particularly by light nuclei,
provides interesting tests for the nuclear many-body
theory (NMBT). Many of the observables [4—9] could be
understood. However, a number of problems, such as the
lack of strength in the Coulomb sum of the longitudinal
response or the behavior of the response at very low or
high energy loss, remain to be fully resolved.

The scattering of multi-GeV electrons is expected to
provide more stringent tests for the nuclear many-body
theory. It can also be expected to give insights towards a
deeper understanding of nuclei in terms of more funda-
mental degrees of freedom.

Of significant importance to this program are the re-
cent experiments [10] in which inclusive scattering of
multi-GeV electrons by di8'erent nuclear targets was
studied. In particular, by examining the mass depen-
dence of the scattering data, it has been possible [11] to
extract the inclusive cross sections for nuclear matter.
Among all nuclear systems, nuclear matter and few-body
nuclei can be most accurately treated theoretically. In

this paper, we attempt to understand the extrapolated nu-
clear matter inclusive cross section within the framework
of NMBT.

There are two main problems in applying NMBT to
scattering of multi-GeV electrons. For the momentum
transfers of interest, after the scattering process, the
struck nucleon has momenta of the order of the nucleon
mass m, i.e., it is relativistic. Moreover, much of the
response arises from the struck nucleon being promoted
to an excited hadronic state.

The relativistic kinematics of the struck nucleon has a
significant eA'ect that can be easily seen in the response of
a simple Fermi gas. In the nonrelativistic case the
response is peaked at ~q~ /2m and has a width of the or-
der kF ~q~ /m, where q is the momentum transfer and kF
is the Fermi momentum. In the extreme relativistic limit
( ~q~ ))m ), the response has a peak at ~q~ and a width of
k~. In the commonly used approximation discussed in
this paper, final-state interactions (FSI) lead to a folding
of the response. In the nonrelativistic case, the width of
the response, due to the momentum distribution in the in-
itial state, is proportional to ~q~, as it is in the case of
strongly interacting quantum liquids. If the width of the
folding function is finite, then it can be argued that, at
large enough values of ~q~, FSI can be neglected, and, as a
consequence, the response will exhibit y scaling. In con-
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trast, in the case of the nuclear medium at high q, one has
to use relativistic kinematics and therefore the width of
the response due to the momentum distribution of parti-
cles in the initial state is roughly constant -k~. It then
follows that FSI eA'ects can be neglected only if the fold-
ing width goes to zero at large q. The folding width is of
the order of the imaginary part of the optical potential
which is -60 MeV -kF/4 for several hundreds MeV
nucleons. Therefore, FSI are not obviously negligible in
scattering of multi-GeV electrons by nuclei.

Ideally, one should start from a realistic relativistically
covariant theory of nuclei; however, such a theory is not
yet practicable due to difFiculties in treating pion-
exchange interactions. In the plane-wave impulse ap-
proximation (PWIA), the FSI of the struck relativistic
hadron is neglected. For a PWIA calculation of the
response, one requires only the knowledge of the spectral
function of the target ground state, which can presum-
ably be calculated with the nonrelativistic NMBT, as the
relativistic aspect concerns mainly the knocked-out nu-
cleon. The calculation of the response within PWIA us-
ing relativistic dynamics for the struck hadron and the
nonrelativistic spectral function is discussed in Sec. II. In
this calculation, the oA-shell electron-nucleon vertices are
treated according to the approach of De Forest [12], gen-
eralized to include inelastic scattering on the nucleon. It
is found that the PWIA cross section is close to the ex-
perimental one at values of ~ corresponding to the quasi-
free peak (co~f =+~q~ +m —m) and beyond, but too
small at lower values.

In Sec. III, an approach based on the multiple-
scattering Glauber theory is used to take the FSI into ac-
count. We use the experimental X—N amplitude and in-
clude the eft'ect of short-range correlations by using the
calculated pair distribution function of nuclear matter.
The possible relevance of the hadronization time of the
struck nucleon is also investigated. The results are dis-
cussed in Sec. IV along with possible improvements in
the theory. Finally, in Sec. V we discuss the y scaling of
the response in order to further elucidate the role played
by the FSI.

k —= (&,k) and k'—= (e', k') being the four-momenta of the
incident and the scattered electron, with
q —= (co, q ) =k —k '.

The explicit calculation of the nuclear tensor

W'„" (q)=g f dp (O~J„"~N&

(2.4)

at large momentum transfer (~q~ )m ), requires a con-
sistent relativistic description of both the initial and final
nuclear states

~
0 & and

~
N &, as well as of the nuclear

current J . Unfortunately, such a description is out of
reach of the existing relativistic many-body approaches.
However, it is believed that reasonable approximations to
8'„can be obtained by starting from and improving
upon PWIA.

The physical motivation for the PWIA comes from the
fact that the electron probes a region of dimensions
—1/~ q ~

of the nuclear target; therefore, for large enough
momentum transfers, one can assume that the scattering
process involves only one nucleon, the residual (A —1)-
particle system acting as a spectator. This assumption
leads to two drastic simplifications in the structure of
W„": (i) the nuclear current operator can be written as
the sum of the one-body nucleon currents; and (ii) the
final nuclear state reduces to the product of a one-particle
state, describing the free propagation of the struck nu-
cleon, and an (A —1)-particle state of the spectator sys-
tem. As a result, the dynamics of the nuclear target is
decoupled from the electromagnetic vertex, and the rela-
tivistic description of the motion of the struck hadron
reduces to a purely kinematical problem, which can
therefore be treated exactly.

