Proton 4p-4h intruder excitations in heavy even-even nuclei

K. Heyde, J. Schietse,* and C. De Coster

Institute for Theoretical Physics and Institute for Nuclear Physics, Proeftuinstraat 86, B-9000 Gent, Belgium

(Received 25 July 1991)

Proton 4p-4h intruder excitations can be formed in even-even nuclei with a large neutron excess. The excitation energy and the systematics of such 4p-4h intruder excitations is discussed for the even-even Sn and Pb nuclei.

A quite unexpected consequence of the strongly attractive proton-neutron interaction is the observation of very-low-lying $J^{\pi}=0^+$ excitations near single-closedshell nuclei. Normally, closed shells form an inert core which stabilizes the motion of the remaining valence nucleons. If, now, single-closed-shell nuclei are studied (Sn nuclei, Pb nuclei, etc.) in which the number of valence neutrons is maximal, the closed shell becomes unstable against 2p-2h excitations across the closed shell [1-3]. Even though the unperturbed energy for such excitations is very high and of the order of 7-10 MeV in mediumheavy and heavy nuclei, the proton-neutron interaction modifies the nucleon motion in an important way so as to give rise to very-low-lying $J^{\pi}=0^+$ excitations. A most dramatic illustration of these "intruder" excitations was shown to exist in the Pb region by the LISOL group in Leuven [3,4]. Such excitations correspond also to states with a large quadrupole-deformed shape, which quite often can give rise to shape coexistence.

The detailed mechanism for describing these intruder excitations has been discussed in Refs. [5] and [6]. The basic effect, though, is illustrated in Fig. 1 in a schematic way. Starting from an unperturbed energy $2(\varepsilon_{j_p}-\varepsilon_{j_h})$ needed to form the 2p-2h excitation, which is taken constant over a given mass region at a single closed shell, various energy corrections have to be considered. The first correction ΔE_{pair} takes into account the extra pairing-correlation energy among the 0⁺ coupled particle and hole pair. This energy gain is also taken as constant over the given mass region. There are some typical shell-model effects, modifying the single-particle energies with changing nucleon number, i.e., the relative selfenergy corrections or monopole energy shift ΔE_M with

$$\Delta E_{M} = 2 \sum_{j_{\nu}} (2j_{\nu} + 1) v_{j\nu}^{2} [(\overline{E}(j_{\pi}j_{\nu}) - \overline{E}(j_{\pi}'j_{\nu})]].$$
(1)

This describes the shift in proton single-particle energy for the 2p-2h excitation energy due to the filling of neutron orbitals [with occupation probability $v_{j_v}^2$ and average proton-neutron interaction matrix elements $\overline{E}(j_{\pi}j_v)$]. This energy correction does not change the 2p-2h 0⁺ excitation energy in a major way and has therefore not been indicated in Fig. 1. The attractive proton-neutron force, though, gives the dominant energy correction. Because of polarization effects of the proton-neutron force, changing 0⁺ coupled pairs into 2⁺ coupled pairs, both the ground-state and intruder pair distributions become modified as follows:

$$|0_{\pi}^{+} \otimes 0_{\nu}^{+}\rangle \Longrightarrow |0_{\pi}^{+} \otimes 0_{\nu}^{+}\rangle + \alpha |2_{\pi}^{+} \otimes 2_{\nu}^{+}\rangle + \cdots \quad .$$
 (2)

Using now a residual quadrupole-quadrupole protonneutron interaction and 0^+ ground-state and intruder wave functions that are approximated by SU(3) wave functions, one derives the quadrupole binding-energy gain ΔE_O as [5]

$$\Delta E_O \cong 2\kappa \Delta N_\pi N_\nu \ . \tag{3}$$

It is now in particular the latter term, though the $\Delta N_{\pi}N_{\nu}$ dependence ($\Delta N_{\pi}=2$ for a proton 2p-2h 0⁺ excitation and N_{ν} the number of valence neutron pairs), which is causing the intruder 0⁺ state to occur at such low energies as is observed in the various single-closed-shell regions, e.g., the Z=50 (Sn) [2], Z=82 (Pb) [3,4], N=20 nuclei [7].

FIG. 1. Schematic illustration of the various binding-energy terms contributing to the low-lying $J^{\pi}=0^+$ 2p-2h intruder excitations. The unperturbed energy $2(\varepsilon_{j_p}-\varepsilon_{j_h})$, pairing energy gain ΔE_{pair} , and proton-neutron interaction energy $\Delta E_Q = 2\kappa\Delta N_{\pi}N_{\nu}$ are given as a function of the number of valence nucleons.

