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Quark mean-field theory and consistency with nuclear matter

Jishnu Dey* and Lauro Tomiof
Insti tuto de I'Isica Teoriea, Uni Uersidade Estadual Paulista, Rua Pamplona 145, 01405 Sdo Paulo, Brazil

Mira Dey
Department ofPhysics, Maulana Azad College, Calcutta 700013, India

T. Frederico~
Institute for Nuclear Theory, Department ofPhysics, FM 15, U-niversity of Washington, Seattle, Washington 98195

(Received 21 March 1991)

1/N, expansion in QCD (with N, the number of colors) suggests using a potential from meson sector
(e.g., Richardson) for baryons. For light quarks a 0. field has to be introduced to ensure chiral symmetry
breaking (ySB). It is found that nuclear matter properties can be used to pin down the ySB modeling.
All masses, M&, m, m„, are found to scale with density. The equations are solved self-consistently.

Low-energy physics is essentially controlled by the
Goldstone particle, i.e., the pion. The relevant parameter
is the pion decay constant, f . This is related to the
quark condensate (qq ) through the Weinberg sum rule.
In the QCD sum-rule approach also, the nucleon mass is
determined predominantly by the odd-dimensional opera-
tor (qq ) (Ioffe [1],Reinders, Rubinstein, and Yazaki [2]).
At higher density the condensate decreases in magnitude
(Bailin, Cleymans, and Scadron [3], Dey, Dey, and Ghose
[4]) and f also decreases correspondingly (Dey and Dey
[5]). This results in changes in the nucleon property, for
example, in the increase in the radius expected from the
European Muon Collaboration experimental data
through rescaling (Close, Roberts, and Ross [6]). In the
formalism of relativistic Hartree-Fock theory (Dey, Dey,
and Le Tourneux [7]), justified by the large N, theory of
t'Hooft [8) and Witten [9], one gets a weakening of the
confinement (Dey et al. [10]) at higher density. If one
uses the potential due to Richardson [11], this means a
decrease in A, the only parameter present in the interac-
tion. We wish to recall that for light quarks one has to
use a running quark mass m(r) to get correct nucleon ra-
dius and other properties [7].

Relativistic description of nuclear structure and reac-
tions within quantum hadrodynamics (QHD) has been
greatly developed during the last several years (Serot and
Walecka [12], Celenza, Rozenthal, and Shakin [13]). Can
one show the compatibility of this model with the mean-
field quark model'7 In a crude way this was done by
Guichon [14] and Frederico et al. [15] where they as-
sumed that there is a scalar o. and a vector cu field cou-
pled to the quark. As clearly stated by Guichon, this is a
very strong assumption since neither the o. nor the co are
fundamental at the quark level. One can think of the
running quark mass m(x) as being due to a o field.
There are two problems in doing this. First one has to
take care of the Goldstone pion since one is breaking
chiral symmetry. This is hard to do since the pion-quark
coupling is a highly nonlinear one and only in the Zahed

model [16] in lower dimension can one treat this exactly.
But we need not worry about this here since we can intro-
duce the well-established one-pion-exchange potential
(OPEP) at the QHD level in nuclear matter and thus
correct for the deficiency of the quark model. In some
models, pions may indeed couple to the quarks them-
selves, but we do not consider such models. The problem
is that the pions have a dual character, being Goldstone
particles as well as quark-antiquark composites; their role
in QCD-inspired models is still ambiguous. For the
present we prefer to ignore the pion-quark interaction
and replace this by the nucleon-pion interaction, which
does not introduce any additional parameters in the
theory. The energy due to the OPEP in nuclear matter
has been estimated in second-order perturbation theory
by Cenni, Conte, and Dillon [17] using wave functions in
nuclear matter derived from the Reid soft-core potential
[18]. This is almost model independent since the OPEP
tail is the same in all modern nucleon-nucleon interac-
tions. And the second-order OPEP contribution is in-
sensitive to the finer details of the nuclear matter wave
function —it only depends on the wound in the wave
function in a crude sort of way. One can see that the er-
ror due to this cannot be very large even if pions couple
to the quarks themselves as Goldstones, since the cou-
pling must be cut off for a radius of around 0.35 fm or so.
This is because from deep-inelastic scattering we know
that at short distances the quarks are free and massless.
In fact, in models like the o.-m soliton bag this restoration
of chiral symmetry at short distance is hard to achieve.
In some sense the Reid soft-core wound cuts off the pion
from the nucleon, and therefore also from the quarks at
about this distance, since in the nuclear-matter wave
function, the nucleon is taken to be pointlike, apart from
this wave-function effect. At the present moment, exact
treatment of the nucleon-nucleon interaction with pions
in the quark picture, is an insoluble problem. The o. fits
in nicely with the running quark mass, but again there is
problem with the vector mesons. In the Walecka model
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there is the co meson and this also we couple to the nu-
cleon rather than the quarks themselves. Now, of course,
extra parameters are introduced and the purpose of the
paper is to report that the nuclear matter constraints are
enough to uniquely determine these parameters.

