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We discuss the calculation of the hadronic tensor, which plays an essential role in the description of
the interaction of a nucleus with an electromagnetic probe, in the kinematic regime where the concepts
underlying the theory of y scaling may be used. In our previous work we determined the kinematic fac-
tors that relate the cross section to the scaling function, F(y ), defined in the theory of y scaling. That
study was carried out for a deuteronlike bound state of two scalar particles. In this work we extend our
analysis to the case where the target is composed of spin one-half nucleons. The origin of various kine-
matic factors arising from the off-shell characterization of the struck nucleon and its motion in the nu-

cleus is clarified. The target nucleus is described as a relativistic system and, in the scaling limit, we dis-
cuss how the terms which parametrize the relativistic density matrix determine the value of the cross
section.

I. INTRODUCTION

We are interested in calculating the cross section for
quasielastic electron-nucleus scattering on rather general
grounds, using as few approximations as possible. The
first approximation we will have to make is to assume
that the inclusive cross section is dominated by the ejec-
tion of a single nucleon from the target. We are aware of
that, in general, various corrections to this simple picture
are required. One may study the role of meson-exchange
currents or the excitation of the delta resonance in modi-
fying the picture developed here; however, when restrict-
ing ourselves to the special kinematic regime appropriate
to y scaling [l] we may assume that these corrections are
relatively unimportant [2].

If the struck nucleon has a large momentum, say
k )400 MeV, it is likely that this nucleon is one member
of a strongly interacting pair of nucleons. If we neglect
final-state interactions, we can argue that information
concerning the dynamics of the other member of the pair
is ultimately contained in the characterization of the den-
sity matrix of the target. (In this work we will discuss
various assumptions which may be made concerning the
structure of the density matrix). A novel feature of our
analysis is that the density matrix here is that appropriate
to a target that is described relativistically. (In this case,
the density matrix, p &, is a 4X4 matrix. )

Furthermore, in this work we will only consider the
plane-wave impulse approximation. That is, we neglect
the final-state interaction between the struck nucleon and
the spectator nucleus. As was shown in a previous publi-
cation [3], these interactions modify the response of the
nucleus to the electromagnetic probe, and only when the
momentum transfer is large are final-state interactions
neghgible.

In Ref. [4] we described how the kinematic factors

which relate the cross section to the scaling function of
the y-scaling analysis should be chosen. It was shown
that if these kinematic factors are not chosen properly,
the momentum distribution of the target particles deter-
mined in a y-scaling study will contain errors [4]. In this
work we consider a more realistic model in which the tar-
get is a nucleus composed of spin one-half nucleons. The
analysis is somewhat more complicated than that of Ref.
[4], since we here have to make use of the Rosenbluth
formula to describe the interaction of the electrons with
the target nucleon. However, we find that the kinematic
factors are similar to those determined in our earlier
work [4], where the electron-"nucleon" cross section was
given by the Mott formula.

We are also interested in providing a general analysis
of the scattering from a relativistic target in the kinematic
regime where one may study the phenomenon of y scal-
ing. If we describe the target as a relativistic system, a
quantity which enters the analysis is the relativistic densi-
ty matrix. There have been a number of self-consistent
calculations for the ground state of nuclei using the Dirac
equation to describe the motion of the nucleons. From
these results, one may obtain an expression for the rela-
tivistic density matrix of the nucleus. (Actually, what is
needed is the matrix which describes the probability of
finding a nucleon of momentum k in the target; see Fig.
1. That quantity has a much simpler structure than the
density matrix itself which, in general, depends on two
momenta, k and k'. )

Almost all investigations of y scaling are based on the
assumption that the target can be described in a nonrela-
tivistic framework [5]. One usually starts with "smear-
ing" the electron-nucleon cross section (which eventually
contains corrections due to the fact that the nucleon one
scatters from is oft its mass shell and is moving) with the
momentum distribution of the nucleons in the nucleus.
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FIG. 1. The hadronic tensor may be obtained by evaluating
the imaginary part of the forward (virtual) Compton amplitude
shown in this figure. Here I' is the momentum of the (on-shell)
target of mass M. The wavy lines denote virtual photons which
interact with nucleons of momentum k". The lower part of the
figure serves to define a density matrix, p &(I'",k").

The analysis then shows that, in the asymptotic limit, one
is able to extract this momentum distribution from the
measured cross sections. The momentum distribution
contains valuable information on short-range correlations
and is very difficult to determine otherwise. In the
analysis of the experimental data one is especially in-
terested in high momenta (up to 0.7 and 0.8 GeV) and,
therefore, we believe that the description of the target as
a relativistic system is appropriate.

Rather than proceeding in the standard manner, we
here undertake a calculation of the hadronic tensor that
determines the response of the target to an electromag-
netic probe. This tensor may be calculated in terms of
the target density matrix. The form taken by the hadron-
ic tensor allows us to define structure functions of the nu-
cleus that are analogous to the structure functions of the
nucleon defined in the study of deep inelastic electron-
nucleon scattering.

