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From Dirac phenomenology to deuteron-nucleus elastic scattering at intermediate energies
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A discussion of relativistic microscopic models of deuteron-nucleus scattering at intermediate energies
is presented. Calculations based on various relativistic models, which take into account explicitly the
deuteron internal structure, and on the nonrelativistic folding model are compared with elastic-
scattering data from Ca and Ni at 400 and 700 MeV. The same global nucleon-nucleus Dirac optical
potentials were used throughout. We find that the direct impulse approximation, where the deuteron-
nucleus T matrix is the expectation value of the sum of the nucleon-nucleus T matrices in the deuteron,
gives a reasonable description of the data. However, the fact that the best agreement is provided by the
nonrelativistic folding model indicates the need for a more realistic treatment of multiple scattering and
off-shell effects in the relativistic microscopic models.

I. INTRODUCTION

Proton-nucleus elastic scattering at intermediate ener-
gies has been successfully analyzed in recent years using
relativistic models based on the Dirac equation [1]. In
phenomenological approaches the nuclear optical poten-
tial consists of two terms, one a Lorentz scalar and the
other a timelike component of a four-vector. This type of
potential is able to reproduce proton elastic-scattering
data, including the polarization observables, over a wide
range of energy and mass number.

It is therefore desirable to extend the application of rel-
ativistic dynamics to composite nuclei. The deuteron is
obviously a particularly interesting case because its loose-
ly bound structure suggests that deuteron-nucleus
scattering can be described in terms of free nucleon-
nucleus scattering. The simplest way to approach this
problem is to consider the deuteron as a relativistic point-
like spin-1 particle. However, unlike the case of spin- —„
there are various spin-1 relativistic wave equations [2—4].
Calculations of deuteron elastic-scattering observables us-
ing these equations have been performed and a recently
reported comparison between their predictions [5], using
the same nucleon-nucleus potentials, shows that there are
no significant differences. However, the strength of the
spin-orbit potential tends to be too weak and consequent-
ly the magnitudes of the vector analyzing power A„and
the tensor analyzing power A are considerably smaller
than the experimental data.

In a previous paper [6] we have shown that when a
Dirac spinor structure is attributed to a nonrelativistic
deuteron bound-state wave function, consistently with
the Bethe-Salpeter formalism, and furthermore we allow
for a relative internal momentum in this structure, the
predicted effective spin-orbit interaction is stronger and
has the expected d( V —5)/dr form. On the other hand,
a weaker spin-orbit potential with the anomalous
—dS/dr form is obtained by neglecting the dependence
of the Dirac spinors on the deuteron internal momentum.
These results indicate that a coherent relativistic and mi-

croscopic description of deuteron-nucleus scattering must
take into account the two-nucleon Dirac structure of the
deuteron.

In recent years it has been possible to deduce the
proton-nucleus Dirac potentials, either from the nuclear
T matrix in a suitable covariant parametrization [7] or,
with improved results, from an ambiguity free calculation
of the nucleon-nucleus amplitude [8]. These calculations
use a special form of the relativistic impulse approxima-
tion in which the proton-nucleus potentials are obtained
from folding the nucleon-nucleon T matrix over the nu-
clear wave function. It is assumed that this procedure in-
troduces the relevant aspects of multiscattering effects
into proton-nucleus scattering. One of the purposes of
the present work is to apply a similar type of approxima-
tion to deuteron-nucleus scattering.

From the theoretical viewpoint deuteron-nucleus
scattering is a complicated many-body problem. The cal-
culation of the scattering amplitude should involve ex-
plicitly all the nucleons with the appropriate boundary
conditions of a bound deuteron and a bound nucleus in
the asymptotic states. This calculation is virtually impos-
sible and the use of optical potentials allow us to intro-
duce effectively the nucleus structure into the problem.
In the optical potential approximation deuteron-nucleus
scattering becomes a three-body problem and therefore
we should consider explicitly the possibility of deuteron
breakup.

The relativistic problem is still more complicated as no
coupled-channel prescription is available, the off-shell be-
havior of the optical potential is not well defined, and the
Dirac structure of the two-nucleon intermediate states
has to be considered in all frames due to the recoil of the
nucleus.

The results of Ref. [6] and the question of covariance
in the calculations are discussed in Sec. II. In Sec. III we
consider the nucleon-nucleus T matrix which is needed to
formulate the relativistic impulse approximation. The
deuteron-nucleus scattering equation is examined in Sec.
IV. A theoretical discussion of different forms of the im-
pulse approximation and their relations to the exact
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theory will be presented in Sec. V. In Sec. VI the expres-
sions of the nonrelativistic folding model in momentum
space are introduced. Calculations and the discussion of
the results are presented in Secs. VII and VIII.

