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A leading correction to the zero-range theory is considered for three-body systems. The correction is

linear in the force range ro. An explicit expression is obtained for this correction for the case of correla-

tion between the three-body binding energy and the particle-pair scattering length, as well as for the

practically interesting case of correlation between the triton binding energy and the neutron-deuteron

doublet scattering length. The correction for the neutron-deuteron quartet scattering length is also

found. Physics of the correction involves a modification of the effective long-range interaction 1/R,
which arises in the three-body systems under the conditions of the zero-range theory, by a singular

correction ro/R .

I. INTRODUCTION

During the early years of nuclear physics the zero-
range theory played a useful role in understanding of the
two-nucleon systems [1]. A similar approach for the
three-nucleon systems was initiated in the fifties and six-
ties [2,3] but was utilized relatively rarely owing to
insufficient understanding of its features (see Ref. [4] for
the historical review). The unclear points were worked
through with the time, and at present this approach
seems to experience its revival. The new development
has already led to a number of interesting results [4—7].
In particular, the explanation has been found for a once
mysterious correlation, called the Phillips line, between
the calculated values of the triton binding energy and the
nd doublet scattering length.

The approach referred to shows in an explicit way that
many properties of three-nucleon systems are actually
determined by very few two-body and three-body param-
eters (the universality [4,5]). Therefore, the approach is a
rather easy and concise way of qualitative understanding
of both experimental data and results of numerical three-
body calculations with model nuclear forces. Moreover,
it provides a "background" that should be subtracted
from experimental values of the three-body observables in
order to get a better access to a really new and nontrivial
information about the two- and three-nucleon systems.

The success of the zero-range theory warrants attempts
to calculate a correction due to the finiteness of nuclear
force range. For the two-nucleon system this correction,
which is linear in the force range, is well known. The
present paper concerns with the derivation of this correc-
tion for the case of three-nucleon systems.

This problem was also first posed in the sixties. Dani-
lov [8] obtained an integral equation for the correction,
which was numerically solved in Ref. [9] (see also Ref.
[10]) for the relatively simple case of nd quartet scatter-

ing. The basic result of the present work is that the
correction can in fact be found in an explicit analytical
form.

This result seems to look rather natural. Indeed, as is
known from the potential theory, the first perturbative
correction to the binding energy and scattering length are
both expressible in terms of unperturbed wave functions
and perturbation potential. The situation in the present
problem turns out the same, and we have derived the ex-
pressions of this sort. The peculiarity of our problem is
that the unperturbed potential and perturbation are de-
rived from the three-body theory and turn out singular at
small distances (see below). Therefore, the derivation of
final results is not just a trivial exercise in perturbation
theory —it requires a clear understanding of the physics
involved.

Sections II—IV deal with three spinless particles; Sec.
V with three nucleons. The masses of particles are as-
sumed to be unity.

II. THE STARTING EQUATION

We consider the symmetric S-wave state of three iden-

tical particles. This example enables us to demonstrate
all principle steps of derivation of the linear correction.
As was mentioned in the Introduction, the integral equa-
tion for the linear correction was first derived in Ref. [8].
On the basis of present-day experience, this equation can
be understood in rather simple terms. Indeed, if we start
with the Faddeev equation for our system and keep only
first two terms of the expansion of the two-body t matrix
in the force range [11],we will arrive at the equation of
Ref. [8]. For the case of particle-pair scattering the equa-
tion reads (in comparison with Ref. [8] we slightly
changed the notations and used a different grouping of
terms)

X(p)=f E ——p'3 2

1/2 + + —E+P+o+PP E+ 2 d, lp +p' +pp' E—
p +po ppo E~

i p —+p' —pp' E——
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f E p2
"o a+y(p)
2 —a+y(p)

(2)

where a=&@, the ro is the two-body efFective range and

y(p) =( ,'p E—)'—. The on-shell particle-pair scattering
amplitude is related to y(p) in the following way:

a (po ) = lim p '(p —p o )y(p ) .
P ~70

(3)

To describe the bound state of the three particles, one
should omit the Born term on the right-hand side of Eq.
(1).

Equation (2) is a leading piece of the standard low-

energy expansion of the two-body amplitude. The func-
tion f depends on the relative two-body momentum
k =(E ,'p )—'i—=i@(p)expressed in terms of the energy
E and the virtual momentum p of the third particle [12].
In the present paper we are dealing with the energy inter-
val E &0, i.e., with the three-body bound states and the
particle-pair scattering below the three-particle thresh-
old. For these energies the momentum y(p) is real and
positive.