BRIEF REPORTS

An interesting question naturally centers around the possible occurrence and excitation energy of the next class of proton intruder configurations, i.e., the 4p-4h excitations. Analyzing the basic contributions to the energy of such 4p-4h proton intruder excitations, one obtains the expression

$$E_{\text{intr}}(4\text{p-4h}) \cong 4(\varepsilon_{j_{p}} - \varepsilon_{j_{h}}) + \Delta E_{M}(4\text{p-4h}) - \Delta E_{\text{nair}} + \Delta E_{Q}(4\text{p-4h}) .$$
(4)

Comparing with the evaluation of the proton 2p-2h 0⁺ intruder excitations, one observes that both the unperturbed energy, monopole energy shift ΔE_M , and protonneutron interaction energy shift ΔE_Q scale with the number of particles and holes, i.e.,

$$\Delta E_M(4p-4h) = 2\Delta E_M(2p-2h) ,$$

$$\Delta E_Q(4p-4h)(\Delta N_{\pi}=4) = 2\Delta E_Q(2p-2h)(\Delta N_{\pi}=2) .$$
(5)

Only the pairing-energy correction ΔE_{pair} for n/2 0⁺ coupled pairs is reduced over the energy gain $G\Omega$ for a single pair times the number of pairs according to the expression [8]

$$\Delta E_{\text{pair}} = -\frac{n}{2} G \Omega \left[1 - \frac{n}{2} \frac{1}{\Omega} + \frac{1}{\Omega} \right] , \qquad (6)$$

with Ω the shell degeneracy and n/2 the number of pairs. Combing the above results, one gets as a quite general result that

FIG. 2. Variation of the lowest intruder 4p-4h 0⁺ excitation across the Z=50 closed shell as a function of neutron number $(50 \le N \le 82)$. Besides the unperturbed 4p-4h energy, the pairing-energy correction ΔE_{pair} [Eq. (6)], monopole correction ΔE_M , and quadrupole-energy correction ΔE_Q [see Eqs. (5)] are shown. The final curve (solid line) then gives the energy variation for the lowest-lying 4p-4h 0⁺ intruder excitation.

$$E_{np-nh}(0^+) \gtrsim \frac{n}{2} E_{2p-2h}(0^+)$$
, (7)

where the approximate equal sign is best fulfilled for large Ω and relatively small n.

We have applied the above method to obtain the energy behavior of the lowest 4p-4h 0^+ intruder excitations. We have used the unperturbed energy, monopole correction and quadrupole correction energy values as discussed in Refs. [5] and [6]. Only the pairing correction needs some more attention. The pairing energy for four identical particles $-2G\Omega(1-1/\Omega)$ needs to be evaluated for particles and holes separately. By fitting the twoparticle pairing energy $-G\Omega$ to experimental pairing energies, obtained from proton and two-proton separation energies and presented in Figs. 2(a) and 2(b) of Ref. [6] for the Pb and Sn regions, respectively, one can deduce a pairing strength G (Pb) and G (Sn), respectively. For degeneracy we choose the following: (i) In the Sn region, particles (p) moving in the nearby $1g_{7/2}$ and $2d_{5/2}$ proton orbitals, giving rise to $\Omega_p = 7$ and holes (h) moving in the nearby $1g_{9/2}$ and $2p_{1/2}$ proton-hole orbitals, resulting in a value of $\Omega_h = 6$. This results in the values G_p (Sn) \approx $G_{\rm h}({\rm Sn}) = -0.3$ MeV. (ii) In the Pb region, particles (p)

FIG. 3. See caption to Fig. 2, but now for the Pb region (with $82 \le N \le 126$).

moving in the proton $1h_{9/2}$ orbital, giving rise to $\Omega_p = 5$ and holes (h) moving in the close-lying $2d_{3/2}$ and $3s_{1/2}$ orbitals with $\Omega_h = 3$ as a result. Here we obtain the estimates G_p (Pb) = -0.2 MeV, G_h (Pb) = -0.33 MeV.