We will next look at the problem from the QCD point
of view. Starting from the action for a system of interact-
ing quarks and gluons one can obtain, after a series of ap-
proximations, a Dirac Hamiltonian with a two-body stat-
ic potential. It was shown by t'Hooft [8] that such a clas-
sical (as opposed to field theoretic where qq loops essen-
tially introduces infinite degrees of freedom) two-body in-
teraction may be derived by summing all the gluon loops
that one can draw on a plane. Witten [9] further showed
that this interaction, which is appropriate for the meson
(essentially a two-body system), can also be used in the
mean-field approximation for a baryon in the same order.
Present-day techniques do not permit summing up all the
planar gluon diagrams which would yield such a poten-
tial unambiguously. As an alternative one can borrow a
potential from the meson calculation, for example, that of
Crater and van Alstine [19] mentioned before and test it
for a baryon (Dey, Dey, and Le Tourneux [7]). The po-
tential used in this case is due to Richardson [11]and it
passes the test very well. For the sake of completeness
we present this potential here:

6' A, (1)A,(2) & f(Ar)
4 33 2NI — Ar

where we have the scalar product of the color SU(3) ma-
trices As for the two interacting quarks, N& is the number

S=S,„,„+f d x[q(i8 —m)q+j„'3'"], (3)

where S &„,„denotes, collectively, the action of gluons,
the gauge-fixing terms and the action of the unphysical or
ghost fields, A the Geld potential, while j' is the quark
current

j„'=—qy„A'q . (4)

The connected Green's functions of gluons are generat-
ed by the functional

e'~'&'= f dp[a ], exp i S,,„.„+fJ'.a "d'x

where dp includes the ghost fields. The full generating
functional is given by

Z= f dan[A][dq dq]e (6)

and using (3) one can formally integrate out the gluons
and ghosts and write

Z = f [dq dq ] exp i f d xq(ir( m)q+—IV(j ) (7)

thus obtaining an eA'ective action for the quarks:

of flavors taken to be three, and

4f ~ dq exp( qy )

ln(q —I )+~
The action of a system of interacting quarks and gluons

can be written as

S,s.= f d x q(i8 m)q ——
—,
' fj 'I'(x)V„'"„(x,y)j (y)d y ——' fj'"(x)V„' '(x,y, z)j (y )j't'(z)d yd z—

where the Vs are connected Green s functions. This equation is an infinite expansion and it is absolutely essential to
have a truncation scheme if we want to extract meaningful numbers. For N, -quark systems like the baryon, the 1/N,
expansion provides such a scheme. This can be seen by going back to the formalism of canonical quantization and con-
sidering S,z as a function of the Geld operators q and q. For an N, -body baryon, the expectation value of the N currents
(N )N, ) that are contracted with V„'.. .„"involves

1 I N

(N, q'&~qq qq(N times)~N, q's) =%'~ (1, ,N, )(O~qq qq(N N, times)~0)—V~ (1, ,N, ) .
C C

(9)