II. RELATIVISTIC FOLDING OF THE
NUCLEON-NUCLEUS OPTICAL POTENTIALS

The proton-nucleus interaction is represented in the
form frequently used in phenomenological analysis [1],
namely,

sumption that the nucleon-nucleus interaction is isospin
invariant the central and spin-orbit parts of the relativis-
tic deuteron potential are related to S and Vby the equa-
tions [6]

d d d d[(E +M )(E'"'+M )]'c~=
2Md

2(P —
) +8q

X 2p( V+S)+( V —S)
(Ed +Md )(Ed"'+Md )

(2.5)

U=S+y V, (2 1) and

U =S+ j'~,V

N
(2.3)

where M& is the target-nucleus mass. This expression
leads to the noncovariant form (2.1) in the laboratory
frame. The vector part in Eqs. (2.2) and (2.3) corresponds
to the boost of a four-vector potential V" that only in a
particular reference frame has the form V"= ( V, O).

The use of the Dirac equation, which is a one-body
equation, in the description of proton-nucleus scattering
implies necessarily that the effects due to the recoil of the
target nucleus must be taken into account in an approxi-
mate way [9]. In other words, the Dirac equation must
be solved using the interaction U in a particular reference
frame. We follow here the usual assumption that the lab-
oratory frame coincides with the center-of-mass frame
which is a more reliable approximation for heavier target
nuclei. Thus P"=Pg and U, as given by either Eq. (2.2)
or (2.3) reduces to the form of Eq. (2.1) in the laboratory
frame.

In Ref. [6] the deuteron-nucleus effective interaction
was generated by folding the nucleon-nucleus interaction
(2.1) over a relativistic model of the deuteron internal
wave function, which was taken to be a pure S, state. In
momentum space the resulting potential has the form

Uz = U, (q)+iU, , (q)J.(Pd XPd ), (2.4)

where J is the spin-1 operator, Pd and Pd are the initial
and final deuteron momenta, and q=~Pd —Pd~ is the
magnitude of the transferred momentum. Under the as-

where S and V are scalar and vector potentials assumed
to be local. This expression for U is noncovariant and
therefore it is only valid in a particular reference frame.
Due to the presence of a second nucleon which shares the
total deuteron momentum, the folding procedure should,
in principle, be performed with a covariant expression for
the proton-nucleus interaction. A natural covariant gen-
eralization of U, which reduces to the previous expression
in the center-of-mass frame, is

U=S+ V

s

where I'" is the total four-momentum given by the sum of
the proton momentum p" and the target-nucleus momen-
tum Pg and s is the invariant center-of-mass energy.
Another possible covariant form for U is

2p( V—S)
M [(E +M )(E'"'+M )]'

(2.6)

1 d 1
y d

sin(qR) (2.7)

according to Appendix C of Ref. [6].
In the low-energy limit we find that the strength of

U, , (R) is in good agreement with the nonrelativistic
deuteron folding model. The crucial reason for this
agreement [6] is that U, (q) depends on the linear com-
bination V—S which is also present in the effective
nucleon-nucleus spin-orbit potential.

The effective deuteron potential U, depends linearly on
the nucleon-nucleus scalar and vector potentials S and V.
On the other hand, we know that when the Dirac equa-
tion is reduced to Schrodinger form the effective
nucleon-nucleus central potential contains a quadratic
dependence on S and V through a term proportional to

Here Md is the deuteron mass, Ed is the deuteron energy,
and Ed"' is related to the energy of the interacting nu-
cleon and is given by Eq. (3.27) of Ref. [6].p is the deute-
ron probability density and p", given by Eq. (3.22) of Ref.
[6], is proportional to the expectation value of the deute-
ron internal kinetic energy. Both p and p" are in momen-
tum space and calculated at half the transfered momen-
tum.

The Dirac potentials S and V have a smooth energy
dependence [10] which, in our case, must be considered
carefully since the nucleon is no longer on mass shell. In
fact, the integration over the deuteron relative momen-
tum should in principle involve the energy dependence in
S and V. However, the deuteron total momentum and ki-
netic energy are much larger than the relative momentum
and binding energy. Thus the nucleon-nucleus potential
will be considered constant and equal to its value at half
the deuteron energy. Furthermore, the dependence of
the deuteron potential on the total momentum is re-
moved through the use of the asymptotic relation
Pd =Ed —Md which is assumed to be also valid in the in-
terrnediate states. With these approximations the nonlo-
cal character of the potential is removed. This simplifies
considerably the calculation of the potentials U, and
U, , in configuration space. The deuteron-nucleus cen-
tral potential U, (R) was obtained by Fourier transform-
ing U, (q) while the spin-orbit potential is given by



