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Proton 4p-4h intruder excitations in heavy even-even nuclei
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Proton 4p-4h intruder excitations can be formed in even-even nuclei with a large neutron excess. The
excitation energy and the systematics of such 4p-4h intruder excitations is discussed for the even-even Sn
and Pb nuclei.

A quite unexpected consequence of the strongly attrac-
tive proton-neutron interaction is the observation of
very-low-lying J =0+ excitations near single-closed-
shell nuclei. Normally, closed shells form an inert core
which stabilizes the motion of the remaining valence nu-
cleons. If, now, single-closed-shell nuclei are studied (Sn
nuclei, Pb nuclei, etc. ) in which the number of valence
neutrons is maximal, the closed shell becomes unstable
against 2p-2h excitations across the closed shell [l —3].
Even though the unperturbed energy for such excitations
is very high and of the order of 7—10 MeV in medium-
heavy and heavy nuclei, the proton-neutron interaction
modifies the nucleon motion in an important way so as to
give rise to very-low-lying J =0+ excitations. A most
dramatic illustration of these "intruder" excitations was
shown to exist in the Pb region by the LISOL group in
Leuven [3,4]. Such excitations correspond also to states
with a large quadrupole-deformed shape, which quite
often can give rise to shape coexistence.

The detailed mechanism for describing these intruder
excitations has been discussed in Refs. [5] and [6]. The
basic effect, though, is illustrated in Fig. 1 in a schematic
way. Starting from an unperturbed energy 2(ej -ei )

Jp Jh

needed to form the 2p-2h excitation, which is taken con-
stant over a given mass region at a single closed shell,
various energy corrections have to be considered. The
first correction hE „, takes into account the extra
pairing-correlation energy among the 0+ coupled particle
and hole pair. This energy gain is also taken as constant
over the given mass region. There are some typical
shell-model effects, modifying the single-particle energies
with changing nucleon number, i.e., the relative self-
energy corrections or monopole energy shift hEM with

~EM =2 / (2j.+ l )v,'.[(«I.J.) «j .'j.)]—

ground-state and intruder pair distributions become
modified as follows:
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It is now in particular the latter term, though the 61V„N
dependence (Is.N =2 for a proton 2p-2h 0+ excitation
and N„ the number of valence neutron pairs), which is
causing the intruder 0+ state to occur at such low ener-
gies as is observed in the various single-closed-shell re-
gions, e.g. , the Z=50 (Sn) [2], Z =82 (Pb) [3,4], N =20
nuclei [7].
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Using now a residual quadrupole-quadrupole proton-
neutron interaction and 0+ ground-state and intruder
wave functions that are approximated by SU(3) wave
functions, one derives the quadrupole binding-energy
gain b,E& as [5]

This describes the shift in proton single-particle energy
for the 2p-2h excitation energy due to the filling of neu-
tron orbitals [with occupation probability v and averageJv
proton-neutron interaction matrix elements E(j j )].
This energy correction does not change the 2p-2h 0 ex-
citation energy in a major way and has therefore not been
indicated in Fig. 1. The attractive proton-neutron force,
though, gives the dominant energy correction. Because
of polarization effects of the proton-neutron force, chang-
ing 0+ coupled pairs into 2 coupled pairs, both the
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FIG. 1. Schematic illustration of the various binding-energy
terms contributing to the low-lying J =0+ 2p-2h intruder exci-
tations. The unperturbed energy 2(c, -eJ ), pairing energy gain

Jp Jh

AEp ' and pl oton neutron interaction cncr gy AEg 2KKN
are given as a function of the number of valence nucleons.
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An interesting question naturally centers around the
possible occurrence and excitation energy of the next
class of proton intruder configurations, i.e., the 4p-4h ex-
citations. Analyzing the basic contributions to the ener-

gy of such 4p-4h proton intruder excitations, one obtains
the expression

E;„„(4p-4h)-=4(s —e, )+bEM(4p-4h)

b,E „—,+b Eg(4p-4h) . (4)

Comparing with the evaluation of the proton 2p-2h 0+
intruder excitations, one observes that both the unper-
turbed energy, monopole energy shift AE~, and proton-
neutron interaction energy shift AE& scale with the num-
ber of particles and holes, i.e.,

EE~(4p-4h ) =2b,EM (2p-2h ),
bE&(4p-4h)(bX =4)=26E&(2p-2h)(bX =2) .

Only the pairing-energy correction hE „, for n/2 0+
coupled pairs is reduced over the energy gain GQ for a
single pair times the number of pairs according to the ex-
pression [8]

Enp-nh( ) 2p-2h(0P

where the approximate equal sign is best fulfilled for large
Q and relatively small n.