By evaluating the nuclear structure functions in the
scaling limit, we find an expression for the cross section
which is very similar to that obtained when the target is
treated as a nonrelativistic system. We then study some
special forms of the relativistic density matrix and show
under which assumptions our analysis reproduces the re-
sults of other authors. It is not our intention to review
the large body of literature which deals with y scaling.
We refer the reader to an excellent recent review [5],
where extensive references to the literature may be found.

The organization of our work is as follows. In Sec. II
we specify the form of the density matrix and calculate
the nuclear structure functions. In Sec. III we evaluate
these structure functions for some special forms of the
density matrix and discuss their asymptotic limit. In Sec.
IV we introduce the concept of y scaling. In Sec. V we
describe a Lorentz-invariant double differential cross sec-
tion that describes scattering from moving, off-mass-shell
nucleons and we continue our discussion of y scaling.
Section VI contains further discussion and conclusions.

II. THE DENSITY MATRIX
AND THE NUCLEAR STRUCTURE FUNCTIONS

Assuming that quasielastic electron-nucleus scattering
is dominated by the one-nucleon knockout process and

a(k', ~I )m+b(k', ~I )k'y' —c(k', k~)k y
p k, k-:

2fPl

(2.2a)

~ (k', ~I
~
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where m is the nucleon mass, 2 and B„may be written
in terms of a, b, and c by comparing Eqs. (2.2a) and
(2.2b). (Note that B„ is not a four-vector. ) The density
matrix is normalized by requiring that the total baryon
number be given correctly. Thus,

N+Z= —J d kTr(y p(k)),1

2

ja'ka'(k', ~l ~),
rn

(2.3a)

(2.3b)

=IZ'k b (k', ~I
~ ), (2.3c)

for a nucleus with N neutrons and Z protons. (In gen-
eral, there is a different density matrix for neutrons and
protons; however, we neglect that complication here. )

By evaluating the diagram of Fig. 1, we find the ha-
dronic tensor

W" = —Jd k 5(ko+co E(p))—
2 E(p)

(2.4)

where q"=(co,q) is the four-momentum of the virtual
photon and E(p)=+~p~ +m is the energy of the scat-
tered nucleon, which has four-momentum p =k +q. I "
is the usual photon-nucleon vertex,

considering the plane-wave impulse approximation, we
find that the hadronic tensor 8'" may be obtained from
the evaluation of the Feynman diagram of Fig. 1. The
lower part of the diagram does not depend on the interac-
tion with the external photon, and it can be parameter-
ized by a density matrix, p &(P",k"), which determines
the probability of finding a nucleon with momentum k"
in a nucleus of momentum P". In this approximation,
the density matrix contains all the information about
mean-field dynamics and nucleon correlations. When we
consider a target of zero spin and isospin, the most gen-
eral form for p which exhibits Lorentz covariance, parity,
and time reversal invariance is

p(P", k")=p,(k,P k)+p2(k, P k)P„y"

+p3(k, P k)k„y" . (2.1)

Here the p;(k, P k) are scalar functions. They do not
depend on P, since P =M, where M is the mass of the
target nucleus.

For our purpose we need not discuss the structure of p
in other than the target rest frame. Here the total
momentum is P"=(M,O) and Eq. (2.1) can be rewritten
as
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I "=y"F,(Q )+io" q, F2(Q ), (2.5)

which depends on the anomalous magnetic moments,
~~'", and the free-nucleon form factors, F~'z, which are
functions of the square of the four-momentum transfer,
Q = iqi

—co . In Eqs. (2.4) and (2.5) we assume isospin
symmetry, i.e., we use the same density matrix for neu-
trons and protons, and correspondingly the quantities ~
and Fi 2 in Eq. (2.5) have to be averaged over the number
of neutrons and protons. The vertex I " specifies the cou-
pling of a free nucleon to a photon, since the correspond-
ing form factors F1 2 are determined by scattering experi-

p y +m A +B&y~T"'=—Tr (I'")' I "
2

'
2m 2m

(2.6)

for the trace in Eq. (2.4), we find, after some calculations,
that

ments on free protons or quasi-free neutrons. This
represents another approximation. (It is quite possible
that the form factors F1 2 and the structure of the vertex
are modified when the nucleon is in a nucleus. However,
at this time there is no consensus as to how medium
modifications and off-shell effects should be introduced. )

Writing

F
T4 = Ip"B +p B"+[mA —(p B)]g"'}

2m

vF1F2+ [m(q"B"+q B")—A(pI'q"+p'q&)+2[A(p. q) m(B q—)]g" }4m
2F2

+ (Q (p "B +p B")+(p.q)(q "B'+q'B")+(B q)(p "q "+p"q")
sm4

—[mA +(p B)]q"q IQ —[mA +(p B)]+2(p q)(B q)}g"') . (2.7)

gpV — pa+ q
Q2

P v
pv+q q

u g (2.&)

This yields

At this point we see that our calculation is not fully
gauge invariant, i.e., q„T"'%0. We remedy this defect by
replacing T" with T"', where [6]

d cT =o M„,[ W'2+2W, tan [(—,'8)],Mott (2.12)

where E' is the energy of the electron after the scattering
process, 0 is the scattering angle, and 0.M,« is the well-
known Mott cross section. The nuclear structure func-
tions 8'& and W2 characterize the symmetric part of the
hadronic tensor,

