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Semiclassical calculation for ' O+ ' 0 elastic scattering at high energies
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A semiclassical method has been used to calculate terms of order A, the ' 0+' 0 elastic-scattering
cross section for the c.m. energy range 35—90 MeV for various optical model potentials. We 6nd that
the calculated results with an energy-dependent absorptive part along with an angular momentum cutoff
agree qualitatively with the experimental results.

The availability of extensive experimental data on elas-
tic scattering of the ' 0+' 0 system in the low- [1] as
well as the high- [2] energy regions has inspired consider-
able theoretical studies. Some authors use direct numeri-
cal calculations with different parametrizations of optical
potentials. At higher energies, the potentials assumed
have some features different from those found suitable for
fitting only low-energy data [1,3]. Chatwin et al. [4] and
Halbert et al. [2] introduced an L-dependent cutoff in the
absorptive part to cover both the low- and high- energy
data. The agreement with experimental results at higher
energies was, however, only qualitative. Considering the
Hauser-Feshbach treatment, Pocanic et al. [5] have
shown the equivalence of the energy dependence of the
absorptive potential with its L, dependence which, howev-
er, is not evident for results at higher energies. Pantis
et al. [6], on the other hand, have considered an energy
dependence of the imaginary radius and diffuseness pa-
rameters, which favor possible resonances of near grazing
partial waves. Although their parametrization improves
the results, the quantitative agreement is still not satisfac-
tory. The problem obviously needs further investigation.

A second class of investigations make use of semiclassi-
cal techniques. The method of Miller and Crood [8], gen-
eralized substantially by a number of authors, [9—18], has
been particularly helpful in this connection. A semiclas-
sical method, however, cannot be applied to the heavy-
ion scattering problem in a straightforward manner. The
optical potential leads to a large number (often infinite) of
complex trajectories. Knoll and Schaeffer [19]have given
some guidelines for selecting the relevant trajectories, but
it is di%cult to follow the prescription in a realistic prob-
lem. It may be useful, for a preliminary calculation, to
follow the conventional perturbative method. This re-
stricts the path integration along a real trajectory, with
the turning point determined entirely by the real part of
the potential. The imaginary part here only supplies a
damping factor to each of the partial waves. The purpose
of this paper is to report the results of a calculation done
with this approximate semiclassical method for the
' 0+' 0 elastic scattering at a higher energy region. A
number of potential models have been suggested in the

literature in this connection. Gobbi et al. [3] considered
a four-parameter potential that leads to a comparable fit
with experimental results as is obtained with the six-
parameter potential (with an L dependence) of Chatwin
et al. [4] at lower energies. At higher energies, Chatwin
potential shows better agreement with the experimental
results [2]. Halbert et al. [2] also showed that the four-
parameter potential of Maher et al. [1] gives a poor fit.
The potential of Pantis et al. [6] gives a better fit, but the
agreement is still not satisfactory. As a variation, we
have considered also a hybrid potential in which we have
introduced an I. dependence of the imaginary potential
W, while retaining the parameters considered by Maher
et al. [1]. The calculated results with this potential show
better agreement with experimental results. This should,
however, be treated only as an indication of the trend of
the exact results, because a perturbative treatment of a
large absorptive potential is not expected to be accurate.

In the actual calculation, we have made a departure [7]
from the usual trend in connection with the choice of the
Coulomb part of the potential. The Coulomb potential is
usually taken as (a) that between a point charge and a
sphere of uniform density or (b) that between two uni-
formly charged spheres of appropriate radii. The approx-
imation is not good for nuclei like ' 0 and ' C having
modified harmonic-well type of charge distributions. It is
well known that the elastic scattering of heavy ions de-
pends more crucially on the real part of the potential
around a critical distance R —1.5( A', ~ + A zr ) fm.
Thus the elastic scattering normally places a weak con-
straint on the potential. The choice of the correct
Coulomb potential will, however, be useful when the en-
tire range of experimental results, for elastic scattering,
fusion, and transfer reactions, are sought to be explained
with the same set of potential parameters. Keeping this
in view, we have considered in this paper two cases: (a)
the case of two uniformly charged spheres of radii
(&5/3)R, , and (b) the case of two diffuse charge distri-
butions of the modified harmonic-well type, as is used in
generalized shell model (G.SM). We note that the
Coulomb potential between two spherical nuclei A and 8
with charge form factors fi(q) and fz(q), q being the
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momentum transferred, is given by
2Z i Z2e J dq f, (q)fz(q) . (1)

wr o q

We consider two special cases: Case I: The colliding nu-
clei have charge distributions given by the generalized
shell model (GSM).