If we retain only the first term in expression (2) for f,
we obtain the zero-range theory [2,3]. The second term
proportional to rp presents a small perturbation. It gives
rise to a corresponding perturbation of the wave function
y(p) and to corrections to both the scattering amplitude
and the three-body binding energy. Our aim will be the
derivation of these corrections.

To solve Eq. (1), various procedures can be used. In
Ref. [8] a boundary condition on the wave function y(p)
was imposed at a certain large momentum p »(a, &iE~ )

(yet pro &(1). The solution of Eq. (1) turns out to be a
function of an additional parameter that comes with this
boundary condition. Another procedure, which we actu-
ally employ, consists of cutting the integral in (1) at a cer-
tain momentum p, [13]. We choose p, » ( a, &

~
Ei ) (yet

p, ro «1) and find the solution as a function of p, . As
I

Here E is the energy of the three-body system; pp is the
momentum of an incident particle in the center-of-mass
system; E=—,'pp —e, where e is the absolute value of the
pair binding energy. The function f is the two-body am-
plitude

1/2

was discussed earlier in connection with the zero-range
theory [14], both procedures are equivalent. The physics
of this equivalence stems from the fact that at low ener-
gies E « 1/ro the specific details of forces between parti-
cles are irrelevant. The interaction in the region where
all relative distances r;k are of the order of r„(this region
corresponds to the momenta p-ro ') can, as far as the
rest of configuration space is concerned, be parametrized
either by a boundary condition on the wave function at
the region boundary or by employing a simple model for
the forces inside this boundary [the scale R o of this
boundary is usually selected such that ~p &&R p

(&(a ', iE~
' )]. In the momentum representation the

first choice corresponds to the procedure of Ref. [8]; the
second, our procedure. The simple model employed con-
sists of putting the two-body t matrix equal to zero at

The equivalence we are talking about is a characteristic
feature of low-energy theories. For example, analyzing
the two-body problem at ro& ~E~ && 1, one can either set a
boundary condition on the wave function at a certain dis-
tance r such that ro «r « Ei ' or solve the problem
using a simple potential. Both procedures lead to the
same answer.

Note that in our approximation neither the boundary-
condition parameter nor the cutoff momentum depend on
the energy E. This is due to the fact that both these
quantities parametrize the interaction in the region
r, k

—ro where the energy E can be safely neglected [7].

III. LINEAR CORRECTIONS AT A

FIXED CUTOFF MOMENTUM

In this section we derive expressions for the linear
corrections to the binding energy of three particles and to
the particle-pair scattering length. The cutoff momentum

p, is assumed fixed.
To develop the perturbation theory for Eq. (1), we

transform Eq. (1) to a form that looks like the
Schrodinger equation for the wave function y(p). To this
end we multiply both sides of (1) by

(y —a)[1—
—,'ro(y+a)] and neglect terms quadratic in ro.

We obtain

2+ r2+
(y(p) —a)y(p) ——Jdp' lnp

S '+u' —pp' —E
fi(p' —po )+X(p') — [r'(p) —a']X(p) =o .

2+p 2

Since y(p) —a annihilates 5(p —po), we can add

(~/2)po '5(p —po) to y(p) in the first and last terms of
the left-hand side. As a result, we obtain the equation

(y —a+ Vo+ V, )/=0,
where

f(p) = fi(p —po )+g(p),
2pp

and the operators Vp and V& are

V( ) 21 p+p +pp
p +p' —pp' —E

Vi(p)= — [y'(p) —a'] .
2

This equation is the basis of our further consideration.
Let us discuss the physical meaning of Eq. (4). The
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equation describes our problem in terms of scattering
of a particle on an effective potential. The term
(rr/2)po '5(p —po ) in g(p) is the free wave, and the func-
tion y(p) is the scattering wave. The operator y —a plays
the role of T —E, and the potential V consists of two
parts —the main part Vp and the perturbation V]. The
potential Vp is the source of two well-known phenomena
of the three-body problem: the Thomas collapse [15] at
p, ~ao and the accumulation of loosely bound three-
body states at a~O [16]. In the configuration space its
effect is equivalent to an attraction 1/R cut off at the
distances p, ' and a ' [14,16]. The potential V, is pro-
portional to rp, and its effect we are going to study in the
present paper [17].