Combining these pairing corrections, one finally obtain the values

$$\Delta E_{pair} (4p-4h)_{Sn} = 6.6 \text{ MeV} \quad (<8 \text{ MeV}) ,$$

$$\Delta E_{pair} (4p-4h)_{Pb} = 2.9 \text{ MeV} \quad (<4 \text{ MeV}) ,$$

where the values between brackets indicate $2\Delta E_{pair}(2p-2h)$ for the Sn and Pb regions, respectively.

The energy systematics for the lowest proton 4p-4h 0⁺ excitations is illustrated on Figs. 2 and 3. For the Sn region, those types of configurations come as low as $E_x \approx 5$ MeV at midshell. In the Pb region, however, near neutron number N = 104, excitation energies near to $E_x \approx 2.5$ MeV result, excitation energies that should allow for possible observation and population of such 4p-4h intruder excitations in future experiments.

In bringing the new class of proton intruder 4p-4h 0⁺ excitations in perspective, relative to other particle-hole excitations across the major closed-shell configuration, we compare in Fig. 4, for the cases of ¹¹⁶Sn and ¹⁹²Pb, the relative position of the lowest observed 2p-2h 0⁺ intruder excitations, 1p-1h excitations, and lowest-lying 4p-4h intruder configurations [9]. The experimental study of 1p-1h excitations atoms the odd-mass Sb nuclei (pick up) or In nuclei (stripping), respectively, with a large density of 1p-1h states starting near $E_x \ge 4$ MeV. The expected position of the proton 4p-4h 0⁺ intruder excitations is slightly higher still. In ¹⁹²Pb we expect, however, the 4p-4h 0⁺ intruder excitations to occur relatively low in excitation energy ($E_x \approx 2.5$ MeV).

We finally point out that, in order to populate selectively such 4p-4h states, four-proton transfer reactions would be needed with possible candidates like (40 Ca, 36 S),

FIG. 4. Calculated energy for the lowest 4p-4h 0⁺ proton intruder configurations in ¹¹⁶Sn and ¹⁹²Pb. The observed 2p-2h 0⁺ proton intruder energy [2,3] and a typical value for the lowestlying 1p-1h excitations across the Z = 50 and 82 shells, respectively, are also given for comparison.

(⁵⁴Fe, ⁵⁰Ti), and (⁵²Cr, ⁴⁸Ca) reactions starting from the most neutron-rich Pd nuclei (in studying even-even Sn nuclei) and the most neutron-deficient Pt nuclei (in study-ing even-even Pb nuclei).

In conclusion, proton 4p-4h 0⁺ intruder excitations can be constructed in medium-heavy and heavy eveneven nuclei. The energy systematics have been studied for the even-even Sn and Pb nuclei with a prediction of $E_{intr}(4p-4h) \approx 2.5$ MeV near N=104 in the Pb nuclei. Here the 4p-4h intruder excitations even come lower in energy compared with the 1p-1h excitations across the Z=82 closed shell. Possible experiments for populating these 4p-4h 0⁺ intruder excitations are suggested.

The authors are grateful to J. L. Wood and R. F. Casten for early discussions on the possibilities of describing proton 4p-4h excitations. The authors also thank the NFWO and IIKW for financial support as well as support from NATO through research Grant No. NATO RG-86/0452.

*Present address: "Limburgs Universitair Centrum," B-3610 Diepenbeck, Belgium.

- K. Heyde, P. Van Isacker, M. Waroquier, J. L. Wood, and R. A. Meyer, Phys. Rep. 102, 291 (1983).
- [2] J. Bron et al., Nucl. Phys. A318, 335 (1979).
- [3] P. Van Duppen, E. Coenen, K. Deneffe, M. Huyse, K. Heyde, and P. Van Isacker, Phys. Rev. Lett. 52, 1974 (1984).
- [4] P. Van Duppen, P. Decrock, P. Dendooven, M. Huyse, G.

Reusen, and J. Wauters, Nucl. Phys. A529, 268 (1991).

- [5] K. Heyde et al., Nucl. Phys. A466, 189 (1987).
- [6] K. Heyde, J. Ryckebusch, M. Waroquier, and J. L. Wood, Nucl. Phys. A484, 275 (1988).
- [7] K. Heyde and J. L. Wood, J. Phys. G 17, 135 (1991).
- [8] K. Heyde, The Nuclear Shell Model, Springer Series in Nuclear and Particle Physics (Springer-Verlag, Berlin, 1990).
- [9] J. L. Wood, K. Heyde, W. Nazarewicz, M. Huyse, and P. Van Duppen, Phys. Rep. (to be published).