The PWIA expression of the target tensor is given by
[12] (see Fig. 1 for the definitions of the kinematical vari-
ables)

W„",~~(q)= fdpdEP(p, E)[ZW"„,(p, E,q)

+NW„" (p, E,q)], (2.5)

II. PWIA AND ELECTRON-NUCLEON VERTEX

The cross section for the inclusive reaction

where the nucleon spectral function P(p, E) represents
the probability distribution for leaving the residual nu-

e + 3 ~e'+anything (2.1)

is given by [13]

diode' q4 e
(2.2)

where a=
37 is the fine-structure constant and L" and

8'„are the lepton and the nucleus tensors, respectively.
The electron mass can be safely neglected in L", which
then can be written as

L~ =2[k"k +k k" g" (k.k')], — (2.3) FIG. 1. PWIA scattering process.
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cleon of momentum p from the target nucleus. The off-
shell roton and neutron tensors 8'~ and 8'„" are re at-
ed to the structure functions of the free nucleons,
s e p

which
are measured in elastic and inelastic electron-proton and
electron-deuteron scattering experiments.

ii p(p, E)

A. Nuclear matter spectral function

(2.6)

A calculation of P (p, E) for infinite nuclear matter has
been recently carried out [14] within the framework of
correlated basis function (CBF) perturbation theory using
a complete set of orthonormal correlated many-body
wave functions (OCB states), generated by a realistic nu-
clear Hamiltonian, involving two-body and three-body
interactions.

In Ref. [14], the following expression of the spectral
function has been adopted:

P(p, E)=g ~& ~a, ~o) ~'n(E —E~+Eo), 180

w ereh 0) represents the nuclear matter ground state,
and E res ec-with energy eigenvalue Eo, whereas N ) and ~, respec-

tively, denote eigenstates and energies of the (A—
particle system. The energy E& andd E do not include
nucleon rest mass. ne-0 e-hole —and two-Role —one-particle
intermediate OCB states have been included in the calcu-
lation.

The contribution from two-body breakup processes,
correspon ing o one-d t -hole intermediate OCB states, turns
out to be sharply peaked at E= —e(p), e(p) being the
excitation energy of the one-hole OCB state of momen-
turn p, wit p &h & k . The width of the peak provides a
measure of the lifetime of the corresponding quasiho e
state and goes to zero as

~ p approaches the Fermi
momentum k~. These two-body breakup processes dom-
inate the P%'IA dynamic structure function given by

S,~(q, co) = J dp dEP(p, E)o(co E —eo( ~p—+ql ))

(2.7)

with eo(p) = (
~ p ~

+m )' —m, in the region of the quasi-
free peak. They have been studied in (e, e'p) experiments
for a variety of targets, ranging from the few-nucleon sys-
tems to heavy nuclei [15,16].

A 1 t 1 different energy dependence is displayedcompe ey
by the contribution to P(p, E) coming from t ree- o y
breakup processes, associated with two-hole —one-particle
intermediate OCB states in Eq. (2.6). These processes,
produced by nucleon-nucleon correlations, give rise to
the appearance of a widespread background, extending
u to large values of both ~p ~

and E (see Fig. 2), and yield
the dominant contribution to Eq. ',2.7& in

~ ~

',2.7& in the kinematical
regions corresponding to the tails of the quasifree peak.

The energy dependence of P(p, E), which is typical of a
strongly interacting Fermi Quid, has been shown [14] to

response. Neglecting this dependence, which amounts to
1

'
th ectral function with the momentum is-

tribution in the evaluation of the PWIA response, ea s
to a sizable overestimate of Si&(q, co) in the low-co region,

FIG. 2. Spectral function P (p, E) of nuclear matter.

even at very ig vah' h values of the momentum transfer
( ~q~

—1.5 GeV/c) [14,17].

B. Qff-shell electron-nucleon cross section

(2.8)

The s ectral function P(p, E) is zero for E less than 16
MeV, the binding energy per nucleon of nuc e

e spec ra

1
~ ~

E is the more off shell the nucleon is.larger p or is,
In Ref. [12], deForest proposed to describe the elastic

scattering of an electron by an off-shell nucleon using the
but re lacinfree-nucleon spinors and current operators, u rep

the electron momentum transfer q with q. Moreover, im-
posing gauge invariance

qp
=

pv q =O, (2.9)

one can eliminate the dependence of the off-shell nucleon
tensor upon t e ongi u ih 1 t d'nal current. The contribution

~ ~

to the cross section (2.2) due to elastic e —X processes, is
then given by [18]

The relevance of the high-momentum and high-energy
componen s ot f the spectral function in the determination
of the nuclear matter response implies that, in or er to
evaluate the cross section (2.2), the treatment of the
electron-nucleon vertex for an off-shell nucleon has to e
carefully considered.