Equation (4) is amenable to the standard methods of
perturbation theory. Let us start with the correction to
the binding energy. We write y=yp+y], where gp is the
solution of (4) at V, =0 and the function y, is proportion-
al to V, . From Eq. (4) we find the following equation for
1]'

(y —a+ Vo)y, + V,yo+5E(y —a+ Vo)'go=0 .

Here 6E is the energy shift due to VI, and the prime
denotes the derivative with respect to E. Multiplying this
equation by gp on the left, we obtain for 6E

We write this function in the form

2PQ
(y —a —iO+ Vii) '(y —a)~Po) =

~bio ),

16m
(8)

Expression (8) looks like the standard scattering-theory
formula for the variation of scattering amplitude caused
by a small perturbation of a potential. Indeed, we can re-
place yo with italo in the ket vector because
V, 5(p —po)=0. As a result, we obtain the matrix ele-
ment & Po ~ V, ~go), which is the standard matrix element
for the variation of scattering amplitude. The factor in
front of the matrix element is determined by the free-
wave normalization and the reduced mass of incident
particle.

Expression (8) can be cast in a more convenient form
by isolating the contribution from the free wave in go .
Using definition (5) of V, and the relation (3) between
ao(po) audio(p), we obtain

where the superscript implies that the asymptotic form of
yo in itfo is an ingoing wave: fo =go. Using this equali-
ty, we finally obtain for the 5a (po )

XQ ]XQ
—Xo(y+ Vo )'Xo

(6)
16m

5a (po ) = roaao (po ) & go I Vi lgo ) .3'

Sa
lim (y —a)y, (p) .

3pp p po

The function y, (p) obeys the equation

(y —a+ V )y, + V,y =0,
whose symbolic solution is

g, = —(y —a+i 0+ Vo) '
V,yo .

(7)

Here i0 specifies the path of integration near the Green-
function pole. To calculate the matrix element

&p. l(y )(y —+o+—V. ) 'IX.)-
needed in (7), we note that the function
(y a iO+ V—o) —'(y —a) ~po ) diff'ers from the unper-
turbed solution go of Eq. (4) (i.e., the solution at V, =0)
only by the factor (2/vr)po and the sign in front of iO.

This expression turns into the standard perturbation-
theory formula with the replacement of y —a by T —E
and assuming VQ=0. The derivatives of y and Vp can
be easily calculated, and the explicit expressions will be
given later. We have verified that the denominator in (6)
is equal to the normalization of the full three-body wave
function.

Let us turn to the correction to the scattering ampli-
tude. Proceeding in a similar manner, we write the
scattering wave y in the form y=yo+y, . From (3) we
have for the correction to the amplitude

5a (po ) = lim p '(p po )gi(p)—
P ~80

At pp=0 this expression gives the correction to the
particle-pair scattering length. Denoting the scattering
length by A [A is equal to —a (0)] and writing it in the
form A = A p+ 6 A, where A p is the scattering length
corresponding to the case V, =0, we find for the linear
correction 5 A

16'
5A =roaAo+ (goVigo)3'

Here we have taken into account that pp =pp at pp
On the basis of expressions (6) and (9) we can make two

observations concerning the properties of the perturba-
tion. First, it turns out attractive. Indeed, at

p, »(a, i/~E~ ) the main contribution to the matrix ele-
ments ypV&yp comes from the momenta p-p, because
the function go(p) decreases as p

' at large p (this can be
deduced from the equation for go) and V, grows as p
[see Eq. (5)]. Both matrix elements linearly increase with
growth of p, and are negative. Therefore, 5E and 5A are
both negative.

Second, this attraction increases at small distances
(large momenta). In addition to the fact that V, -rop,
one should take into account that at large p the phase
space in the normalization integral [see the denominator
in (6)] is proportional to (y+ Vo)'-p '. Therefore, the
effect of V& is equivalent to the attraction rpp . If es-
timated in the same manner, the effect of Vp is equivalent
to p . Correspondingly, since the potential Vp is
equivalent to the attraction 1/R in the configuration
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space, the potential V, appears to be equivalent to the at-
traction ro /R [18]. Note that despite the fact that Vi
grows faster than Vo at large p, the effect of V& still
remains small because the ratio V&/Vo-pro is small at

p +pe.
We conclude this section with the detailed expressions

for 5E and 5 A. Substituting all quantities into (6) and (9),
we obtain

ro & 3 2 2 2 1 & dP XT(p) 4 ~ dP dp PP XT(P)XT(p
dp p' —Eo—a' —X'r(p) — +—

2 o 4 2 0 (3p —E )~ rr 0 (p +p' —E ) —(pp')
(10)

5A =roaAo — roa—I dpp Xo(p) .