2102 A. AMORIM AND F. D. SANTOS

III. THE NUCLEON-NUCLEUS TMATRIX

In order to construct the nucleon-nucleus T matrix we
shall now consider a covariant parametrization for the
special case where a nucleon is scattered from a spin-zero
nucleus. Parity conservation implies that there are eight
independent invariant amplitudes which is half the num-
ber of degrees of freedom present in the product of the in-
itial and final states. There are three independent mo-
rnenta which may be chosen as the total momentum P"
and the nucleon initial- and fina-state momenta p" and
p ". Using the projection operators into negative-energy
states A=(m —P)/2m and A'=(m —

gf ')/2m, the T
matrix expansion can be written as

T=T, +T I +T,A+T A'+T I A

+ T,A'r'+ T,A'A+ T,A'r'A, (3.1)

where I =g/&s. The relation between this parametriz-
ation and the noncovariant pararnetrization used in the
proton-nucleus relativistic impulse approximation [8] is
readily established considering a special reference frame.
To calculate the eight amplitudes Tk one needs to com-
pute the lower and upper components of the Dirac
scattering wave function so that the matrix elements in-
volving the negative- and positive-energy Dirac spinors
can be determined.

Instead of calculating the Tk we specify a particular
covariant expression for the T matrix following the mod-
el used in the relativistic impulse approximation for
proton-nucleus scattering of McNeil, Shepard, and Wal-
lace [7]. This corresponds to the minimal relativity ap-
proximation where only terms that do not depend on the
proton momentum are kept. Thus we write

T= T, (s; )+ T (s; )I (3.2)

where s, are the six independent invariants constructed
with the momenta p, p', and P. Neglecting recoil effects
and considering the nucleons on mass shell we can write
the proton-nucleus T matrix as

T=T, (s,q)+ To(s, q)y (3.3)

As in Sec. II we use in our folding procedure the ampli-

S —V . This term plays an important role in proton-
nucleus elastic scattering and is responsible for the
energy-dependent wine-bottle shape of the central poten-
tial. We may therefore expect that the use of the poten-
tial given by Eq. (2.4) will not provide a realistic descrip-
tion of deuteron-nucleus scattering observables over an
extended energy range. Quadratic terms in S and V are
present in effective deuteron-nucleus central potentials
derived, after reduction to Schrodinger form, from one-
body relativistic spin-one equations where the potentials
S and Vere introduced by minimal coupling [2—5].

An alternative approach, that we shall follow here, is
to generate the deuteron-nucleus potential directly from
the nucleon-nucleus T matrix. In this way the effects of
the quadratic terms in S and V are included in the deute-
ron interaction.

tudes calculated at half the deuteron energy thereby re-
moving the nonlocal character of the interaction.

To calculate the T-matrix amplitudes T, and TQ we
first solve the Dirac equation, with the potentials
S+y V, in the usual way through its reduction to a
Schrodinger-type equation for the upper components.
The T matrix for this equation has the general form

T/(8)+io„T .(8), (3.4)

where o.„=o.„n is the projection of the Pauli spin opera-
tor perpendicular to the reaction plane. Since the T ma-
trix of Eq. (3.4) is obtained for the positive-energy Dirac
states and with the nucleons on mass shell we write

u .(p')(T, +y To)u (p)=T/+i(o„) T (3.5)

where the positive-energy Dirac spinors u are normalized
according to uu =1. Solving with respect to T, and TQ

on mass shell, in the case of elastic scattering, we obtain

Ts E +m

TO- E +m

D+(E~+m )
Tf + T

T

D (E +m—)
Tf + T

C

(3.6)

(3.7)

where E is the proton energy, D =p.p ', and
C= ~p'Xp~. In calculating T, and To we have assumed
t»t p =p ' =(Ed/2) —m . This corresponds to the
usual choice of the Breit frame as in the calculation of the
proton-nucleus optical potential using the relativistic im-
pulse approximation.

The normalization in Eq. (3.5) is chosen in such a way
that in the limit of very weak potentials the Born approx-
imation corresponds to T, =S and TQ = V. It is shown in
Appendix A that the calculation of the observables in the
relativistic formalism reproduces the corresponding non-
relativistic expressions.

In the impulse approximation the lowest-order scatter-
ing amplitude results from the coherent scattering by the
individual nucleons in the deuteron, regarded as free but
distributed in space according to the deuteron internal
density. In this approximation the deuteron-nucleus T
matrix is given by

& P„',m„'~ T„~P,, m„& =
& @, ~ T, + T, ~q, (3.8)

where g~ represents the deuteron internal wave func-
d' d

tion with momentum Pd and spin projection md and
T„T2 are the nucleon-nucleus T matrices given by Eq.
(3.3). Equation (3.8) describes the simplest form of the
relativistic impulse approximation and will be denoted as
the direct impulse approximation. The resulting
deuteron-nucleus T matrix, after folding, has the form of
Eq. (2.4) with S and Vreplaced by T, and To in Eqs. (2.5)
and (2.6).