Now the factor (O~qq . qq(N N, times) ~0) c—orre-
sponds to the production of virtual qq pairs and quark
loops. It is suppressed by 1/N, and all terms involving
more than N, currents can be dropped in a similar
manner. In spite of this restriction one cannot actually
compute even the two-point Green's function to all or-
ders. One therefore takes the static limit and use for V00
a standard vector potential like Richardson's, for exam-
ple. For light (u, d ) quarks one has to split the potential
into a vector and a scalar part arbitrarily to take care of
the chiral symmetry breaking [7]. An alternative has
been tried recently by Dey et al. [20], where forms are

m,„„„(x) = —4~'x'(4%'), (10)

where (%%)=( —2S5 MeV) and the Eq. (10) is valid up
to about 0.35 fm from which point the quark mass is tak-
en to be Aat and constant. The interesting thing is that
the form of the Hartree-Fock potential is not sensitively
dependent on the form of the mass chosen, i.e., there is
not too much difference between the Shuryak [21] form

taken for the mass following Shuryak [21] or Brevik [22].
We will discuss the form given by Shuryak briefiy (details
may be found in pp. 123—126 of his book). This gives
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given above and the form given by Brevik [22]. In a sense
this effective mass term is due to the qq terms of Eq. (9)
taken in a heuristic manner. So it is comforting to know
that while the quark mass has to be taken in a form like
in Eq. (10), the results are not sensitive on its precise form
chosen. It may be relevant at this point to recall that qq
degrees of freedom may be more important in baryons
than people thought before. We refer to only two sugges-
tions in the current literature: (a) Jaffe [23] has suggested
large coupling of the nucleon to the P and (b) Preparata
and Soffer [24] have suggested large coupling to q', both
of which are present in the original analysis of Nagels,
Rijken, and de Swart [25] and have been neglected in nu-
clear physics for a long time.

To return to the problem we recall that one cannot use
a coordinate-dependent form for the m(x ) in a Lagrang-
ian formalism, but has to introduce a field o (x ) instead.
This field is an effective field and its properties may there-
fore change with the ambient density. This relates the
quark problem to the nuclear matter problem and it is
possible to find consistent solutions for the nuclear
binding-energy curve from this. One has to invoke a vec-
tor cu field also and, as stated by Guichon [14] and
Frederico, Carlson, Rego, and Hussein [15] who first sug-
gested this kind of treatment, these are not fundamental
at the quark level. We find that if one couples this ap-
proach with the relativistic HF at the quark level, the
stringent condition of matching the o (r ) with the quark
gg determines the energy-density function of the o'U(o ),
and mass of the o scales as f with density. U(o ) looks
like that found in soliton bag models. We will elaborate
on this interesting point. One can start with a parabolic
form of U for zero density but then finds that cubic and
quartic terms in o have to be added. This is not unex-
pected since at high density if chiral symmetry is to be re-
stored one must have a second minimum in U(o ). This
is not possible with a parabolic form since the dU/do is
then linear in o. This type of nonlinearity has been
known in the soliton bag model for a long time [26] but it
is nice to find numerical analysis compelling one to simi-
lar solutions when the starting point is quite different.

One can fit nuclear matter in a satisfactory manner if
one takes an co mass which also scales with density like
f and takes a standard form for the one-pion-exchange
potential contribution to nuclear matter (from, for exam-
ple, Cenni, Conte, and Dillon [17]). This latter contribu-
tion from the OPEP is quite justified, since QCD sum
rules predict essentially the correct value for the pion-
nucleon coupling constant (Reinders, Rubinstein, and
Yazaki [2]) and this coupling constant has very little den-
sity dependence around normal nuclear matter density
(Dey, Dey, and Ghose [4]). The scaling of the mass of o
with density was expected by Brown and Rho [27] from
the missing strength of the longitudinal electron
response. It is interesting to find that the same behavior
is essentIal to get a fit to nuclear matter starting from a
quark mean-field model.