Since the scattering process involves a bound particle,
a fraction of the energy transferred by the virtual photon
goes into excitation energy of the residual (2 —1-
particle system, an ed the four-momentum transferred to
the struck nucleon is given by [12) q =(q, co, the o
shellness being measured by the quantity

co co=E+( p~ +—m )'i —m .
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pdEP p, E
dQ de'

x[zo I(IqI, m)

+No",, ( Iql m)], (2.10)

W2 (q q p)=, , [GZ(q'))'
(1—

q /4m )

2
'q [GN( 2)]2

4m

where the elastic e N(N—=p, n) cross section is x5(s —m ), (2.15)

oM TI W& (q q p)+T2E
W2 (q, q.p)

m
(2.11)

with

T) =2 tan —+ —1
28 q q

I2 -2 (2.12)

T, =(IpI' —p') tan' ———

(E+E )

4
(2.13)

2

W& (q, q p ) = — [GM(q') ]'5(s —m '), (2.14)

In the above equation O.M denotes the Mott cross
section, E =(IpI +m )'~, E.=(Ip+qI +m )'~,
q p=SEp q p, and pI~ is the component of p parallel to
the momentum transfer q. The elastic nucleon structure
functions 8'& and 8'z are expressed in terms of the usual
electric and magnetic form factors GE and G~ by the fol-
lowing relations:

s =(p+q) being the squared invariant mass of the final
state of the struck nucleon.

The de Forest approach is readily generalized to de-
scribe not only elastic but also inelastic electron scatter-
ing by an off-shell nucleon. In fact, the inelastic cross
section o g' has the same expression as in Eq. (2.11) with
W, (q, q p) and W2 (q, q p), given in Eqs. (2.14) and
(2.15), replaced by the corresponding inelastic structure
functions W, ;„(q,q.p) and W2;„(q, q p). They are
parametrized to fit the data and are given in Ref. [19]as a
product of two functions, describing the threshold and
resonance region and the deep inelastic region, respec-
tively. The inelastic contribution (d o. /dAdE );„,I is
then obtained from Eq. (2.10), when the rr',z are substi-
tuted with o',~~.

Figure 3 shows the calculated PWIA cross sections for
incident electron energy e =3.595 GeV and scattering an-
gle 0=30', compared with the nuclear matter data and
deserves the following comments.

For the kinematical conditions of Fig. 3, corresponding
to momentum transfers IqI -2 GeV/c, the inelastic con-
tribution turns out to be comparable with that due to
elastic e-X scattering already in the region of the quasi-
free peak (co-1.2 GeV) and becomes dominant at co-1.5
GeV.

I I I I I I I I I I I I I

10

3

b

10

10

0.75 1 1.25 1.5
energy loss u (GeV)

1.75

FIG. 3. PWIA inclusive cross section for incident electron energy 6=3.595 GeV and scattering angle L9=30, compared with the
experimental data of R.ef. [I1]. The dashed and the dot-dashed lines give the contributions from the elastic and the inelastic eN-
scattering processes, respectively.
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The calculation of the inelastic contribution carried
out in the present work, which consists in using the full
nuclear matter spectral function I'(p, E) and in describ-
ing the off-shell nucleon tensor according to deForest's
prescription, has to be regarded as a significant improve-
ment upon the estimate of Ref. [11]. Such an estimate
was, in fact, based on the procedure originally proposed
by Bodek and Ritchie [19]. According to this procedure,
the dependence upon the excitation energy of the residual
system is disregarded both in the spectral function, which
is approximated by the momentum distribution, and in
the off-shell extrapolation of the nucleon tensor. The
momentum distribution used in Ref. [11] has been ex-
tracted by the y-scaling analysis of the data. The in-
clusion of the dependence upon E and the treatment of
the nucleon off-shellness according to de Forest's
prescription play a relevant role in determining the in-
elastic cross section. In the resonance and threshold re-
gion, the use of q instead of q leads to a sizable change in
the values of the inelastic structure functions. For in-
stance, at a=3.995 GeV, 0=30 and m-1. 35 GeV, we
get a value of -0.76X10 pb/sr GeV for the inelastic
contribution to the cross section, which is to be com-
pared to the estimate of —1.5 X 10 iub/sr GeV reported
in Ref. [11].

The results from the present calculation and the data
are in close agreement at m& 1 GeV, whereas sizable
discrepancies occur, in both magnitude and shape, at
lower energy loss. It appears that the theoretical curve
lies a factor of 3—4 below the data at co=0.7—0.8 GeV,
and exhibits a pronounced kink at co-0.9 GeV, reAecting
the threshold for the three-body breakup processes. The
origin of this kink can be traced back to the discontinuity
of the nuclear matter momentum distribution at p =kF.

III. EFFECTS OF FINAL-STATE INTERACTIONS

In order to estimate the effects of the FSI on the nu-
clear tensor W„(q, co), it is convenient to use the follow-

I

ing expression:

which is equivalent to Eq. (2.4). From now on, the quan-
tity q will denote the modulus of the three-momentum
transfer q, namely, q = lql. The effects of the interactions
between the particles of the target, in both the initial and
the final states, can be consistently treated with this equa-
tion. In fact, it has been used with CBF theory to calcu-
late the nonrelativistic response of nuclear matter
[20,21,14] and liquid helium [22,23].

As explained in Sec. II, approximate treatments based
upon PWIA are obtained by assuming that, at large
enough momentum transfers, the contributions due to the
exchange of the struck hadron with other nucleons is
negligible, and thus the struck nucleon can be considered
as a distinct particle. In this case one can consider the
Hamiltonian H as given by

H =Ho+Hr ~ (3.2)

where the unperturbed Hamiltonian Ho contains the sum
of the free Hamiltonian of the struck hadron and the
Hamiltonian of the remaining A —1 nucleons in the tar-
get nucleus including their interactions. The interaction
Hamiltonian Hr contains only the FSI of the struck nu-
cleon with the other A —1 nucleons.