The simplest relation between the deuteron-nucleus
effective optical potential Ud and Td is given by the Born
approximation where

&Pd, md ~ v„~p„,m, &
= &@, ~T, +T, ~y,
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This model is currently used in the application of the rel-
ativistic impulse approximation to proton-nucleus
scattering [8]. In that case the proton-nucleus effective
interaction is given by the expectation value of a sum of
nucleon-nucleon T matrices in the target-nucleus ground
state. This procedure neglects nuclear-medium
modifications of the NN interaction and off-shell effects.

) ~' XJ

IV. RELATIVISTIC LIPPMANN-SCHWINGER
EQUATIONS FOR SPIN-1

Td= Vd+ VdGTd (4.1)

where the Green function 6 is the product of the full
two-particle Green function for the two nucleons in the
deuteron by the nucleus propagator and Vd is the sum of
the interactions V, + V2 that are external to the deute-
ron.

In order to obtain the deuteron optical potential it is
necessary to isolate in the two-nucleon propagator the
contribution which comes from the deuteron bound state
in Hilbert space as explained in Appendix B. The result-
ing expression for the full two-nucleon propagator is

G(P,p', p )= ' ' +M(P, p', p ),R(P,p', p )

p2 Md2+
(4.2)

where M is finite when p =Md and the residue R is
given by

A more realistic description of deuteron-nucleus
scattering must necessarily involve the use of a scattering
equation that describes the propagation of the deuteron
pole in the two-nucleon amplitude in the presence of
external interactions with the nucleus. Furthermore, we
note that to define precisely the relativistic folding pro-
cedure one would have to consider the Feynman ampli-
tude for deuteron elastic scattering where the interactions
between the nucleons in the deuteron, immediately near
the initial and the final states are not present [11]. Con-
sidering the restriction to the ladder diagrams a typical
contribution to this amplitude is represented in Fig. 1

where the interaction between one nucleon in the deute-
ron and the nucleus is represented by the Dirac phenome-
nology optical potential. The resulting Td matrix,
represented in Fig. 2, can be written in a closed-operator
form as

FIG. 1. Diagrammatic representation of one term that con-
tributes to deuteron-nucleus scattering. Gd is the propagator of
the two nucleons in the deuteron which contains, besides the
free propagation, all the iterations of the two-nucleon interac-
tion. %'d are the deuteron wave functions obtained in the resi-
due of the previous propagator at the deuteron-mass pole. The
thick line represents the propagation of a spin-zero nucleus tak-
en electively as a single particle. The wiggling lines represent
nucleon-nucleus interactions, and the nucleon propagators are
represented by solid lines.

d P R(P)
(2m ) P Md +i— (4.4)

d4pU„=V„+,V„M P U„,
(2m )

(4.5)

jection. The definition of R outside the deuteron mass
shell is ambiguous due to the presence of M in Eq. (4.2).
Also, this way of splitting the two-nucleon amplitude is
only covariant, for the off-mass-shell case, if R becomes
independent of E. This energy dependence arises even in
the calculation of the propagator of elementary particles
of spin greater than —,

' and must be solved by redefining
the propagator in the off-mass-shell case [12] which, as
we have seen, is fully justifiable if one considers bound-
state propagation.

The meaning of the operator M can be understood as
the relativistic analogue of the propagation of the two-
nucleon asymptotic states associated with the wave func-
tions g~ . Following this analogy with nonrelativistic
scattering theory [13]we can insert a covariant decompo-
sition of the two-nucleon Green function in Eq. (4.2) into
Eq. (4.1), and obtain a pair of equations which define the
optical potential scattering equations,

R(P,p', p ) = X
(E+P )

PP, m PP, m

Td(E P)—
P, m~ P,m— —

Vd' Z
Gd'I

(4.3)

The amplitudes Pz and P ~ are the Fourier trans-

forms of the deuteron and antideuteron Bethe-Salpeter
amplitudes, defined in Appendix B, and m is the spin pro-

FIG. 2. The Lippmann-Schwinger equation for the T matrix
in the deuteron-nucleus scattering channel. The interactions
external to the deuteron are grouped in Vd. The thick and thin
lines represent the propagation of the nucleus and the nucleons,
respectively, and Gd has the same meaning as in Fig. 1.
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where we have neglected the recoil of the nucleus. The
different models used to calculate the optical potentials
correspond to diFerent approximations for M (P).

Using the fact that the matrix R(P) in Eq. (4.4) pro-

jects the intermediate states onto the deuteron bound-
state wave function and performing a similar projection
on the initial and final states, we obtain a Lippmann-
Schwinger equation given by

d4P ~ &P', m'~ U, ~P",m"
&

&P', m'(Td)P, m &=&P', m')Ud)P, m &+ g J
' '

&P",m" ~Td~P, m &,
(2~) P" —Md+i e

(4.6)

& P', m'~ Ud ~P, m & =e(P', m') U ~e(P, m )p, (4.7)

where e(P', m') represents the spin-1 states [2]. On the
mass shell the spin-1 projectors must satisfy the relation

5
e(P', m ') G(1) ~e(P, m )&=

P —Md+i e
(4.8)

where 6 (1) is the covariant spin-1 propagator of the Pro-
ca equation. The off-mass-shell extension of the potential
Ud is not determined by Eq. (4.7) and depends on the
model used to describe the spin-1 field. A similar ambi-
guity is already present in Eq. (4.2). The way to solve the
problem would be to consider the exact off-mass-shell ex-
pression for M(P) that results from the Bethe-Salpeter
amplitude once expressed in a covariant form.