P P
jlPv —T Pv+ + T2(P"S +P"B"), (2.9)

p v P~PW-= —W v+q q +W
Q M

(2.13)

where p" and S~ are defined using the relation

&=X"+ 2 q",(X. ) (2.10)

and

vF
IQ2[mA+(p. B)]+2(p q)(B q)}sm4

(2.11a)

with Q = —
q . Further, T, and T2 of Eq. (2.9) are given

by

F1 vF1 F2
T, = [mA —(p B)]+ [A(p q) —m(B q)]

2m 2m

(2.14a)

3P„P
yM

1 pqv

y
gPv Q2

A A
where y=P~P"/M . Thus, we can write

W'", (2.14b)

W, 2= f d k 5[k +co—E(p)]h, 2,
p

with the kernels

(2.15)

where M is again the target mass, P" is the four-
momentum of the target, and P" is defined in Eq. (2.10).
From Eq. (2.13) we find

1 p v + qpqv p
P P

M2 Pv Q2

2m 4m
(2.11b)

The cross section for inclusive, inelastic, unpolarized
electron-nucleus scattering can be expressed in terms of
the hadronic structure functions 8', 2 through

1
h 1

h2= 1

2y
qpqv

gPV Q2

P„P q„q+
M2 Pv Q2

'3P P

yM
gPV

(2.16a)

(2.16b)
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Making use of Eqs. (2.9) and (2.11),we finally obtain

Fi+(Q /4m )x F~ (P. )(P.B)
2m 2 yM2

Q2
+ [(p.B)—mA ]

2m

VF)F2+ [m(B q) —A(p q)]
2m
2+2

+ [Q [mA+(p B)]+2(p.q)(B q)j, (2.17a)
Sm4

Fz + (Q /4m )a Fz 3(P.p )(P.P ) —(p )
2+m yM

tion the struck nucleon is on its mass shell before and
after the scattering process, i.e.,

k =(k+q) =m (3.1)

)o(k', k) =n( lkl )S(k'—&Ikl'+ m')
2m

(3.2)

where n ( I
k

I ) is a momentum distribution. The func-
tions which parameterize the density matrix, a (k,

I
k

I ),
~(kP, Ikl), and c(kP, Ikl), are

and, in both cases, is represented by a Dirac plane wave.
Equation (3.1) serves to fix the zeroth component of
the four-momentum of the struck nucleon to
k =V lkl +m . In the target rest frame, the density
matrix in Eq. (2.2) is then

(2.17b)

These kernels can also be expressed in terms of the func-
tions a (k, lkl ), b(k, lkl ), and c (k, lkl ) that we used to
characterize the density matrix in Eq. (2.2a). When we

take into account that we are performing our analysis in
the laboratory system, so that P"=(M, O), and also note
that the outgoing nucleon is on mass shell, i.e.,
p =(k+q) =m, we find

a(k', Ikl) =&(k', Ikl) =«k', Ikl)

=n ( Ikl )g k' —&lkl'+ m')

in this case. We find for h, and hz of Eq. (2.18)

h, =n(IkI)5(k —E) wi +wzp e zv

2m'Iql'

(3.3)

F i + ( Q /4m )x Fz (k. )&
b(k ) c-

2m' lql~

F~+ F F + 2[k'~ —«q)] —Q' ~F~
1 + 1 2 V F2

+ 4m

2m

x [bk pro —c(k.q) ]
r

Q~ ~ ~ 1 ~ Q —kpco+(k q)
Sm 2m

F, +(Q /4m )~ Fz
h2=

(2.18a)

(3.4a)

and

h, =n(lkl )5(k' E)w&—

Elql' —co(k q)
m Iql'

2 Q'
lkl

( q)'
2m '

I ql
'

I ql
'

(3.4b)

where we used the relation Eco (k q) =Q~ /—2,

which follows from Eq. (3.1). Here, E=}/lkl'+m' is
the energy of the struck nucleon before the interaction,
and the functions

x bk —c
Iql'

p cp(k. q) f12
(3.5a)

+. Q', lkl' —",'
2lql' Iql'

(2.18b) w N g2+ K ~2~2W2 —
) 2K (3.5b)

This is the final result of this section. In the following
we will calculate h

&
and h2 for some special, simple forms

of the density matrix and we will also consider the ex-
pressions for h

&
and h2 obtained in the scaling limit.