For nuclei with an incomplete 1p shell, the charge dis-
tribution is given by [20]

Vc(r) =

I'(q)= 1—

T r

p( )= 2 1 1+a exp, (2)
r r

bp(2+3a) bp bp

where bp=(A' /Me)', and e is the energy interval be-
tween two consecutive levels of the harmonic oscillator.
The rms radius of the distribution is given by
a =bp[3(2+5a)/2(2+3a)]' with a=(Z —2)/3. The
form factor for the distribution (2) is given by

&q2b2 q2b2
32(2+3a) 4

which gives for the Coulomb potential

2 1 rVc(r)=Z, Zze —erf +(P+yr )e

(4)

where

P=[3A( Aq —2(A)+ A~)B ]/4B &m, .

y= —A, A~/8B &~, B =B,+Bq,

(5)

A;=a;bp, l[2(2+3a;)], B, =b p,
. /4,

the subscript i (i = 1,2) referring to the ith nuclei.
Case II: When both colliding nuclei have uniform

charge distributions of density po and radius R, the po-
tential is given by

Z2 2

1+ (30r R r —80R —r +192R r —160R ), r &2R,r 160R
V (r)= '

Z 2e 2

r)2R .

We consider the following nuclear potentials for the
' 0+ ' 0 system, all of which have the general form

—( Vp+i Wp)
V~(r) =

1+ exp[(r —Rp)/ap]
(9)

Case A: We consider here the optical model potentials
[2,4] with

Wp W[1+ exp[(L L, )/0. 4]j— (10)

and 8'= —7.0+0.5E, . Here L, is the cutofF angular
momentum given [2] by L, =R [2p(E + Q ) ]' fi with
R =9.8 fm and Q = —20 MeV.

Case B: We consider next a potential obtained by com-
bining forms of Chatwin et al. [4] and Maher et al. [1].
Thus Wp is given by Eq. (10) but W=0.4+0. 1E,
Our motivation for this choice is to check if any improve-
ment of the results at high energies follows without dis-
turbing the results at lower energy. This may be possible
provided L, )L;, where L; are the angular momenta of
the partial waves dominating the scattering processes at
low energies.

Case C: We consider the optical potential by Pantis
et al. [6] with

Wp =C,E exp(2+2CzE ),

V~drS(L)= ",
fi "o 2[K —(2p/A' )Vz L(L+1)lr —]'

(13)
Apart from this damping factor, the problem is now simi-
lar to that of a real potential. The phase shifts in zeroth
order can be written as oL =o.L+al', where o.

L is the
Coulomb phase shift and

o. ' =(L+—') ——sin
ny+(L + —,

'
)

y )/ n + ( L + —,
'

)

y n+ Qy 2—ny (L + —,
' —)—

+n ln
Qn +(L+—,')

—Qy —2ny —(L+ —,') + f "t/t, (y)dy,

where P~, Pp Ep rp y are constants. We have taken the
values of all these constants from Ref. [6].

To calculate the cross section, we follow the general-
ized Miller-Good method [9—18] in the conventional per-
turbative approach. The contribution of the imaginary
part in this approximation is contained in a damping fac-
tor e ' ' for each partial wave of angular momentum
I, where

which follows from a statistical model of the nucleus [21].
The imaginary radius and the diffuseness parameters con-
sidered here have explicit energy dependence, viz. ,

rp =r p I 1+P, exp[(E Ep) IPz] J
', ap =y—E,

where

t~ (y)=1—
(L+—,') 2p (V~+ Vc),

AK

(14)

(15)
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Zeroth order
GSM Uniform

With first-order
correction

GSM Uniform

TABLE I. Phase shifts (radians) for E, =60 MeV and
0, =90'.

n
l

l l 1

Cm

0
2

10
30
36

13.1553
13.2079
13.8466
13.6127
13.3247

13.2434
13.2912
13.8714
13.6106
13.3247

13.1422
13.0497
13.8586
13.5732
13.3319

13.2279
13.1435
13.7005
13.5711
13.3319

L

E
-1-

O

'o
O

Ql
O

-2-

(L+—,
'

)tL(z)=1-
Z2

2n

Z
(17)

and

r, (y) =y't, (y), r, (z) =z't, (z),

tttl
+1

2)(~;)=
ttt tt It3

—4 , +3
71

(19)

where primes indicate differentiation with respect to
respective arguments. In calculating terms of order A,
there is a well-known problem of divergence at the extre-
ma of z. These have been tackled following the method
of Wald and Lu [12]. This essentially consists in dividing
the range of integration into parts and making use of par-
tial integrations to remove ~' from the denominator of
the integrand in the segment where it vanishes.