As stated before, one can identify m(r) with a cr field
in the spirit of Friedberg and Lee model [26]. The
difficulty is that one has to solve coupled equations for
the cr fields and the quark field g as done by Goldfiam

0 2 do
dr r dr

dU(cr )

d0
(12)

u(r ) = f d r'Pt(r') V(r —r')tP(r'), (13)

where V(r —r') is the two-body quark-quark potential. g
is the quark-o coupling constant. The mean field u(r) is
totally confined inside the nucleon. U(o ) is given by

2

U(o)= (o' cr,—) + (cr —o'„) + (cr —o, )
c7 2 2 3 3 4

2 3o. 4

(14)

where the scalar o. field attains its vacuum expectation
value o., so that

go. , =m (15)

m being the constituent quark mass taken to be 300
MeV (1.5 fm '). Observe that we wrote U(o ) in such a
way that m is the effective cr mass:

d2U
m~ = (16)

dcT o =o„

g o (r ) can be fitted to an analytic form,

go(r)=m(r)=m&[1 —(1+ar+a r /3) exp( ar)] —.
(17)

This form for the o. field was reached by a step in the pro-
cess of solving consistently the equations (11)—(14). We
found this as the simple analytical solution that gives the
best approach for the coupled equations, and can fit well
the numerical results we obtain for each parameter A,
corresponding to some specific nuclear density. The pa-
rameter A of the Richardson potential was fitted to vari-
ous nuclear densities, as explained in Refs. [11]and [20].
In Eq. (17), we let a be a parameter to be adjusted to have
the consistency fulfilled. We have used a tedious but reli-
able process to obtain this part of the self-consistency.
We have used a graphical package to plot the o. field in
order to adjust the analytical form to our numerical re-
sults, obtained from the Hartree-Pock calculation. This
gives us a new input for the o. field, until the consistency
is reached. The parameter o. we have obtained in this
process was equal to 5 fm ', consistent with the model of
Ref. [21].

It is possible that the quark mass may vary with densi-
ty, but we found that if we incorporate such an effect
directly in this stage of our approach, such procedure can
face problems with double counting, and may be not
compatible with the model. We mean "double counting"
in the following sense: the effective mass has already in-

and Wilets [26], but with one more complication. There
is now a mean field obtained from two-body quark-quark
potential self-consistently. We have

[a p+Pgo(r)]/=[@ —u(r)]g,
with
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2

+ p +— (M —M')g 1 I
2w2 B 2 g

N

kF+
3 f d k+k +M*

(2~)'

=8 +6 +8,+6~ .

2

(19)

Here pB is the nuclear-matter density, kF is the Fermi
momentum, and M* is the effective nucleon mass in the
medium to be found self-consistently from

corporated in it the effect of the o. mean field, as we are
assuming the o.-co model for the nucleon propagation in
nuclear matter. The constituent quark masses are com-
ponents of the nucleon mass; and, in case we consider
that also the constituent quark mass has the effect of the
o. field, such effect will be doubled in the effective mass of
the nucleon. Then in the present formulation of our
model we favor the first option; it means only the nucleon
in the sense of the o.-co model has an effective mass. We
expect the possible variation with the density in the con-
stituent quark mass will not change our results qualita-
tively. The formulation of such a model avoiding the
double counting will be pursued in a future work.

With the form given in Eq. (17) we calculate the nu-
cleon mass from the relativistic Hartree-Fock equation
self-consistently [7]. The center-of-mass correction is
also done as in Ref. [7]. The energy contribution of the o.

field to the nucleon mass is obtained by integrating U(o. )

and the kinetic-energy density [—,'(Vo. ) ] of the cr field.
The resulting mass MN is a bit high but we do not worry
about this since pion cloud correction could bring this
down. Fortunately, the nuclear-matter binding is in-
dependent of this mass since this is subtracted out from
the energy. As seen from this equation, for large r, o. be-
comes a constant and a constant o. is what is used in the
Walecka model. The coupling with the nucleon is given
by

g~~=3& f d "A'.
The co field is introduced at this level following Serot and
Walecka [13] so that the energy density of the nuclear
matter is