V. BEYOND THE IMPULSE APPROXIMATION

In this section we consider various approximations to
the scattering equation in the context of the relativistic
formalism. It is important to realize that the require-
ments imposed by multiple-scattering theory on the cal-
culation of the deuteron optical potential are much
stronger in the relativistic than in the nonrelativistic ap-
proach. The reason is that the scalar and vector interac-
tions have larger strengths than the nonrelativistic cen-
tral and spin-orbit potentials. Therefore, expressions val-
id only in first order on the potential become even more

where, to simplify the notation, we dropped the subscript
d from P and m. It is assumed that the matrix elements
in Eq. (4.6) are calculated with the relativistic generaliza-
tion of the nonrelativistic deuteron internal wave func-
tion used in Ref. [6]. The integral over d P in Eq. (4.6)
reduces to a three-dimensional integration over the space-
like components since the potential Ud involves a factor
2m.5(P' P) re—sulting from the time independence of
the Dirac optical potentials. The denominator
P —Md +i e can be written as K —P +i e, where E
verifies the relation K =Po —Md. Both the deuteron
bound-state propagator and the matrix elements in Eq.
(4.6), calculated for deuteron states of definite momentum
and spin projection, do not have a covariant form. How-
ever, this form can be achieved by expressing, simultane-
ously, the interaction and the deuteron states in a covari-
ant spin-1 formalism. For the particular case of the
deuteron-nucleus interaction the covariant quantities
would have to satisfy the condition

questionable in the relativistic treatment. Furthermore,
it is less justifiable to neglect intermediate states far off in
energy because S and V produce strong spin-dependent
interactions and low effective masses that induce a
significant coupling between positive- and negative-
energy spinor states.

The simplest approximation based on Eq. (4.5) results
from neglecting the term involving M(P). This gives
Ud= Vd which after insertion into Eq. (4.4) leads to an
effective optical potential scattering equation. The rela-
tivistic folding model of deuteron-nucleus scattering cor-
responds to the assumption that Vd is given by Eqs. (2.4),
(2.5), and (2.6).

A straightforward improvement would be to include
the M(p) term of the two-nucleon propagator in the
scattering calculation using Eq. (4.1). In order to imple-
ment this approach one must also use an approximate
method to perform the integration in the continuum of
the two-nucleon scattering states [14]. The Faddeev
equations can also be used as a basis for this type of cal-
culation [15]. Both approaches go beyond optical poten-
tial scattering and formally provide an exact description
within the framework of a three-body problem. The rela-
tivistic analogue would involve the coupling to the
negative-energy components in both the bound and
scattering states. Furthermore, we have to take into ac-
count the fact that the two-nucleon center-of-mass frame
is changing during the scattering process, thereby requir-
ing a fully covariant formalism.

A different way to proceed is to improve the calcula-
tion of the optical potential in Eq. (4.5). Introducing the
Watson single-scattering operator we can isolate in Eq.
(4.5) the infinite series that involves only the nucleon-
nucleus potential [13],

w, =V;+VM~, , (5.1)

+ (r,M~2M~, + ~~M~, Mr2) + (5.2)

The relativistic impulse approximation results from keep-
ing only the first-order term in this equation and approxi-
mating M in Eq. (5.1) by the free-nucleon propagator.
Therefore the operators wr 2 become equal to the

where i represents the proton or the neutron and M is
given by Eq. (4.2). The deuteron-nucleus optical poten-
tial can then be written as the iteration of this operator
applied successively to the different nucleons in the
deuteron,

Ud —(7]+7))+(7iM72+7)M7i)
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nucleon-nucleus T matrix T, . Two different assumptions
are involved: the two-nucleon amplitude with the deute-
ron pole subtracted is approximated by the free propaga-
tion of the two nucleons; rescattering involving the two
nucleons in the deuteron is ignored.

Within this framework the direct impulse approxima-
tion is obtained by neglecting the deuteron-pole term in
Eq. (4.4). This implies that Td = Ud = T

&
+ T2 thereby

reproducing Eq. (3.8).