III. THK STRUCTURE FUNCTIONS
IN THK SCALING LIMIT

The simplest approximation we can make for the qua-
sielastic scattering process, as depicted in Fig. 1, is that
the virtual photon of momentum q interacts with a quasi-
free on-shell nucleon of momentum k. In this approxima-

are related to the structure functions describing elastic
scattering on free nucleons. The result presented in Eq.
(3.4) was given in an earlier publication of our group [7].
There we calculated the structure functions of the deute-
ron in terms of the structure functions of the nucleon.
We also employed the relativistic impulse approximation
and the same simple ansatz for the density matrix that we
use here. We see from Eq. (3.4) that, in general, the
structure functions mix, i.e., h& is a function of both w&

and w2. However, this mixing vanishes in the deep in-
elastic or scaling limit, where Q and cp tend towards
infinity, while x =Q /(2M') stays finite. In that limit,
Eq. (3.4) yields
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h, n ( Ik I
)&(k' —&)w i

r

h2~n ( lkl )5(k —E)w~

2

(3.6b) + lkl'Iql' —k q
'

(3 6a) and the kernels of the structure functions are then

(3.13a)

We now express w, and w 2 in terms of the electric and
magnetic form factors of the nucleon, GE and GM, and
obtain

hz =n (k, Ikl )w2
k

I q I

—co(k.q)
m Iql'

2
Q G2

4
(3.7a)

Q
I

I2
(k q)

2m'Iql' Iql'
(3.13b)

G~+(Q /4m )G~

1+Q /4m

Then, in the scaling limit,

Q' z

4m
X 2

w2 ~GM ~

(3.7b)

(3.8a)

(3.8b)

Here we have used k co —(k q)=(Q +m —m" )/2,
which follows from the fact that the struck nucleon is on
its mass shell after the absorption of the virtual photon;
w2 is again the structure function for elastic scattering
off a free nucleon, as defined in Eq. (3.5b). However, the
other structure function, w, , is a modified form which

appears when the nucleon is off shell:

and we finally find

2

h,~,GMn(lkl)5(k' —&),
4m

(3.9a)
4m

(3.14)

h2~ GMn(lkI)5(k —E) . (3.9b)

The kinematic factor (Mx/m), where x is the Bjorken
scaling variable that characterizes deep inelastic
electron-nucleon scattering, will appear again later in this
work. This kinematic factor was discussed in detail in an
earlier publication on this topic [4].

We now go on and consider the case where the nucleon
is off its mass shell before the interaction. In the spirit of
describing quasielastic electron-nucleus scattering as a
sum over scattering processes on individual free nucleons,
we still use Dirac plane waves for the wave function of
the struck nucleon. However, we consider an off-shell
characterization of the struck nucleon by introducing an
effective mass

m*=t/(k )
—Ikl Wm . (3.10)

This quantity can only be defined if the nucleon is not too
far off its mass shell, and thus has lkl & lk I. In this case
we find the density matrix

p(kk) ,n( k=lk
I ), (3.1 1)

This differs from Eq. (3.2) by the replacement of m with
m* in the numerator. Further, n (k, lkl ) is a generalized
momentum distribution, which now depends both on k
and lkl. This momentum distribution is the probability
of finding a nucleon with energy E =k and three-
momentum k in the nucleus. We find the functions
a(k, lkl ), b (k, lkl ), and c (k, lkl ), which parametrize
the density matrix [see Eq. (2.2)], to be

2

h, ~ GMn(k, lkl),
4m

2

h2~ GMn(k, lkl) .
m

(3.15a)

(3.15b)

We conclude that, in the scaling limit and for the simple
parametrization used here, it does not matter whether we
parametrize the density matrix with on-shell or with off-
shell spinors.

We complete this section by deriving the asymptotic
limit for h& and h2, without making any simplifying as-
sumptions concerning the form of the density matrix.
[We evaluate Eq. (2.18) in the deep inelastic limit, where

Q and co tend towards infinity, while x =Q /(2M')
stays finite, and restrict ourselves to the terms of leading
order. ] First, we reexpress F, and I'z in terms of the
electric and magnetic form factors GE and GM,

G~+(Q /4m )GM

1+Q /4m

GM GE
vF2 =

1+Q /4m

(3.16a)

(3.16b)

2
Q'+(m* —m )' m*+m

w) Fi+ vF2
4m 2m

This expression reduces to the w, given in Eq. (3.5a)
when we set m*=m.

From Eqs. (3.13) and (3.14) we see that, in the scaling
limit, we find exactly the same expression as in the on-
shell case, since the extra terms, which are functions of
m* —m, are small when compared to Q . Therefore, we
obtain, for off-shell nucleons,

a(k', Ikl)= n(k', Ikl),

b(k', Ikl) =c(k', Ikl) =n(k', Ikl),
(3.12)

This shows that Fz is of the order of 1/Q compared to
F, and, therefore, we can neglect all terms containing F2
in Eq. (2.18). Furthermore, we see that, in the scaling
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G2 2[&«' Ikl)k'~ —«k', Ikl)(k. q)]
2 7

where we used x =Q /(2M') and

2
k co —(k q)~

2

(3.17b)

(3.18)

Recall that the struck nucleon is on its mass shell after
the interaction, i.e., (k+q) =m . The above result can
also be expressed in terms of B". From Eq. (2.2) we see
that B"=(bk,ck), and Eq. (3.17) then reads

Q', 2[q.B(k', lkl)]
1 2 M4m Q

2 3.19a

M 2 (3.19b)

This is the final result of this section and it demonstrates
how the calculation of the structure functions is related
to the structure of the density matrix of the target when
the target is described as a relativistic system.