Let lN & be an eigenstate of the A —1 nucleons, lX & be
the state of the struck hadron, and

(3.3)

where Eo is the ground-state energy of the nucleus. The
PWIA is obtained by neglecting Hr, so that

W~ (q, co)=29t f dt&Ol J„"(q)e J "(q)lO &,
0

(3.1)

W„ 1(q, co)=2%f dt&OlJ„"(q, co)e J (q, co)lO&
0

=& @~—~+~)&olJ„'(q,~) N&l&&&&l&NIJ."(q,~)lo &,
N, X

(3.4)

i( iwv)i& O—
l

JA( ~)e
' o 0 JA( ~)lO &

(3.5)

then the V and the W must depend upon q, co, and t. In
fact, inverting Eq. (3.1), one gets the relation

&OlJ„"(q,co)e ' J"(q, co)lO&

dc' W„„(q,co)e
1 (3.6)

as calculated in the last section.
In Ref. [24], Horikawa et al. originally proposed to de-

scribe the FSI in terms of an optical potential. It is easy
to verify that if the effect of Hr is represented by means
of an optical potential V —i W define such that

&0lJ„"(q,co)e ' J"(q, co)lO &

and a similar relation is obtained from Eq. (3.4) with Ho
and W„",~(q, co) in place of H and W„(q, to), respective-
ly. Therefore, Eq. (3.5) implies that

f dc@ W„(q,co)e

W A —s( v —sw)te —scot
pv, IA (3 7)

In practice, one uses approximations for V and W. Note
that the imaginary potential W(q, co, t) has to be defined
such that W(q, co, t) = —W(q, co,—t ) so that
exp[ —W(q, co, t)] & 1 for both t )0 and t &0. The fol-
lowing simple convolution formulas are obtained if V(q)
is assumed to be independent of co and t and W(q, t) in-
dependent of co:
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TABLE I. Quasifree kinematics and parameters of the N-N amplitude.

~ (Gev)

3.595
3.595
3.595
3.995

0
(deg)

20
25
30
30

e' (GeV)

2.921
2.646
2.376
2.545

coqf (GeV)

0.674
0.949

01.219
01.450

q (fm ')

6.65
8.30
9.85

11.13

v/c

0.813
0.868
0.900
0.920

P (fm)

0.20
0.25
0.29
0.32

o.~~ (mb)

35.0
40.0
43.3
43.3

W„" (q, Io) =f de'F(co to') W—„",~(q, to' —V(q)),
0

(3.8)

i ( ttI t0' )—t —W( q, t ) t1

7T 0
(3.9)

They have been used to estimate the effect of the FSI in
deep-inelastic scattering of neutrons by liquid helium
[25—28].

The simplest approximation for V and 8'is to use the
real and imaginary parts of the optical potential of the
hadron X in nuclear matter. The effects of the FSI are
very important only at small values of co where the
response is dominated by elastic e —1V processes in which
X is a nucleon having momentum -2 GeV/ c(Fig. 3).
Dirac optical modes fits [29,30] to the scattering of 0.1—1

GeV protons by nuclei suggest that V-25 MeV in the re-
gion of interest, and it has a rather small effect on the
response. Thus, the main effect of the FSI is due to the
damping of the motion of the struck nucleon described by
the imaginary potential 8'.

The crudest estimate for 8' is obtained by taking the
time-independent

II"+'(q, z) =e' qN(z),

where z =r.q and @(z) is defined as

(3.12)

1.25

1.00

0.75

0.50

pg(r), where g(r) is the pair distribution function [31]
shown in Fig. 6. At small r, g (r) becomes very small and,
consequently, the motion of the struck nucleon is essen-
tially undamped at small value of the time t.

Multiple-scattering Glauber theory [32,33] provides a
framework for obtaining approximate expressions for
W(q, t) which take into account the ground-state correla-
tions. The struck nucleon is assumed to be at r =0 and
t =0 when it is struck. Its wave function at t )0 is writ-
ten as

W(p') = pv (p')o m (—p ) (3.10)
0.25

where p is the density (0.16 fm ) of nuclear matter, v(p')
and criv&(p') are, respectively, the velocity and the
scattering cross section of the struck nucleon. In fact,
the momenta p' of the struck nucleon have a spread in
magnitude of -kF around the average value q. Howev-
er, in the region of interest here, U is close to c and o&&
does not depend strongly on p' (see Table I). Hence, it is
reasonable to calculate both U and o.&& for nucleons hav-
ing momentum q.

The time-independent 8' gives a Lorentzian folding
function

0.00
0

0.03

0.02

0.01

100 200
~ (Mev)

300

I I I I

I

t I I I

I

I I I I

8'
FL (to to')=—

W +(co—co')
(3.11)

0.00

which has unrealistically long tails (see Fig. 4). In nonre-
lativistic quantum liquids, the use of a Lorentzian folding
function violates the co sum rule. In the present case it
gives too large response at small values of Io (see Fig. 5).
It is believed that the major source of inaccuracies in
FL (co to') comes from neglectin—g the fact that the struck
nucleon was a part of the ground state [25]. The particles
surrounding the struck nucleon are not uniformly distri-
buted at density p, rather the density p(r) of nucleons at a
distance r from a nucleon in the ground state is given by

001 I I I I I I I I I I I I I I I

400 600 800
ro (MeV)

1000

FIG. 4. Low and high co behaviors of the folding functions
used in the calculation of the FSI at E=3.595 GeV, L9=30.
The dot-dashed, dashed, and solid lines denote the Lorentzian
FL, the correlated Glauber F&, and the correlated Glauber plus
color transparency FGCT folding functions, respectively.
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10

3

cf

b

10

0.75 1 1.25 1.5
energy loss ~ (Gev)

1.75

FIG. 5. Calculated cross section for incident electron energy a= 3.595 GeV and scattering angle I9=30', compared with the experi-
mental data. The dot-dashed and the dashed lines correspond to the results obtained with FL and FG, respectively. The solid line is
obtained with FGcT.