In order to distinguish the functions Xo from (6) and (9),
we introduced here the notation yz for the bound-state
wave function yo. For the sake of reference it is also use-
ful to rewrite Eq. (11) in terms of solution of the
Skornyakov —Ter-Martirosyan equation [2]. The relation
between this solution, which is denoted by ao(p), and
Xo(p) is

count of V&, this value of A will be obtained at a slightly
different cutoff momentum p, +5p, . The shift 5p, is
determined by the condition

A o(p, +5p, )+5 A (p, ) = A,
where 5A is found in Sec. III. Therefore, the shift is

p~o(p)
Xo(p) =

p po

5A (p, )

dA/dp,
(13)

and at po =0 it turns to Xo(p) =p 'ao(p). Thus, in terms
of ao(p), the correction 5A is

&c
5A =roaAO ——roa dp ao(p) . (12)

An example of application of this expression is given in
the Appendix.

IV. LINEAR CORRECTION TO CORRELATION

Now we are going to exclude the cutoff momentum p,
from the expressions derived in the previous section.
This momentum is a parameter of our model of interac-
tion of three particles at sma11 distances. Excluding p„
we should arrive at a universal (i.e., model-independent)
linear correction.

As was pointed in Sec. II, this procedure is similar to
that used in the low-energy two-body problem. One
would select there a simple attraction potential (for exam-
ple, the square well) as a model of force, and find the
two-body binding energy —e and scattering length a as
functions of a certain parameter of the model (for exam-
ple, the well depth or the range). After excluding this pa-
rameter one would obtain a universal relation between
these quantities, which in the zeroth approximation in ro
has the form eo(a)=l/ma; in the next approximation
there is a correction b,e(a ) = ro /ma . In the same
fashion, excluding p, in our model, we first arrive at a
universal correlation Eo( A) of the zero-range theory; in
the next approximation a correction b.E ( A) linear in ro
arises. This correction is derived in this section.

To exclude p, we pick up a certain value of A and find
the corresponding value of E. When the perturbation V&

is neglected, this value of A is obtained at a certain value
of the cutoff momentum p, [such that Ao(p, )= A]; the
corresponding value of energy is Eo(p, ). With the ac-

To find the value of E, we take into account both the
correction 5E from (10) and the shift of the cutoff
rnomenturn

E =ED(p, +5p, )+5E (p, )

dEo/dp,
=Eo(p, )+5E(p, ) — 5A (p, ) .

d Ao/dp,

Thus, the linear correction b,E( A) is

dEO
KE(A) =5E(p, ) — 5A (p, ), (14)

(y —a+ Vo+5VO)/=0,

where

(15)

2 ~c+~J'c, P +P +PP Eo
(5VO)g= ——I dp' ln f(p')

7T P p +p pp Eo

Equation (15) has the same structure as Eq. (4), with V,
replaced with 5VO. Therefore, to find the variations of
Eo and Ao caused by the perturbation 5VO, we can use
the expressions derived in the preceding section, just re-

where the derivative dEO /d 2 is determined by the
zeroth-approximation correlation Eo( A ) and is calculat-
ed at A = A o. According to what was said above,
correction (14) should be universal. We will explicitly
show it later, after we calculate the derivative dEO/d A.

To do it we slightly vary the cutoff momentum in the
equation of the zeroth approximation [Eq. (4) with

V, =0], find corresponding small variations of the quanti-
ties Eo and Ao, and then calculate their ratio.

With the momentum p, slightly varied, the equation
takes the form
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[Xo(y a—)Xo],
,
' '5p,

Xo(y+ Vo )'Xo
(16)

placing Vi with 5Vo. From (6) we have for the variation
of Ep

+0 0+0
X—o(y+ Vo)'Xo

Using here the expression for 5V0 and the equation
(y —a+ Vo)Xo=0 for Xo, we obtain

Hence, the divergent contribution linear in p, disappears
from (19). We can further show that the difference be-
tween Xr(p) and &Z Xo(p) has the order (E/p )Xr at
large p. Therefore, the integral (19) converges as

fdpp [recall that xr(p) decreases as p ']. This
means that only the low mornenta p-(a, V'~E~) are
significant in the difference (xr Vixr) —Z(xoV, xo), and
hence the integration can also be safely extended to
infinity.