We have calculated the phase shifts and the sym-
metrized cross sections for the ' 0+ ' 0 elastic scattering
in the energy range E, =35-90 MeV. For the GSM
charge distribution, we choose a=2, a =2.625 fm and
for the uniform charge distribution, we choose E. =3.39

with V&=Re( Vz), Vc the Coulomb part of the potential,
n the Sommerfeld parameter, and y, the classical turning
point, given by t, (y, )=0. We have taken the outermost
turning point, real and positive, for each I. for evaluating
the integrals. The quantity y is a chosen large value of y.

The correction term of order A is given by

=
—,', I 2)[r,(y)])/ t, (y)dy

t

—
—,', I 2)[r2(z)]+t~ (z)dz,

t

where
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FIG. 1. 0' +0' elastic-scattering excitation functions. The
solid line shows the experimental results. The dashed curve
shows the theoretical results of Ref. [2] and the dash-dotted
curve the semiclassical results, both using potential A.

fm. Our results are as follows:
(a) E+ect of the charge distribution: The phase shifts

for the GSM and uniform charge distributions show
small differences as indicated in Table I. This small
difference of phase-shifts may not be sharply rejected in
the excitation function or through angular distribution
for elastic scattering. However, the inaccuracy of the po-
tential parameters may affect the cross sections for other
processes, viz. , fusion or transfer processes. It is, there-
fore, useful to consider the realistic GSM charge distribu-
tion for nuclei like ' 0 and ' C.

(b) Energy dependence of the cross section: The experi-
mental results of Ref. [2] have been used for comparison
with our calculated results, obtained with the GSM
Coulom. b charge distribution and the nuclear potentials
shown in Table II. %'e note the strength of the imaginary
potentials in the cases considered. In case A, at
E, =90 MeV, 38 Wo 0 MeV for L =0—58 and at
E, =35 MeV, 10.5) 8'0~0 MeV for L =0—30. In
case B, at E, =90 MeV, 9.4) 8'0 & 0 MeV for
L =0—58 and at E, =35 MeV, 3.9~ 8'0)0 MeV for
L =0—30. In case C, 8'0 is L independent, and at
E, =90 MeV, 8'0 —115 MeV and at E, =35 MeV,
8 0

—15 MeV. Thus the magnitude of 8 0 is lowest in
case B, and rather large in case C. The accuracy of the

TABLE II. Parameters of optical potential for ' 0+' 0 elastic scattering. Ro =ro(16' '+16' 3).

~o
(MeV)

17.0

17.0

8o
(MeV)

—7.0+0.5E
1+exp[(L L, ) /0.4]—

0.4+0.1E
1+exp[{L L, )/0.4]—

Eq. (11)

ro(Re)
(fm)

1.349

1.349

1.349

a, (Re)
(fm)

0.49

0.49

0.49

ro(Im)
(fm)

1.349

1.349

Eq. (12)

ao(Im)
(fm)

0.49

0.49

Eq. (12)
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first-order perturba. tive results in case C is, therefore, not
expected to be good and this may explain partly the poor
agreement of the calculated results for potential C with
data. We note that (Fig. 1) our semiclassical results for
case A agree qualitatively with the calculated results of
Halbert et al. [2]. The quantitative disagreement may be
caused by the approximate nature of the semiclassical
method followed as well as by the slightly different
Coulomb fields considered. We also note from Fig. 2 that
the potential B appears to give better agreement than po-
tential 3 at least for higher energies. The number of
peaks is less here and the overall trends of results for case
B follow those of the experimental data. The complexity
of the inelastic processes involved can be seen as none of
the parametrizations fit data over a wide range of ener-
gies. The method of calculation, however, leaves scope
for refinement. The imaginary part of the potential has
not been dealt with properly. Note that an evaluation of
the first-order correction term in A becomes dificult if
one chooses complex trajectories. In a semiclassical
treatment, each radial equation has to be treated sepa-
rately for its special features, and it may not be
worthwhile to go for a semiclassical calculation in all

cases. The perturbative semiclassical method, neverthe-

less, can play a useful role within its range of applicabili-

ty.
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FIG. 2. O' +0' elastic-scattering excitation functions. The
solid line shows the experimental results. The semiclassical re-
sults are shown by dashed curve (potential B) and dash-dotted
curve (potential C).
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