@[z=u(q)t]—:exp i(V —iW)—
A'v(q)

The eikonal approximation,

(3.13)
Substituting this u;„,(r) in Eq. (3.14), we get the trivial re-
sult

W(q)= g(f (k =0))

@(z)=exp f dg u(g)
Auq o

(3.14) (3.18)

is used to calculate @(z) and the q and t dependent opti-
cal potential V and W in Eq. (3.13). This approximation
is valid if the quantity U;„t+ varies slowly within dis-
tances of the order of 1/q and if u;„, /E~ && 1. The v;„,(g)
represents the interaction of all the nucleons with the
struck nucleon and it is taken as

In order to include the effects of the correlations among
the hole associated with the struck nucleon and the
remaining nucleons, in first-order approximation, u;„,(r)
is given by

Dint Ueff, q
r ri (3.15)

where r; denotes the positions of the other nucleons. The
U cff q

is obtained from the free X-X scattering data as

0.8—

(r)= — f e'"'f (k)
m (2m)'

(3.16)

where f (k) is the amplitude for the scattering of a nu-
cleon of momentum q, with momentum transfer k, by
free nucleons at rest.

If the ground-state correlations are neglected, Eq.
(3.15) becomes

2
u (r)= — dr'e' " ''f (k)

oz — !
/

/
/

/

0
0

I l I I I I I I I I I I I I I

2 3
I.(r1T1)

f (k=0) .2mpA

m
(3.17) FIG. 6. Pair distribution function of nuclear matter at the

empirical saturation density {kF = 1.33 fm ).
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u;„,(r)=p fdr'g(r')v, (r (r —r'),

and obtain

(3.19)

V —iW= — —f deaf dr' '"" '
( ')f (k)

q «(2~)'
A realistic parametrization of the imaginary part of the amplitude f (k) is given by Bassel and Wiikin [34]:

(3.20)

If (1 )
— q e [/3(g) ]

q 4 1vN (3.21)

The values of o»(q) and P(q) have been tabulated by Dobrovolsky et al. [35] and by Silverman et al. [36] and inter-
polated in Table I for the kinematics of interest. %'e obtain

W(q, z)= pu—(q)o»(q) 1 ——f dg f e ' + e
1 ~ dk;), .- 1 —S(k) ( )k &

2 z o (277) p
(3.22)

where 8 (k) is the static structure function:

S(1(:)= 1+p fdr e'"'[g (r) —1] .

The time-dependent W(q, t) is identified as

(3.23)

Apu (q)o.»(q)
W(q, t)=

2tr,

X f dt'f db bg(t/[v(q)t'] +b ),
0 0

(3.28)

W(q, t) = W(q, z = u (q)t ), (3.24)

z
W(q, z)= —pv(q)o»(q) —f dgg(g),

2 Z 0

or, equivalently,

fi
W(q, t)= —pv(q)o»(q) —f dt'g(u(q)t') .

2 t 0

(3.25)

(3.26)

The decay of the amplitude of the struck particle wave
function,

(e lv(P()()pu(q)o(q)g(u(q)r)ew(P t)(

(3.27)

seems to be governed by the density pg(u (q)t ) at time t.
The expression (3.22) derived within correlated

Glauber theory has also been obtained from hard-core
perturbation theory (HCPT), developed [28] for deep-
inelastic neutron scattering on quantum Auids and solids,
the only difference being the use of the t matrix in place
of the experimental amplitude (4m' /m)f~. In fact, b—y.
solving for W(q, z) using the small-angle —large-I approxi-
mation for Legendre polynomials, Silver obtains [28], in
the asymptotic limit,

and the folding function [Eq. (3.9)] obtained with it is
denoted by Fo(co (u'). It h—as no Lorentzian tail, as can
be seen in Fig. 4, and gives a much improved description
of the response (Fig. 5).

We now discuss some further approximations one
could make in order to establish contact with other cal-
culations. Since f3(q) in Eq. (3.22) is essentially the radius
of the absorptive part of the X-N interaction and
1 —S(k) becomes small at kro))1, where ro is the unit
radius (4mrop/3=1), P(q)/ro ((I, and exp( —[P(q)k] )
can then be approximated by unity to obtain

which reduces to Eq. (3.26) by assuming that r„ the ra-
dius of the absorptive part of the N —X interaction, is
small.

The free o»(q) is used in the present work. There are
several corrections to the o.»(q) in matter. These can be
grouped in three classes. In the first class we include
those coming from the nucleonic degrees of freedom.
These contain effects of multiparticle correlations,
effective masses of nucleons in matter, screening effects,
Pauli blocking effects, the ~ dependence of o.~&, etc.
They are included in the nonrelativistic calculation [21]
of the response of nuclear matter using CBF theory.
These corrections are certainly important at low energies,
however, they are expected to become less important at
higher energies. Modifications of the X—X amplitude at
off-shell energies also play a role as shown by Uchiyama,
Dieperink, and Scholten [37]; we neglect this here due to
the lack of knowledge of the off-shell amplitude.