In the two special cases we have studied in this section,
B„was proportional to k„and, as 2(k.q)/Q ~1 in the
scaling limit [see Eq. (3.18)], we found the same result for
the structure functions, whether we used on-shell or off-
shell spinors. Clearly, Eqs. (3.9) and (3.15) can easily be
obtained from the more general result given in Eq. (3.19).

limit, F, reduces to the magnetic form factor GM.
Only the second term in hi [see Eq. (2.18a)] is of the

order of Q, whereas the two other terms are of the order
of 1; thus, it is only this second term which contributes in
the scaling limit. In the case of h2, the first term is of the
order of 1, whereas the second term is of the order of
1/Q, and thus only the first term survives. In the scal-
ing limit, we have co/Iql = 1 and we find

Q' 2 2[b(k', Ikl)k'~ —«k', Ikl)(k. q)]1~4 2 M Q2

(3.17a)

When we consider quasielastic electron-nucleus
scattering in the plane-wave impulse approximation, the
final state includes only the free, knocked-out nucleon
and a recoiling A —1-body spectator system, which may
be excited with some energy t . Often the 3 —1-body sys-
tem is taken to be a single spectator nucleus and both the
struck nucleon and the spectator nucleus are considered
to be on their inass shells [8]. The spectator nucleus is
then ascribed some effective mass, Mz &, such that

QM„' i+ Ikl =QMq, + Ikl +e . (4.1)

The corresponding process is depicted in Fig. 2. Energy
conservation fixes the struck nucleon's energy k to

k =M V M„ i+ Ikl e ~ (4.2)

where M is the mass of the target nucleus.
In this approximation we neglect all interactions be-

tween the struck nucleon and the spectator nucleus in the
final state. We also neglect excitations of the struck par-
ticle and any interaction of the virtual photon with con-
stituents other than a single nucleon.

In all discussions of y scaling based upon nonrelativis-
tic dynamics [5], the struck nucleon is treated as a quasi-
free particle. One considers the nucleus to be a gas of
off-shell nucleons having some energy and momentum
distribution, which can be parametrized by means of a
spectral function 5 ( I

k I, e). Here k is the three-
momentum of the struck nucleon before the interaction
with the photon, and e is the excitation energy of the
3 —1-body spectator in the final state.

In our formalism, this means that we can represent the
struck nucleon by a Dirac plane wave with some effective
mass m*,

m'=~(k')' —lkl' . (4.3)

Here m * differs from the free-nucleon mass m due to the
fact that energy conservation has already fixed k, as can
be seen from Eq. (4.2). Thus, we write the density matrix
as

p(k', k) = f "des(lkl, e)s(k' M+V'—M,', + lkl2+~)
0

IV. y SCALING
k'+m'

2m
(4.4)

In the last section we calculated asymptotic expres-
sions for the structure functions in the scaling limit. We
found [see Eq. (3.19)] that the kernels of those structure
functions can be written as the product of the projection
of the vector part of the density matrix on the photon
momentum times some kinematic factors. In this section
we want to relate the latter result to the concept of y scal-
ing, and we will show that the cross section for quasielas-
tic electron-nucleus scattering can be written as an in-
tegral over a spectral function (which specifies the energy
and momentum distribution in the nucleus) times an
electron-nucleon cross section [8]. In Sec. V we present a
semiclassical interpretation for this electron-nucleon
cross section. This cross section is seen to depend on the
motion and the off-shell nature of the nucleon in the nu-
cleus.

which is analogous to Eq. (3.11). However, the general-
ized momentum distribution n (k, lkl ) is now expressed

P P-k P

FIG. 2. Forward (virtual) Compton amplitude in the case the
residual system is an A —1-body nucleus of mass M& I and ex-
citation energy e.
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through a spectral function S( Ikl, e) and an integral over
all possible excitation energies e of the spectator nucleus.

As was outlined in detail in Sec. III, the structure of
the density matrix is such that the following expressions
for the kernels of the structure functions are obtained:

f" lkldlkl f «S(lkl, e. ) .

(4.9b)

2

G~ f de S(lkl, e)
4m 0

x n(k' M—+QM,', + Ikl'+~),

(4.5a)

Here

and

M(1 —x) M~2

2M(1 —x)
(4.10a)

2

GM' f «S(lkl, ~)
m 0

xs(k' M++—M,', + lkl'+e),
(4.5b)

in the scaling limit. From this we can calculate the struc-
ture functions themselves using

e =y+ lkl+QM„)+y —QMq, + Ikl . (4.10b)

d2
=crM„,[ W2+2W, tan ( —,'0)] .Mott (4.1 1)

Upon inverting Eq. (4.10a), and using Eqs. (4.9) and
(4.11),we find, in the scaling limit,