We have applied the above method to obtain the ener-
gy behavior of the lowest 4p-4h 0+ intruder excitations.
We have used the unperturbed energy, monopole correc-
tion and quadrupole correction energy values as dis-
cussed in Refs. [5] and [6]. Only the pairing correction
needs some more attention. The pairing energy for four
identical particles —2GQ(1 —I/O) needs to be evaluated
for particles and holes separately. By fitting the two-
particle pairing energy —GA to experimental pairing en-
ergies, obtained from proton and two-proton separation
energies and presented in Figs. 2(a) and 2(b) of Ref. [6]
for the Pb and Sn regions, respectively, one can deduce a
pairing strength G (Pb) and G (Sn), respectively. For de-
generacy we choose the following: (i) In the Sn region,
particles (p) moving in the nearby Ig7/p and 2d~&z proton
orbitals, giving rise to Q~=7 and holes (h) moving in the
nearby 1g9/p and 2p»z proton-hole orbitals, resulting in
a value of Qh=6. This results in the values G„(Sn)-=
Gh(Sn)= —0.3 MeV. (ii) In the Pb region, particles (p)

pair 2 0 (6)

with 0 the shell degeneracy and n /2 the number of pairs.
Combing the above results, one gets as a quite general re-
sult that
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FICx. 2. Variation of the lowest intruder 4p-4h 0+ excitation
across the Z=50 closed shell as a function of neutron number
(50 ~ N ~ 82). Besides the unperturbed 4p-4h energy, the
pairing-energy correction AE~„, [Eq. (6)], monopole correction
bEM, and quadrupole-energy correction hE& [see Eqs. (5)] are
shown. The final curve (solid line) then gives the energy varia-
tion for the lowest-lying 4p-4h 0 intruder excitation.
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FICx. 3. See caption to Fig. 2, but now for the Pb region (with
82 ~N ~ 126).
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moving in the proton 1h9/p orbital, giving rise to Q =5
and holes (h) moving in the close-lying 213&z and 3s»z
orbitals with Ab =3 as a result. Here we obtain
the estimates G (Pb) = —0.2 MeV, Gi, (Pb)
= —0.33 MeV.

Combining these pairing corrections, one finally obtain
the values

bE „„(4p-4h)s„=6.6 MeV ( & 8 MeV),

bE„„,(4p-4h)pb=2. 9 MeV ( &4 MeV),

where the values between brackets indicate
2bE „,(2p-2h) for the Sn and Pb regions, respectively.

The energy systematics for the lowest proton 4p-4h 0+
excitations is illustrated on Figs. 2 and 3. For the Sn re-
gion, those types of configurations come as low as E =5
MeV at midshell. In the Pb region, however, near neu-
tron number X = 104, excitation energies near to E„=2.5

MeV result, excitation energies that should allow for pos-
sible observation and population of such 4p-4h intruder
excitations in future experiments.

In bringing the new class of proton intruder 4p-4h 0+
excitations in perspective, relative to other particle-hole
excitations across the major closed-shell configuration,
we compare in Fig. 4, for the cases of" Sn and ' Pb, the
relative position of the lowest observed 2p-2h 0+ intruder
excitations, 1p-1h excitations, and lowest-lying 4p-4h in-
truder configurations [9]. The experimental study of lp-
1h excitations in " Sn was done using single-nucleon
transfer reactions starting from the odd-mass Sb nuclei
(pick up) or In nuclei (stripping), respectively, with a
large density of 1p-1h states starting near E„~4 MeV.
The expected position of the proton 4p-4h 0+ intruder
excitations is slightly higher still. In ' Pb we expect,
however, the 4p-4h 0+ intruder excitations to occur rela-
tively low in excitation energy {E„=2. S MeV).

We finally point out that, in order to populate selec-
tively such 4p-4h states, four-proton transfer reactions
would be needed with possible candidates like ( Ca, S),
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FIG. 4. Calculated energy for the lowest 4p-4h 0 proton in-

truder configurations in " Sn and ' Pb. The observed 2p-2h 0+
proton intruder energy [2,3] and a typical value for the lowest-

lying 1p-1h excitations across the Z =50 and 82 shells, respec-
tively, are also given for comparison.
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{ Fe, Ti), and ( Cr, Ca) reactions starting from the
most neutron-rich Pd nuclei (in studying even-even Sn
nuclei) and the most neutron-deficient Pt nuclei (in study-
ing even-even Pb nuclei).

In conclusion, proton 4p-4h 0+ intruder excitations
can be constructed in medium-heavy and heavy even-
even nuclei. The energy systematics have been studied
for the even-even Sn and Pb nuclei with a prediction of
E;„„(4p-4h)=2.5 MeV near %=104 in the Pb nuclei.
Here the 4p-4h intruder excitations even come lower in
energy compared with the 1p-1h excitations across the
Z =82 closed shell. Possible experiments for populating
these 4p-4h 0 intruder excitations are suggested.
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