In the second class we may consider corrections to
o.&& due to changes in meson propagators in nuclear
matter. These can equivalently be regarded as correc-
tions due to three-body forces. Realistic models of
three-body forces, obtained by fitting ground-state prop-
erties of light nuclei and nuclear matter [38] suggest that
they are much weaker than the two-nucleon force and
hence their effect on the folding function representing the
FSI should be small. We expect that the main effects are
already included by g (r) which has indeed been calculat-
ed with the three-body force in the Hamiltonian.

The third class, finally, contains corrections to o.&&
due to the quark structure of the nucleons. The folding
function F((u co ) is sensiti—ve to the interactions of the
struck nucleon taking place within a fraction of 1 fm of
its interaction with the electron, as demonstrated by the
fact that it extends up to —700 MeV (see Fig. 4). It is
then possible that these interactions differ significantly
from the free X—% interactions. Such an effect is gen-
erally discussed in the context of the phenomenon called
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lp, =2Eq/b, M (3.29)

Various estimates of hM can be found in the literature

color transparency [39—42], and we follow its treatment as
given in the review by Frankfurt and Strickman [43]. In
the parton model, the elastic e —N scattering at large q
could occur via the following process. The large-q virtual
photon is absorbed when the quarks in the nucleon are in
a compact pointlike configuration. This configuration
can be regarded as a coherent superposition of diFerent
states of the baryon and evolves into a nucleon, i.e., the
superposition gets out of phase in a time called the had-
ronization length

9(k ) 9(k')
o (z ( lh ) —o ~~ —1 — +

q co q co
(3.30)

where kT is the transverse momentum of partons in the
nucleon ((kT)'/ -350 MeV). It is trivial to include
such a time dependence of the cross section in the classi-
cal (z =vt) limit. We obtain

and we have used AM =0.7 GeV in the present work,
as suggested by Ref. 41. The struck nucleon interacts
with the other nucleons with the free o.z& only after trav-
elling a distance l&. At l & l„, the interaction cross sec-
tion depends upon z and is estimated to be

(q, z)= pv(q)—tr (q) f dg—C(q, g) 1 —f,.-' «e (~'t )'-dk;), .- 1 —S(k) ( )k 2

2%3 P
(3.31)

where

C(q, z)=1+8(ll, —z) ——1
z
l

9(k,')
2 2

q
—m

(3.32)

and the resulting folding function denoted as FGCT is also
shown in Fig. 4. It has slightly smaller width than FG,
and the response obtained with it (see Fig. 5) is in better
agreement with the data.

Ref. [47] has been applied to orthogonalize the above
complete set of basis functions

~
n ) to obtain the ortho-

normal set ~In ) used in the calculations. The details of
the calculation of P(p, E) are given in Ref. [14] and will
not be reported here for brevity.

The single-particle excitation energies e(k), appearing
in Eq. (2.7), have been taken from the nonrelativistic cal-
culation of Ref. [48], up to k =kL =3.5 fm ', and for
k ) kL from the relativistic expression

IV. RESULTS m +e(k) =Q(m + V, ) +k + Vo, (4.5)

H= g — v,'+ g +
i=1, A i&j=1,A i &j&k=l, A

V;Jk, (4.1)

The nuclear matter calculations are based on the fol-
lowing nonrelativistic Hamiltonian:

where the Lorentz vector and scalar potentials Vo and V,
have been taken from volume term of the fit called case 1

by Cooper et al. [49) to Ca elastic-scattering data
[50,51] using phenomenological Dirac optical model.
The real part of the nuclear matter optical potential UNM

where the Urbana two-body potential v;1 [44] and the
three-nucleon interaction of Ref. [45] has been adopted to
calculate the equation of state of nuclear matter. The
evaluation of the spectral functions has been carried out
within CBF theory (for a review see Ref. [46]). The
correlated basis functions have been taken to be of the
form 20

I I I
f

I I I I
[ /5 I I I

I I

where

G[n]
[n[G'G]n]'" ' (4.2)

6 =S Q F(i j),
j)i=1,A

F(ij)=g f"(r,, )O"(i,j),
(4.3)

(4 4)

—20

—40

with S being the symmetrization operator and the opera-
tors 0"(i,j ) include the four central components
[1;cr; o,.;r; ri;(o; o ).(r;.r ).] fo. r %=1,4 and the tensor
components S; and S; r; ri for n =5,6. T.he states ~n]
are eigenfunctions of the Fermi gas Hamiltonian. The
Lowdin-Schmidt orthogonalization procedure (LSOP) of

3
k(tm )

FIG. 7. Real part of the optical potential used in the calcula-
tion (solid line). The dashed and long-dashed curves represent
the nonrelativistic and the relativistic calculations.
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FIG. g. Correlated Glauber (dashes) and correlated Glauber plus color transparency (solid line) results for the inclusive cross sec-
tion at @=3.995 GeV and scattering angle 0=30'.

is then extracted from the single-particle energies using
the relation

m +e(k)=+m +k + UNM . (4.6)

The nonrelativistic and the relativistic U's cross at k =kL
and are not very different in a broad region around kL .
At higher values of the momenta, the relativistic poten-
tial is roughly constant and -25MeV, whereas the non-
relativistic one grows very rapidly (see Fig. 7). As men-

tioned earlier, the U(k) is rather small in the region of in-
terest, and therefore it has little effect on the calculated
response.