Thus, the final expression for b,E ( A ) is

It is seen that the perturbation 5V0 is equivalent to the
potential —(y —a)5(p —p, )5p, .

Using the same procedure we obtain from (8) the varia-
tion of the scattering length

bE(A)=—

where

(2O)

16m
5 Ao = —

3
[Xo(y a—)Xo], ,,5=P, (17)

W = ro AZ+ f dp [(—,'p 2 —Eo —a2)X2r(p)

[cf. Eq. (9); the first term on the right-hand side of (9)
does not appear in (17) because the free wave does not
contribute at p =p, ]. Combining Eqs. (16) and (17) we
arrive at the expression for the derivative dEo ld A

dp X'r(p»)
1V =—

o ( 3p2 E )1/2

—
—,'p ZXo(p)], (21)

dE0 3m Z
dA 16a Xr(y+ Vo)'Xr

where

4 f - dp dp'Pp'Xr(p»)Xr(p')

(p +p' En) (pp')
(22)

Z= Xr(y —a)Xr
Xo(y —a)Xo

(!p,
' Eo)'" aX—'r(p, )—

( 3p 2+ ~) i/2 x2(p )

Here we again switched to the notation yT for the
bound-state wave function.

Now we are ready to finish our derivation of the
correction b,E( A). Using in Eq. (14) the expressions for
the derivative and for the corrections 5E and 5A from (6)
and (9), we obtain

(Xr VIXr ) Z(Xo ViXo) (3n /16)ro AZ
hE(A)=

Xr(y—+ Vo)'Xr

(18)

Let us check that this correction is indeed universal.
In other words we should show that the parameter p,
disappears from (18) at p, ))(a, &

~ E~ ). To do this we
consider the matrix elements in (18), one by one. The
normalization integral in the denominator is well conver-
gent at large momenta. Therefore, only the low momenta
p -&

~
E~ are significant in this integral, and we can safely

extend the upper limit to infinity. Each of the matrix ele-
ments in the nuxnerator is linearly divergent at large mo-
menta, as was already mentioned in Sec. III. Neverthe-
less, their combination in (18) is convergent. Indeed, the
difference (xrV, xr) —Z(xoV, xo) contains an integral
over p which at large p is

f dp p'[X'r(p») ZXo(p»)]—. (19)

At large p, the factor Z is equal to Xr(p, )/Xo(p, ). Since
at large momenta the energies E and o; can be neglected
in the basic equation, the functions y& and gp differ only
by a factor at large p, and this factor is exactly &Z.

and Z is the asymptotic ratio xr(p)/xo(p) at p ~ ~. Its
value depends on the normalization of the wave function
gT. Of course, the relation between Z and the normaliza-
tion can be reversed: one can select some value of Z, say,
Z =1, and this condition will determine the normaliza-
tion of gz.

What is the physical reason that the divergence disap-
pears when we turn from 5E and 5A to the correction
b,E(A)? Let us use our earlier observation (see Sec. III)
that Vo and V, are equivalent to the attractions 1/R
and rp/R, respectively. When the perturbation rp/R is
added to the potential 1/R, the standard quantum-
mechanical estimates show that the corrections to the
binding energy and scattering length are both proportion-
al to the integral ro fdR/R which is singular at small
R. This explains the singular structure of the corrections
5E and 5A. The important observation is that these two
singular contributions relate to each other in such a way
that they do not generate any deviation from the zeroth-
approximation curve Eo( A ). Indeed, since the low-
energy theory is not sensitive to the specific details of in-
teraction at small distances R (((a ', ~E~

' ), any con-
tribution from these R can be absorbed into the parame-
ter of the boundary condition imposed on the wave func-
tion at small distances (we touched this issue in Sec. II).
Remember now that the dependence Eo( A ) arises as a re-
sult of varying this parameter. Therefore, the effect of
small distances on the correlation between E and 2 man-
ifests itself as merely a slide along the curve Eo( A ). On
the contrary, the correction b,E ( A ) is defined to be a de-
viation from the curve Eo(A). Therefore, the small dis-
tances (or large momenta) do not contribute to hE( A),
in accordance with our result.
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V. THREE-NUCI. EON SYSTEMS

The generalization of the above derivation to the
three-nucleon systems is straightforward. Therefore, we
limit ourselves to the formulation of basic results.