V„,= V, (q)+iV, , (q)o"p'Xp, (6.1)

where o are the Pauli matrices. V, (q) is, of course, the
Fourier transform of the central part of the potential in
configuration space given by

Since the calculations for the relativistic models of
deuteron-nucleus scattering are performed in momentum
space, it is convenient to express the nonrelativistic fold-
ing in the same way. In momentum space the nucleon-
nucleus interaction can be written as

VI. NONRKLATIVISTIC FOLDING IN MOMENTUM
SPACE OF THE DIRAC EQUIVALENT POTENTIALS

V, (r)=S(r)+ V(r)+ [S(r) —V(r) ] .
m 2m

(6.2)

Deuteron-nucleus scattering at intermediate energies
has been analyzed using the conventional nonrelativistic
folding model where the nucleon-nucleus interaction is
represented as the sum of a central and a spin-orbit po-
tential. Recently Yahiro et al. [16] performed this type
of analysis using different shapes and parametrizations
for the nucleon potentials. Better agreement with experi-
ment is obtained using wine-bottle-shaped nucleon opti-
cal potentials derived from the reduction to Schrodinger
form of the Dirac equation with scalar plus vector poten-
tials, than with standard Woods-Saxon potentials. Both
types of nucleon-nucleus optical potentials reproduce the
proton-scattering data equally well. Furthermore, they
find that discrepancies between theory and experiment
for 0 ~ 15 can be attributed to deuteron breakup effects.

We shall compare here the relativistic models of
deuteron-nucleus scattering with the nonrelativistic fold-
ing model using potentials derived from the Dirac phe-
nomenology. The particular shape and parametrization
of these potentials improves the fit to experiment but
does not correspond to a coherent method to include rel-
ativistic effects in deuteron-nucleus scattering. In order
to make the comparisons meaningful we use in all calcu-
lations the same nucleon-nucleus scalar and vector poten-
tials.

As regards the spin-orbit part of the interaction we note
that [6] V, , (q) is the Fourier transform of a function
Vz, which is related to the nucleon-nucleus spin-orbit
interaction V, , (r) in configuration space by

1 dVD, , (r)
V, , (r)=-

r dr

Since the spin-orbit part in configuration space is

1 1 d
2 m[E +m+S(r) —V(r)] r dr

(6.3)

(6.4)

Using Eq. (6.1) and performing the folding over the
deuteron internal wave function g(p), assumed to be a
pure S, state, the deuteron-nucleus effective interaction
in momentum space is given by

we conclude that

V(r) S(r)—
2m [E+m +S(r) V(r)]-
+ dr', [ V(r') S(r') ](d /dr ) [ V—(r') —S(r') ]

[2m [E+m +S(r') V(r')]]—
(6.5)

d pUd(q) =2f,4* p —+
(2m) 2

V, (q)+iV, , (q)J. ——p+q X ——p
P P g(p), (6.6)

U, (q) =2p V, (q),

U, , (q) =p V, , (q),
where p is the deuteron probability density.

(6.7)

(6.8)

VII. CALCULATIONS

In order to compare the various relativistic formalisms
of deuteron-nucleus scattering developed here with the

where J is the spin-1 operator. After integration over the
deuteron internal momentum only the term in P 'X P sur-
vives in the spin-orbit part of the interaction since q Xp
gives a vanishing contribution. The resulting deuteron-
nucleus eff'ective potential has the form of Eq. (2.4) with

nonrelativistic approach we performed calculations of the
cross section and polarization observables for Ca and

Ni targets at energies where data are presently available
[17]. Three difFerent approximations are considered in
the relativistic case.

In the relativistic folding model (model I) the
deuteron-nucleus effective interaction is represented by
the relativistic folding of the nucleon-nucleus scalar and
vector Dirac optical potentials. The central and spin-
orbit parts of this interaction in momentum space are
given by Eqs. (2.5) and (2.6) in terms of S and V. To cal-
culate the deuteron scattering observables we use the
Schrodinger equation, modified in order to take into ac-
count relativistic kinematics.

In the direct impulse approximation (model II) the
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FIG. 3. The d-" Ca central optical potential at 700 MeV.
The real part is represented by the solid curves while the dashed
curves represent the imaginary part. The results correspond to
relativistic folding of the scalar and vector optical potentials ob-
tained in Dirac phenomenology, FR (model I); folding of the
two relativistic nucleon-nucleus T matrices, RIA (model III);
folding of the eftective nonrelativistic potentials obtained from
the nucleon-nucleus Dirac optical potentials, NR.

deuteron-nucleus scattering amplitude is obtained by
folding the sum of the nucleon-nucleus T matrices which
result from solving the nucleon-nucleus Dirac equation.
These T matrices have the form of Eq. (3.3) where To and

T, are given by Eqs. (3.6) and (3.7). Finally in the relativ-
istic impulse approximation (model III) the Fourier
transform of the deuteron-nucleus T matrix of model II is
used as the effective interaction in the deuteron
Schrodinger equation.