The Hohler parametrization [52] of the free nucleon
form factors has been employed in the calculation of the
quasielastic cross section.

The results obtained for @=3.995 GeV, 0=30 are
shown in Fig. 8 and for a=3.595 GeV, 0=25 and 20 are
shown in Figs. 9 and 10. The theory is in good agree-

I I I I I I I I I I I I I I I I I I

3

b

10

I I I I I I I I I I I I I I I I I I

10.4 0.6 0.8
energy loss u (GeV)

1.2

FIG. 9. As in Fig. 8 for a=3.595 GeV and scattering angle 0=25'.
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FIG. 10. As in Fig. 8 for e= 3.595 GeV and scattering angle 0=20'.

ment with the data at these values of E and
PWIA response is too small at small co, the estim
is sufficient to raise the response up to the observed data.
Particularly, at e=3.995 GeV, 0=30 the color tran-
sparency has a large effect on the response and it appears
to be necessary in order to obtain agreement with the
data. At very small co the calculated cross sections at
some kinematics have a Hat behavior, which may be an
artifact of the particular analytical structure of o (z) of
Eq. (3.30). There is also some sensitivity to the high-
energy behavior of the folding function. A natural cutoff
is provided by the step size of the grid used in the tabula-
tion of the distribution function g (r). In our calculation
such a cutoff' lies in the region of 0.9 GeV which is the
limiting value we have used for a nonvanishing F (co).

V. SCALING

It is instructive to study the nuclear matter response
not only in terms of the cross section, but also in terms of
the scaling function F(y). The quasielastic, inclusive
response a priori is a function of two independent vari-
ables, q and m. In the PWIA it can be shown that, as q
tends to infinity, the cross sections will scale, i.e., become
a function of a single variable y, this y being itself a func-
tion of q and co. The variable y may be thought of as the
minimal value of the momentum p of a nucleon bound
with the minimal removal energy [53], allowed for by the
energy- and momentum-conserving 5 function

5(+m +(p+q) —m +E —m), (5.1)

where E is the removal energy. In nuclear matter the
minimal removal energy E;„,given by the difference of
the binding energies between the A —I and the 2 sys-

tems, results to be 16 MeV. The minimal value of p
occurs if p is (anti)parallel to q, i.e., y=pI. The scaling
function F (y) is given by

F(y)= (q, co)E 'tTdo
dQ

where K is the kinematical factor, given by

(5.2)

1
BQ)

a
~min min

+m +(y +q)
q

(5.3)

and o. is the sum of electron-proton and electron-neutron
cross sections evaluated at an initial nucleon momentum
p= —y and averaged over all components of the nucleon
momentum perpendicular to q. It is worth mentioning
that the choice of the kinematical factor K [54,55] is less
relevant in nuclear matter than in finite systems, where
one has extra terms due to the recoiling nucleus. In fact,
in the limit A~~, the ratio between ~Bco/By~ and
~Bcu/BpI ~~ ~ &z ~

is equal to 1+y/q, which becomes 1
min min

for large q.
In the limit q = ~, and for negligible excitation energy

of the final ( A —1) system, i.e., when the spectral func-
tion P(p, E) may be represented by a momentum distri-
bution n (p), F(y) should depend on y only, and represent
the momentum distribution n (kI ).

This scaling has been shown to work very well for light
nuclei [56] while for heavier nuclei [10] important devia-
tions have been observed. A recent review of both exper-
imental observation and theoretical studies has been
given by Day et al. [55].

The occurrence of scaling, and the approach to the
q= ~ limit, can give important clues on the reaction
mechanism. Deviations from scaling are expected for
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FIG. 11. Scaling function F(y) for the nuclear matter data at
momentum transfers q between 1 and 2 GeV/e.

two main reasons. The distribution of strength of P(p, E)
over an extended range of E leads to a convergence of
F(y) from below for increasing momentum transfer q.
The Anal-state interaction of the knocked-out nucleon
leads, in general, to a convergence from above. For the
kinematical range of the data available for nuclear
matter, it is, in particular, the latter which has a large
effect. Due to the high density of nuclear matter, the
effect of FSI is large.

In Fig. 11 we show the scaling function F(y) for the
nuclear matter data at momentum transfers between 1

and 2 CxeV/c. The data corresponding to difFerent q cov-
er a rather broad band in F (y), indicating poor scaling.

Figures 12 show the convergence of F(y, q) for two
selected values of y. At y = —100 MeV/c, a value below
the Fermi momentum kF, the quality of scaling is very
good, and F(y) changes little over the accessible q range.
Experiment and calculation are in good agreement. The
main effect of the calculated FSI in this region results
from the small smearing efFect of the folding Isee Eq.
(3 8)j from the main peak of the folding function. For
y = —500 MeV/c F(y, q) changes a factor of 3 over the
accessible q range. While at low q, the rate of change is
larger than the one given by the calculation, at high q the
rate of convergence is close to the one calculated. In this
region of y, the change of F(y) with q basically results
from the folding of the response due to the FSI, with the
tails of the folding function moving strength from k (kF
to the region k) kF where, in IA, the strength is very
low. The rather good agreement of experiment and cal-

y=-10OMe V/c y=-500MeV/c

P'INIA

Full

500 1500 2500 500
q (MeV/c)

1500 2500

FIG. 12. Scaling functions F(y, q) as a function of q for y = —100 and —500 CxeV/c. The experimental data are compared to the
PWIA estimates (dashes) and to the results of the full calculation (solid line).
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culation indicates that the tails of the folding function are
properly predicted. Due to the folding effect, the value of
F(y) at the largest q is still significantly above the PWIA
value. To reach the PWIA at larger q, F(y) would have
to decrease another 40%.