For the nucleon-deuteron doublet S-wave scattering
the basic equation has the matrix form [cf. Eq. (4)]

where a, =+ed and a, = Q—e, (e, is the absolute value
of energy of the singlet virtual state); ro, and ro, are the
triplet and singlet e6'ective ranges. The on-shell nucleon-
deuteron scattering amplitude is related to u (p) by the
expression

a (po) = lim p '(p —po )u (p),
P Po

(y —a+ Vo+ V, )/=0,
where

T

1 u(p)"P P'0+.()2po

p +p +pp —E
Vo(p, p') = —— ln

p2+p&2 ppl

[)"(p)—a ) .
2

I 3

(23)
which is the analog of relation (3). The triton is described
by Eq. (23) without the free wave in itt.

We now formulate the results for the linear correction.
We denote the nd doublet scattering length by a2, the ab-
solute value of the triton binding energy, by ET. The
linear correction to the correlation between ET and a2 is
[cf. (18)]

(XT VixT) Z(xoVixo)
BET(a2)=

xT(7'+ Vo)'xT

where

0 r„
ro=

S

At 0
CX— 0 ros

The upper element of the wave-function column g is the
projection on the triplet state of a nucleon pair; the
lower, on the singlet state. The free wave is present only
in the triplet state; therefore, E=—,'po —ed, where ed is
the absolute value of the deuteron binding energy. The
matrices o. and ro are equal to

Z= XT(r a)XT-
Xo()' —a)ro

8,+8'
bET(a2)= (24)

where

Here Iy ) is the column (,"), and the summation over ma-
trix indices is implied in the matrix elements. Using the
explicit form of the operators we find [cf. (20)—(22)]

8;= ro, a2Z+ dp[( ,'p +E7——ed)uT(p.) ——,'p Zuo(p)],16 ' 2
(25)

W, =- dp[( ,'p +ET—e, )—uT(p) ( ',p +e—d ——e, )Zuo(p)],S (26)

2 1/2 uT p +UT p
(

3 2+E )1/2

+— [u7(p)u7(p )+u7(p)u7(p )+3uT(p)uT(p )+3uT(p)uT(p )] .
(p'+ p'+ ET )' (pp"')'—

Here the integration is performed from 0 to p„and Z is

[( 4p'+ET )'" at )u T(p, )+ [(—.
'—p,'+ET)'"—a, ]ut'(p, )

[(—,'p, +ed )'~ —a, ]uo(p, )+[(—,'p, +ed )'~ —a, ]uo(p, )

(27)

The integration can be safely extended to infinity, with Z
equal to the asymptotic ratio [uT(p)+u7(p)]/
[uo(p)+uo(p)] at p —+ ~. As can be shown, u7 —+uT and
u o

—+ Uo at large p. Therefore, Z is also equal
u T(p)/uo(p) «u7 (p)/uo(p).

Correction (24) contains two independent linear contri-
butions proportional to ro, and ro, . One can observe
from (25)—(27) that at large momenta p &)(a,&IEI) the
eAect of the potential V& is equivalent to the attraction
(ro, +ro, )p . In the configuration space this corresponds

to the attraction (ro, +ro, )/R . The eff'ective ranges
enter this expression in a symmetric fashion because only
the symmetric component of the three-nucleon wave
function, which averages the e6'ect of the triplet and sing-
let forces, survives at small distances.

VI. DISCUSSION

A few comments about our expressions for the correc-
tions b,E ( A) and b,ET(a 2) are in order.
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A. Conditions of applicability

The conditions of applicability of expressions (20) and
(24) are given by the basic criteria of the present theory

roa «1, ro+(E( «1 . (28)

In the course of derivation we also used the condition
rop, « 1. The momentum p, is an auxiliary intermediate
quantity which disappears from our final expressions.
Therefore, the condition rop, « 1 can be omitted.

B. Corrections for the series of levels

At roa«1 the three-body system has, in fact, more
than one level. The number of levels is known to be
=(1/m) 1n(roa) ' [16]. Which of them was actually con-
sidered above' The answer is that we have calculated the
corrections AE for any of these levels. To get the correc-
tion for a given level, one should use the wave function of
this level. Note that the second condition (28) gradually
gets weaker with increasing the binding. For the lowest
level this condition may turn to rov ~E~ —1. For such a
level our consideration may not be applicable.