The nuclear structure functions W& and Wz determine
the cross section, since

W, 2= f d'k 5 k'+co E(k+q—) h, 2, (4.6)E(k+q)

wit hE ( k+q) =+
I
k+ q I

+m .
The integral of Eq. (4.6) contains two delta functions,

one from the on-shell characterization of the struck nu-
cleon and one from the fact that the spectator nucleus is
on shell [see Eq. (4.5)]. If we use one delta function to
eliminate the k integration in Eq. (4.6), the other delta
function will fix the angle 0 between k and q. We have

red Mott

2
M —QM„, +y —y

m M

2

2m

d u m
dzdn= - IqlF y

where we have defined the reduced cross section

(4.12)

(4.13)

5 k +co E(k+—q)
F. (k+q)

cose —&(lkl, ~, Iql, ~)
lkllql

where co is the energy of the virtual photon and

II( lk I, ~, I ql, ~)

(4.7)

W, = GM2n f Ikldlkl f deS(lkl, ~),
4m' Iql 0

(4.9a)

'2
M+~ —QM„', + lkl' —~ —m 2 —Ikli —Iql2

2lkllql

(4.8)

Details can be found in Ref. [5], where the same kinemat-
ics is used. (See also Ref. [8].) The delta function in Eq.
(4.8) can only contribute to the integral if
IQ(lkl, e, lql, co)l ~1. This restricts both the integration
over Ikl and the integration over e.

It is usual practice to call the lower limit of the Ikl in-
tegration —y. The y-scaling regime is then defined as the
kinematic region where Iql tends towards infinity, which

y stays finite. It is a straightforward exercise to show that
the y-scaling limit is equivalent to the Bjorken limit,
where both Q and co tend towards infinity, while
x =Q /(2M') remains finite. In this limit, upon com-
bining Eqs. (4.5) to (4.7), we find W, and 8'2 to be

and the scaling function

+(y)=2~f lkldlkl f d.S(lkl, .) (4.14)
0

This is exactly the same result as appears in Refs. [5]
and [8]. However, the difference between our derivation
and that presented in Ref. [5] is that, in Ref. [5], Eq.
(4.12) was obtained by "smearing" an off'-shell electron-
nucleon cross section (the cross section ccl of de Forest
[9])with a spectral function S( lkl, e). In contrast, we be-
gan our analysis by introducing a density matrix for the
nucleons and it is only in the scaling limit that we obtain
simple folding expressions for W&, Wz and the cross sec-
tion [see Eqs. (4.9) and (4.14)]. In the nonasymptotic
case, which is more the rule than the exception, given the
experixnental situation, there is not only correction terms
arising from the limits of the integrations, —y and e
but there are, in addition, correction terms which arise in
the kernels of the integrals that yield W& and Wz. It is
only in the deep inelastic limit that these corrections van-
ish so that our derivation agrees with the conventional,
nonrelativistic analysis [8].

Another difFerence is that our derivation provides an
expression for the reduced cross section, o.„d of Eq.
(4.13), while that quantity appears as an additional input
in the calculation of Ref. [5]. As will be discussed in sec.
V, the reduced cross section of Eq. (4.13) is simply the
scaling limit of the electron-nucleon cross section, evalu-
ated for a moving nucleon at a very special kinematic
point. In this we agree with the analysis of Ref. [5].



y-SCALING ANALYSIS FOR INELASTIC SCATTERING FROM. . . 2137

When we evaluate the cc1 cross section of de Forest at
this special kinematic point, and consider the leading or-
der terms only, we end up with an expression for o.„d
which difFers from Eq. (4.13) by the appearence of a sin-
gle kinematic factor. This feature of our analysis will be
discussed in detail in Sec. V.

V. THE REDUCED ELECTRON-NUCLEON
CROSS SECTION

In this section we want to show how the reduced cross
section, introduced in Eq. (4.13), can be derived as an
off-shell extrapolation of the well-known Rosenbluth
cross section [10], which is to be evaluated for a moving
target nucleon. The procedure is analogous to that used
in our previous work [3,4], where we studied two point-
like, spin-zero "nucleons" bound to form a scalar "deute-
ron". There we could also show [4] that the electron-
nucleon cross section that appears when evaluating the
hadronic structure functions in the scaling limit, can as
well be derived from the Mott cross section by rewriting
the latter in the appropriate frame of reference and
evaluating it for moving, off-shell "nucleons". In order
to be able to transform the cross section to another
Lorentz frame, we first have to write it in a covariant
manner. (For this purpose we introduce the Mandelstam
variables. Further details may be found in our previous
work on this topic [4].)

As we are now considering nucleons of spin one-half,
we start with the Rosenbluth formula [10]

d o a cos (8/2)
4E sin (8/2)

X Fi+ x F2
4m

momenta of the struck nucleon before and after the in-
teraction. Here we have neglected the electron mass (i.e.,
/p/ E—and /p'/ =E').

Using the relation

d20-

dt du

d tT d(E', cos8)
dE'dQ „b d(t u)

(5.3)

we find, in agreement with Eq. (4.56) of Ref. [11], the
Lorentz invariant cross section

d o. 4vra (s —m )(m t —u—)+st
dt du 2mt (s —m )

X I )
— vE2

4m

t2+ (F, +IiFi )
2(s —m )

(5.4)

k =(M —QM„', + k~' —E,k), (5.5)

where e is the excitation energy of the spectator nucleus
and M is the target mass. (The corresponding diagram is
show in Fig. 2.) We are here interested in calculating the
cross section for elastic electron scattering from the mov-
ing, off-shell nucleons of the target.