—2
I I I I I I—

0

VI. CONCLUSIONS

In this paper we have tried to quantitatively under-
stand the response function of nuclear matter at high q.
Particularly, the low-omega cross section provides funda-
mental information on the short-range structure of the
nuclear matter wave function.

Realistic analyses of this interesting kinematical region
of the nuclear matter response could not be performed in
the past both for experimental and theoretical reasons.
Data for nuclear matter can only be obtained by measur-
ing the inclusive cross section for different complex nuclei
and using the same kinematical conditions. Such data be-
came available only recently [10,11]. The major theoreti-
cal difficulties consisted (i) in the microscopic evaluation
of the nuclear matter response in the high-q region,
where the struck nucleon and its FSI needs to be treated
relativistically, and (ii) in the consistent calculation of the
contribution of inelastic e —N scattering, which, at high
momentum transfer, is expected to be non-negligible even
in the low energy loss tail.

We present a calculation of the nuclear matter in-
clusive cross section based on the spectral function, in-
cluding the FSI, performed consistently for both the elas-
tic and the inelastic nucleon contributions. The spectral
function of nuclear matter has been calculated nonrela-
tivistically for a realistic N —N interaction by using corre-
lated basis function theory [14]. The struck nucleon is
treated relativistically and its FSI's are evaluated by gen-
eralizing the Glauber theory to the case of a relativistic
nucleon propagating in the same nuclear medium to
which it was bound before being struck by the electron.
This amounts to taking into account the fact that such a
nucleon, being a part of the ground state before the in-
teraction with the electron, experiences a nucleonic den-
sity pg (r) instead of p, where g (r) represents the XN dis-
tribution function. It has to be noted that such a feature
should never be disregarded when treating the FSI in
processes where an initially bound nucleon is knocked
out. In fact, it has an effect which is qualitatively similar
and quantitatively much larger than that of the color
transparency; the pair distribution function g (r) is very
small at small r and therefore the motion of the struck
nucleon is little damped at distances ~ 1 fm from where
it has interacted with the electron.

The sensitivity of the cross-section to g (r) is actually
quite pronounced. In Fig. 13 we show the inclusive cross
sections at 3.6 GeV, 25, calculated for both the normal
nuclear matter g(r) and a modified g„d(r). In g„d(r) we
have artificially increased by 20% the hole in g (r) around
r =0, due to short range correlations, by simply expand-
ing the radial scale. The efFect on the cross section is
significant. This sensitivity to g (r) is most welcome, as in
most observables the effects of N —N correlations are hid-
den and indirect. This sensitivity provides a strong

5~ 10

1O'
0.4 0.6 O.B

energy loss ~ (GeV)

FIG. 13. Sensitivity of the inclusive cross section to the X-N
pair distribution function at @=3.6 GeV and 0=25 .

motivation to study (e, e ) at large q in more detail in the
future.

Corrections to the FSI due to color transparency are
easily included in the correlated Glauber treatment. It
has been found that they are indeed necessary for a better
agreement with the data. Both the elastic and inelastic
scattering of the electron by an off-shell nucleon has been
described by using the full nuclear matter spectral func-
tion and the prescription proposed by de Forest [13] to
treat the off-shell elastic e-nucleon cross section.

The results obtained show overall a good agreement
with the data. For all the kinematical cases studied, the
PWIA reproduces the measured cross sections near and
above the top of the quasielastic peak, whereas it un-
derestimates them at lower energy loss, where the
theoretical curves lie a factor of 3—10 below the data.
The main contribution to the FSI comes from the imagi-
nary part of the optical potential. Including it by using
the correlated Glauber theory plus color transparency
provides a satisfactory description of the data. This im-
plies, on one side, that both the spectral function and the
treatment of the nucleon inelastic contributions used in
this work are quite realistic and, on the other side, that
FSI's are quite large at low co.

We note that the present calculations involve two main
approximations: (i) the use of de Forest's method to esti-
mate the oF-shell electron-nucleon cross sections, and (ii)
the use of the first-order-correlated Glauber approxima-
tion to estimate the FSI efFects. Both these approxima-
tions appear to be reasonable, but it is desirable to ascer-
tain their accuracy quantitatively. Data at higher values
of q and cu will also be helpful in studying color tran-
sparency. Exclusive (e, e'p) measurements in the region
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of the quasifree peak [57] may also provide further evi-
dence of this effect.

The FSI bring the P%'IA results close to the data, how-
ever, at very-low-energy loss e (0.5 GeV there are sub-
stantial differences between the calculated and observed
response. Part of the discrepancies, particularly visible at
@=3.595 GeV, 8=20' are due to the fact that the
momentum and the energy of the struck nucleon are not
strictly those of the quasifree kinematics, as considered
here, but rather they depend upon the initial-state of the
nucleon. Moreover, it is likely that the first-order-
correlated Glauber approximation used in the treatment
of the FSI is less valid at lower values of the recoil-
nucleon momentum. It will be necessary to go beyond

the first-order approximation in the q-3 —7 fm ' and
co (0.5 GeV region where the purely nonrelativistic
theory [20] is not applicable, and where the present ap-
proach also seems not to be adequate.
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