C. Physics of the correction

D. One-level case

The series referred to can contain only one level. This
occurs, for example, in the case of three-nucleon systems.

As far as physics is concerned, our problem is similar
to the simple quantum-mechanical problem for a particle
moving in the attraction potential 1/R cut at the dis-
tances ro and a ', and affected by the additional small
perturbation ro/R cut at the same distances. Let us
summarize physics of our problem in the light of this
analogy.

If the perturbation is neglected, we have a series of
(1/n)in(roa) .' levels generated by the 1/R potential.
At vov'~E~ && 1 the energy of each level can be expressed
in terms of the scattering length A which accumulates all
low-energy information about the region R -ro. Under
conditions (28) this dependence Eo(A) does not contain
the range ro and can be found either directly for the po-
tential 1/R with ro=0 or by using the limiting pro-
cedure ro~0 [19]. If we turn the perturbation on and do
it in such a way that the scattering length A remains con-
stant (to achieve this, we should slightly vary the cutoff
profile at R —ro), we obtain the correction b,E ( A ) for the
energy of each level. It is just the correction we have de-
rived in the present paper. The correction is proportion-
al to ro; therefore, we can put ro =0 in the proportionali-
ty coefficient. This means that in calculating the effect of
the perturbation we can again extend the potential 1/R
to R =0, just as it was done in the calculation of Eo( A).
Although the energy level we are talking about will now
have an infinite number and, correspondingly, its wave
function will contain an infinite number of oscillations at
the small distances R &ro„ this is not important in the
calculation of AE because this correction is determined
by the large distances R —(a ', E '

) [20].

At first glance, criteria (28) are hard to satisfy in the one-
level case. However, as follows from the formula
n =(1/m) 1n(roa) ' for the number of levels, the values
of ro (or a) that correspond to the formation of adjacent
levels of the series, differ from one another very substan-
tially, by about e =23 times. Therefore, a situation is
possible when ro may be noticeably less than a ' and
~E~ ', yet no second level is still formed. For this situ-
ation our consideration of the correlation Eo( A ) and the
correction b,E( 3 ) will be correct.

For the nucleons we have ro, a, =0.4 and ro, a, =0.1.
The energy of the only three-nucleon bound state is 8.5
MeV, which is noticeably less than the typical magnitude
of nuclear force (=30 MeV). Therefore, criteria (28) are
satisfied, though not in a strong fashion. This enables us
to believe that the expressions derived can be applicable
for this case. The calculations of Ref. [7] indeed show
that the above theory is able to explain the correlation
between Ez- and a2 existing in the three-nucleon systems.
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APPENDIX: NUCLEON-DEUTERON QUARTET
SCATTERING LENGTH

5a4=ro, a,a4 — ro, a, dp ao2(p—),(o) (Al)

where a4' ' is its value in the zero-range theory and 5a4 is
the linear correction.

The value of 5a4 was calculated in Ref. [9] by numeri-
cally solving the integral equation derived in Ref. [8] and
was found to be 0.97 fm. Expression (Al) enables us to
calculate 5a~ directly provided the function ao(p) is

The nd quartet scattering serves as an interesting ex-
ample of application of expression (12). In this case the
three-nucleon configuration-space wave function has the
mixed permutation symmetry. In our formalism this can
be taken into account by multiplying the right-hand side
of Eq. (1) by the factor —,'. Correspondingly, the potential
Vo in Eq. (4) is replaced with —

—,
' Vo. As can be readily

shown, this replacement does not affect the derivation of
expression (12): the result for the correction to the
scattering length remains the same.

The distinctive feature of the mixed-symmetry case is
that the function ao(p) rapidly decreases with growth of
p. This is a reAection of the fact that in the quartet state
the Pauli principle prohibits the close approach of three
nucleons. Therefore, the integral in (12) converges at
large momenta, and we can set p, = ~ as its upper limit.
Thus, we have for the quartet scattering length
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known. To check the usefulness of the expression (A 1) we
took ao(p) from Fig. 2 of Ref. [9], supplementing it with
the known asymptote [3,16] ao(p) ~p ', s =2. 17, at
large p. Using the values n, =0.2316 fm ', ro, =1.75 fm,

and a4{ ' =5.09 fm from Ref. [9], we found after an ele-
mentary calculation that 6a4 =0.99+0.03 fm. The errors
are due to the small scale of the figure. This simple cal-
culation is seen to give a rather accurate result.
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