In the following we will evaluate Eq. (5.4) at a very spe-
cial kinematic point, where

As was outlined in detail in Sec. IV, quasielastic
electron-nucleus scattering can be understood as an in-
coherent sum of individual scattering processes on single,
quasi-free nucleons. The condition that the A —1-body
spectator nucleus stays on its mass shell fixes the energy
of the struck nucleon, and we found its four-momentum
before the scattering process to be

+ (F, +xF2) tan —8
ski = —y and e=o . (5.6)

(5.1)

that describes elastic scattering of relativistic electrons,
with incident energy E, from free on-shell nucleons at
rest in the laboratory frame. 0 is the scattering angle and
the first factor on the right-hand side of Eq. (5.1) is the
Mott cross section. The energy-conserving delta func-
tion, which usually appears in the elastic cross section, is
here suppressed, since we have taken that delta function
into the integral that is used to calculate the hadronic
structure functions [see Eq. (4.6)].

In close analogy to our previous work, we now rewrite
Eq. (5.1) in terms of the Mandelstam variables

This corresponds to the lower limit of the integral for the
response function, F(y) [see Eq. (4.14)]. As the spectral
function S( ~k~, e), which appears in this integral, falls oF
quite rapidly with energy and momentum, it might be a
good approximation to evaluate the single-nucleon cross
section at the point where its contribution to the integral
for F(y) has a maximum. (In Ref. [5] it was demonstrat-
ed that this approximation is accurate to within 5%, if
one uses the cc1 cross section of de Forest. ) Further-
more, we work in the scaling limit, and we keep only the
leading order terms in an expansion in

~ q ~

Using Eq. (5.2) and k from Eq. (5.5), where we now set
e=O and ~k~ = —y, we find the Mandelstam variables to
be

s =(p+k) =m +2mE,
t =(p —p') = 2EE'(1 —cos8), —

u =(k —p') =m 2mE', —
(5.2)

where p =(E,p) and p'=(E', p') are the four-momenta of
the electron before and after the scattering process;
k =(m, O) and k'=(m +E E', p —p') are the four-—

s=M 2M+M„, +y —+M~

+2E(M —QM„, +y —y),
t = 2EE'(1 —cos8), —

u=M 2M+M„, +—y +Mg

2E'(M —QM~, —+y —y cos8) .

(5.7)
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As can be seen from Eq. (5.5), the struck nucleon is off its
mass shell, i.e., k Am . Therefore we have to modify the
invariant cross section of Eq. (5.4) by replacing m by k
wherever it appears. This yields the following off-shell
extrapolation of the invariant cross section:

red ~Mott
M —QM~ i+y —y

m
62

M

+,GM t»Q 2 p 1

2' (5.10}

G o'

dt du

4na (s k—)(k t —u—)+st
2mt2 (s —k )

2 ~2+2
4k mov

~red ~red
rest

(5.1 1)

In addition, the modification in the Aux of incoming elec-
trons, as seen by the moving nucleon, was taken into ac-
count by the appearance of a fiux factor, P,„/P„„.
Thus, we made the replacement

t2
z 2 (F, +sF2)

2(s —k )
(5.8)

0'red=
d cr 1 d(t, u)

dt du 2' d(E', cos8)
(5.9)

and we finally find the asymptotic limit of the reduced
electron-nucleon cross section:

As we are only interested in the scaling limit, we can
neglect the form factor I'2 and we can replace I', by the
magnetic form factor GM. We invert Eq. (5.3) to yield

Details can be found in Sec. V of our previous publication
on this topic [4].

We note that the result of this derivation of the reduced
electron nuc-leon cross section fu/ly agrees un th the 'expres

sion toe found in Sec. IV [see Eq. (4.13)], where we calcu-
lated the hadroriic structure functions in the scaling limit.
%"e also see that evaluating the cross section at the spe-
cial point, lkl = —y and e=0, is the correct procedure, at
least up to leading order in

I ql
In almost all nonrelativistic calculations of y scaling,

the cross section designated cc1 by de Forest [9] is used
for the reduced electron-nucleon cross section, o„d. In-
tegrated over the azimuthal angle Pk one has

Q E (k )+E'(k) Qcc1 ~Mott ~ i 4
lql 2m 2m lql

2 2

+ I 1 F+ Q F + Q (F+F}

f12

4m' ' 4m'lql'

(5.12)

E(k)=M —QM„ i+ lkl —e

[see Eq. (5.5)] and

E(k) =&Ikl'+m',

(5.13a)

(5.13b)

and, thus, also in the difference between

Q'= Iql' —(E(k') —E(k) )' (5.14a}

Q'=
I
ql' —(E(k') —E(k) )' . (5.14b)

%'hen we evaluate o.„1 for the special, minimal kine-
matics, as defined in Eq. (5.6), we find in the scaling limit