To make the comparison meaningful we used the same
parameters for the Dirac potentials and the same deute-
ron bound-state wave function in all the calculations.
The Dirac optical potentials used were obtained from the
global potentials for Ca of fit I in Ref. [10]. The energy
at which both the Dirac optical potential and the
nucleon-nucleus T matrix are calculated is half the deute-
ron energy. In the case of Ni the geometry of the global

FIG. 5. The same as Fig. 3 for a deuteron energy of 400
MeV.

MdE~p-
Ed+Ex ' (7.1)

where Ed, E& are the deuteron and the target nucleus
center-of-mass energies. Consequently, the Coulomb po-
tential had to be corrected by a factor of Ed /Md to make
it compatible with the relativistic expression of the
Coulomb cross section. The charge density used for Ni
and Ca was obtained by fitting a Fermi distribution to

potentials was scaled from that of Ca using the
r =ro A ' dependence. The radial part of the S, deute-
ron bound state was represented by a Yamaguchi [18]
wave function. The deuteron probability densities were
first calculated in configuration space and then Fourier
transformed into momentum space. A11 Fourier transfor-
mations were performed numerically using an adaptive
routine designed to integrate oscillating functions.

The deuteron-nucleus scattering equation was solved
using the eikonal approximation. Good agreement was
obtained in comparisons between the results of the eikon-
al approximation and conventional optical model pro-
grams. In order to take into account relativistic kinemat-
ics the reduced mass was given by [19]

0.5-

—0.0
(D

~ —0.5

NR

FR

Ca(d, d) Ca T„=700Me V 0.5

0 0
(D

~ —0.5

NR Ca|'d, d) Ca

Td=400Me V

—1.0
0 2 4

R(fm)
8 10

FIG. 4. The curves of the real (solid) and imaginary (dashed}
parts of the spin-orbit potential corresponding to the same mod-
els as in Fig. 3.

0 2 4 6
R(fxn)

8

FIG. 6. The same as Fig. 4 for a deuteron energy of 400
MeV.
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electron-scattering data [20].
Figures 3—6 represent the effective deuteron-nucleus

potential in models I and III and in the nonrelativistic
folding model. We note that the real central potential in
the relativistic folding model does not have the charac-
teristic wine-bottle shape. This results from the absence
of the quadratic terms in S and V. Furthermore, we note
that the strength of the potentia1 in the relativistic im-
pulse approximation tends to be weaker than in the rela-
tivistic and the nonrelativistic folding models. Figures
7—11 show the results of calculations for deuteron-
nucleus scattering from Ca and Ni at deuteron ener-
gies of 400 and 700 MeV.

VIII. CONCLUSIONS

Within the group of relativistic models we find that the
direct impulse approximation provides the most satisfac-
tory description of the experimental data. However de-
tailed agreement, especially as regards 3, is not very
good. The magnitude of A is we11 predicted in the
direct impulse approximation but Ayy tends to be sys-
tematically smaller than experiment. Furthermore, we
note a shift in the position of the predicted minima and
generally better agreement at the higher energy. It
should be noted that we did not try to improve the fit to
experiment by variation of the parameters in the optical
model potentials, since our main objective was to deter-
mine the reliability of a microscopic theory of deuteron-
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10

~X 40 d d)" N'e V

10

b
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~ ~ ~ Ca(d, d) Ca T~=7QQAfeV
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10 14
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0.0

FICx. 7. Calculations for the cross section, in units of o.z„,h,

vector analyzing power 3„,and tensor analyzing power A» for
d- Ca scattering at 700 MeV. The solid curves were obtained
with the nonrelativistic folding model (NR), and the broken
curves with the direct impulse approximation (model II). The
data are from Ref. [17].

—0.5
2 10 14

0, .(deg)

FIG. 8. Calculations for the same data as in Fig. 7 using the
relativistic folding model (model I)—solid curves —and the rel-
ativistic impulse approximation (model III)—broken curves.
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nucleus scattering based on global nucleon-nucleus poten-
tials that reproduce proton-nucleus elastic scattering.

The results of calculations using the relativistic models
I and III, shown in Fig. 8, give a very unsatisfactory
description of the data particularly in the case of the rela-
tivistic folding of the Dirac potentials. This is probably a
consequence of the fact that the effective potential does
not include a quadratic dependence on S and V. The
failure of models I and III is likely to be a reflection of
the inadequate treatment of multiple-scattering effects. It
is understandable that multiple scattering will play a
much more crucial role in the relativistic than in the non-
re1ativistic approach. This is a consequence of the fact
that the relativistic proton-nucleus scalar and vector po-
tentials are much stronger than the central and spin-orbit
potentials. Furthermore, the important contribution of

the negative-energy states implies that we cannot neglect
intermediate states in the scattering process based on the
argument that their energies are far away from the
initial- and final-state nucleon energies. Future relativis-
tic calculations of deuteron-nucleus scattering at inter-
mediate energies should include a more realistic treat-
ment of multiple-scattering effects and also a fully covari-
ant description of the deuteron amplitudes.