We would like to emphasize here the way the self-
consistency is obtained in this calculation. We solve the
equations for g and o., Eqs. (11)—(17), using the Richard-
son potential [11][see Eqs. (1) and (2)] for diff'erent values
of the parameter A, for the corresponding nuclear densi-
ties. This parameter was fitted for different nuclear den-
sities, as in Ref. [11]and [20], and we reproduce in Table
I the corresponding variation. From this consistency we
obtain the density dependence of the quark-0. coupling
constant g and the corresponding coupling with the nu-
cleon given by Eq. (18). Next we calculate the nucleon
mass from the relativistic Hartree-Fock equation self-
consistently. We also have included the center-of-mass
contribution as has been done in Ref. [7]. The o. energy
contribution to the nucleon mass E is added at this
point, after integration of the density energies (kinetic
and potential). After this we have the running nucleon
mass MN, that varies with the density, and the effective
nucleon mass in the medium is obtained self-consistently
through Eqs. (20) and (21). The energy density of the nu-
clear matter is obtained through Eq. (19) and the numeri-
cal constant present in the co energy, Eq. (22), adjusts the
saturation at the normal nuclear density.

In Table I for each density we list the corresponding A,
the parameters of U(o ), the quark-cr coupling, and the
nucleon-0. coupling. In Table II, again for the same den-
sities, we give the cr contribution for the nucleon mass
E, the nucleon mass MN, the self consistent mass M*,
the energy contributions to the binding and the final
binding energy (BE) per nucleon. This final binding ener-

gy is obtained after summing all the energy contributions
and subtracting the nucleon energy at zero density. A
nice feature is that the saturation is obtained with a con-
sistent set of parameters. Only a large o. mass can give us
the saturation in the right position and with approxi-
mately the correct amount of binding energy per nucleon.
The relation connecting t2 and t3, given by (t2/2m ),
ensures that we have just one minimum of the potential U
at o.=o and that the other two extremes are in the same
position. We can also produce another minimum with a
smaller value of t3, but to keep the absolute minimum at
o.=o one cannot change t3 too much. The expressions
for the energies E„are defined by

goN
2

kFEF M* ln
kF +EF

M*

where

(20)
TABLE I. Density dependence of the parameters and cou-

pling constants.

E~=QM* +k (21) p~ /po A(MeV) m (MeV) tz(fm 2) RaN

To obtain the saturation at p~ equal to po=(0. 17
fm )g is adjusted to

243. 5
ci7 2M 2 PB

N
(22)

The number used by Serot and Walecka [12] was 193.7,
the experimental one, given in Ref. [14], being 251 is
closer to 243.5.

0
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

225
217
209
202
194
187
180
173
166

2565
2488
2389
2293
2197
2118
2025
1933
1848

0
15
27
37
46
53 ~ 5
59
63.5
69.5

13.418
12.844
12.157
11.529
10.919
10.402
9.806
9.243
8.656

19.861
19.733
19.110
18.659
18.213
17.854
17.152
16.500
15.835
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TABLE II. Density dependence of the energies. All energies are given in MeV.

E, BE

0
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

89.90
89.89
90.36
90.29
90.25
90.17
90.60
90.76
91.53

1241
1223
1197
1176
1155
1138
1117
1097
1078

1241
1203
1156
1112
1067
1025
980.0
935.9
894.0

1241
1210
1168
1128
1087
1049
1008
968.8
931.5

0
10.15
20.48
31.54
43.24
55.38
66.40
77.72
88.42

0
26.56
55.47
86.19

119.2
153.4
191.3
231.4
273.6

0
—7.431
—14.91
—19.96
—24.02
—27. 52
—30.58
—33.33
—35.83

0
—1.729

—12.536
—15.209
—15.717
—10.726
—5.701

3.278
16.432

(23)

where the 8's are given in Eq. (19).
To summarize, our main finding has been to observe

that all the relevant masses scale with nuclear-matter
density, in a self-consistent calculation. In particular, the
scaling nz„ is expected from the missing strength of the
longitudinal electron response [27]. We were led to fit
nuclear matter more to constrain our model of chiral
symmetry breaking. We fit U(tr), using the ansatz for
the cr field given by Eq. (17), in the framework of the rela-
tivistic Hartree-Fock calculation [7]. We use the
Richardson potential. Calculations with other potentials
like, for example, the one suggested by Hansson,

Johnson, and Peterson or Ding, Huang, and Chen [28]
and more detailed study of the solutions should be pur-
sued and are under way. We find M& which are very
reasonable and our o is like that of a glueball of mass
more than 2 GeV. This is similar in spirit to Bayer and
Weise [29).
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