+m
O cc1 red

M —QM„, +y —y
(5.15)

Here, y is the angle between the photon momentum q
and the momentum of the struck nucleon after the in-
teraction, k'=k+q, and E( k)=+I kl+m . The off-
shell features are contained in the difference between

with o„z from Eq. (5.10). Here we again considered only
the leading order terms in an expansion in lql ', replaced
I', with GM, and neglected the form factor I'2. This re-
duced electron-nucleon cross section o.„, differs just by
one factor of

&y'+m '—y

M —QM„, —y —y

from the expression o.„d we found by either evaluating
the hadronic structure functions [see Sec. IV and Eq.
(4.13)] or by transforming the Rosenbluth formula and
evaluating it at the special kinematic point, lkl = —y and
e=O [see Eq. (5.10)]. This can be understood in the fol-
lowing manner: de Forest's off-shell extrapolation
proceeds by replacing the actual energy of the struck nu-
cleon E(k) [see Eq. (5.13a)], which is fixed by the condi-
tion that the 2 —1-body spectator is on its mass shell, by
the energy E(k) [see Eq. (5.13b)], which is just the energy
the struck nucleon of three-momentum k would have, if
it were on its mass shell. This then also leads to the
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difFerence between the actual Q and the effective Q, as
can be seen from Eq. (5.14). de Forest thus approximates
the electromagnetic properties of the o6'-shell nucleon by
those of an on-shell nucleon. Following that approach, in
our relativistic derivation we should not work with off-
shell spinors, as we did for the evaluation of the hadronic
structure functions in Sec. IV, and which finally led to
Eq. (4.13), but we should use effective on-shell spinors.
Thus, instead of writing

B"~ k"=(E(k),k) (5.16)

for the "vector part" of the density matrix, defined in Eq.
(2.2b), we should use an effective 8~, where now

8"~ k"=(E(k),k), (5.17)

with E(k) from Eq. (5.13b).
It was shown in Sec. III that, in the scaling limit, the

relevant quantity which governs the behavior of the ha-
dronic structure functions and the cross section is the
term 2(8 q)/Q . But the condition that the struck nu-
cleon is on its mass shell after the interaction fixes the
scaling limit of 2(k.q )/Q,

2(k q) 1. (5.18)

This is not the limit of 2(k q )/Q; when we evaluate the
latter term for the special kinematics of Eq. (5.6), and
consider the scaling limit only, we find

2(k q) t/y +m —y

Q M —QM„, +y —y
(5.19)

This is just the factor by which our reduced electron-
nucleon cross section tT«d [Eqs. (4.13) and (5.10)] difFers
from the cross section ccl of de Forest. Therefore we
have demonstrated how both procedures can be related.
For example, if we evaluate the hadronic structure func-
tions with effective on-shell spinors, as defined in Eq.
(5.17), we would obtain an expression for the reduced
electron-nucleon cross section which differs from the one
we derived in Sec. IV by a factor of

&y'+ m' —y
M —1/ M~, +y —y

In that case our reduced electron-nucleon cross section
would be the same as de Forest's ccl. However, we re-
mark that the choice of the correct procedure, using off-
shell spinors as we did in Sec. IV [see Eq. (4.4)] or using

eff'ective on-shell spinors, i.e., replacing k in Eq. (4.4) with
k, is not straightforward. As long as there is no con-
sistent derivation of the off-shell photon-nucleon vertex,
there will always be at least some arbitrariness in calcula-
tions of the type presented here.

VI. DXSCUSSIQN

In this work we have suggested that if one is to use y
scaling to study high-momentum components in nuclei,
one should describe the target nucleus using a relativistic
formalism. We have also based our analysis on calculat-
ing the hadronic tensor of the target. That is a more sa-
tisfactory procedure than beginning with an expression
which folds some electron-nucleon cross section with the
target's spectral function [5,8). Indeed, if one proceeds
by calculating the hadronic tensor, the origin of various
kinematic factors is readily understood [4].

Our analysis identifies the assumptions that are neces-
sary in order to make contact with the standard formula-
tion of the theory. We have also seen how, in the scaling
limit, the calculation of the cross section is related to the
structure of the relativistic density matrix.

We have carried out our analysis for particularly sim-
ple forms of the density matrix [see Eq. (3.2) or (3.11)] in
Sec. III. However, we also presented results for the gen-
eral form given in Eq. (2.2). Information concerning the
density matrix of finite systems [12] may be obtained
from self-consistent relativistic models of the nuclear
ground state (Hartree, Hartree-Fock, or Brueckner
Hartree-Fock [13,14]). Further work is needed, however,
if one is to understand how short-range correlations affect
the high-momentum components of the density matrix
[15]of a finite nucleus.

Finally, we note that the physical meaning of the mass
M~ &

is unclear if the momentum of the struck nucleon
is large. In that case one expects a complex final state
with more than two on-shell particles (nucleon plus spec-
tator). The formalism has not been extended to treat
multiparticle final states. Whether such extensions are
needed to interpret experimental data in terms of funda-
mental models of nuclear structure remains to be seen.
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