Calculations with the nonrelativistic folding model give
a reasonable description of the cross section and polariza-
tion observables for Ca and Ni at both energies. We
may expect that better-detailed agreement with experi-
ment could be obtained with the inclusion of deuteron
breakup effects [14]. We emphasize that the use of Dirac
S and V potentials to generate the nucleon-nucleus
effective interaction constitutes a convenient form of pa-
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FIG. 9. Calculations of the same observables as in Fig. 7 for
d- Ca scattering at 400 MeV. The solid and broken curves
have the same meaning as in Fig. 7.

FIG. 10. Calculations of the same observables as in Fig. 7 for
d-"Ni scattering at 700 MeV. The curves have the same mean-
ing as in Fig. 7.
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10

10 —2

10

b

10

N (d 'd) N
deuteron-nucleus scattering using one-body spin-1 rela-
tivistic equations since it includes explicitly the structure
of the deuteron. Furthermore, the model provides a
reasonable description of the cross section and polariza-
tion observables in the Saclay data [17]. However, a mi-
croscopic relativistic theory which may be capable of
providing detailed agreement with deuteron-nucleus
scattering data at intermediate energies requires consider-
able improvement of the direct impulse approximation.
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APPENDIX A: EXPRESSION OF THE OBSERVABI.ES
IN TERMS OF T AND To

The relation between the Feynman amplitude T for the
nucleon-nucleus scattering and the corresponding
center-of-mass differential cross section is

2 2

, Ivy', r)I'.
d+c.m. 64~ s

(A 1)

0.6
This relation can be written in the nonrelativistic form

do,f
(2~)'

(A2)

0.2

—0.2
2 6 10 14 18 22 26 30

0, .(deg)
FIG. 11. Calculations of the same observables as in Fig. 7 for

d- 'Ni scattering at 400 MeV. The curves have the same mean-

ing as in Fig. 7.

rametrization, but does not qualify the model as a
coherent relativistic model.

Finally we note that the impulse approximation
represents an improvement over the description of

where T= T/(2E& ) and p =mE&/(E~ +E~ ) corre-
sponds to the reduced mass. The factor 2E& removes the
covariant normalization for the spin-zero target nucleus
since we are considering an effective one-body Dirac
equation. The cross sections for spin up o." and spin
down o.d, „relative to the scattering plane are given in
terms of the T matrix (3.3) by

„p mEx P+m 1+y5pf —gf '+m
o Tf T (A3)

where n" is the spacelike unitary vector (O, n). Expressed
in terms of T, and To the cross section o. and the vector
analyzing power A are given by

+down

E2
", [«,'+ m ')(I T, I'+ I To I')+2mE, (T, To + TOT,")+D(

I TO I' —
I T, I')],

8m s
(A4)

A~=(o "~—crd, „)/o
—iC(TOT,*—T, TO )

(E +m )(T, T,*+ToTO )+2mE (T, To +TOT,*)+D(ToTo —T, T,*) (A5)

from which one can obtain the nonrelativistic expressions for the observables by replacing T„TO as a function of Tf, Tg
according to Eqs. (3.6) and (3.7).
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APPENDIX 8: THE DEUTERON POLE APPROXIMATION
OF THE TWO-NUCLEON AMPLITUDE

The projection operator over the deuteron and antideuteron, expressed in terms of states which transform covariantly
under the Poincare group, with definite mass and spin is given by

A. = y f, (IP, m, &&p, m, l+IP, m, &&p, m, l) .d P
(81)

(2~)'2Eg (P)

Thus the two-nucleon propagator

1s

iG(x ]

d PiG(x', ,xz', x„x2)=g f 3 Pp QI, 8(X' —X )+P ~ P ~ 0(X —X' )+M,
(2m) 2E~(P)

(82)

(83)

where the Bethe-Salpeter amplitudes are defined by

= &0~ Tg(x', )g(xz)~P, m &,
= &P, m ~TQ(x, )g(x )~0&,

(84)

(85)

time-ordering rearrangements which are different from
those present explicitly in Eq. (83). These contributions
will be finite near the deuteron pole and, therefore, are
only relevant when the deuteron is off mass shell. Intro-
ducing the representation of the 0 function given by

=&P m IT/(x )$(xz)lO&,

=
& O~ Tq(x', )q(x,') ~P, m„&,

(86)

(87)
8( )

dw e'"
2&l N 1 E'

(88)

and, X,X' are the average coordinates in the initial and
final states, given by X= (x

&
+x z ) /2 and

X'=(x&+xz)/2. The term M contains all the contribu-
tions from other states in the Hilbert space and from the

with p =E&—w and p =u —E&, in the first and second
terms of the second member of Eq. (83), one obtains in
the momentum space the representation of the two-
nucleon propagator given in Eqs. (4.2) and (4.3).
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