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Reaction plane determination for Ar+ ' Au collisions at E /A =35 MeV
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Collisions between Ar projectile and ' Au target nuclei at E/A =35 MeV have been studied with a
4m. phoswich array with a low detection threshold. Azimuthal distributions of light-charged particles
and intermediate-mass fragments are extracted with respect to reaction planes determined from fission
fragments or from the emission patterns of coincident light particles and intermediate-mass fragments.
The internal consistency and sensitivity to particle detection thresholds are explored for the various
techniques of reaction plane determination. For the present reaction, the reaction plane can be deter-
mined with comparable accuracy from the distribution of fission fragments as from the orientation of the
major axis of the transverse momentum tensor constructed from the emitted light particles and
intermediate-mass fragments. Monte Carlo calculations are performed illustrating the sensitivity of the
transverse momentum tensor method to the azimuthal anisotropy of the single-particle distributions and
the convergence of this method as a function of particle multiplicity. The extraction of experimental un-

certainties in the determination of the reaction plane is discussed.

I. INTRODUCTION

Microscopic descriptions of intermediate-energy
nucleus-nucleus collisions must account for the interplay
between mean-field and nucleon-nucleon-collision dynam-
ics [1—21]. However, this interplay is sensitive to model
parameters, such as the nuclear equation of state and the
in-medium nucleon-nucleon cross section which are not
yet accurately known. These quantities must, therefore,
be determined from experimental data.

Calculations indicate that many promising observables
are inAuenced strongly by the impact parameter and the
orientation of the reaction plane, defined as the plane
containing the relative momentum and position vectors
of target and projectile nuclei [13,14,18,21]. Such depen-
dences are difFicult to observe in inclusive experiments
which average over impact parameter and reaction plane
orientation. More exclusive quantities, such as the emit-
ted particle distributions for narrow ranges of impact pa-
rameter and well-defined orientation of the initial col-
lision plane ("triple ditferential cross sections"), are pre-
dicted to be much more sensitive to the in-medium

nucleon-nucleon cross section and the nuclear equation of
state than the single-particle inclusive cross sections [14].
Similarly, more complex observables, such as collective
Qow [22—32], require the determination of impact param-

eter and orientation of the reaction plane. It is, therefore,
important to optimize and understand the accuracy with

which the reaction plane can be reconstructed from ex-

perimental data and to understand the intrinsic limita-

tions of each method for reaction plane reconstruction.
At higher energies, E / A 2 100 Me V, information

about the magnitude of the impact parameter is tradi-
tionally obtained from the measured charged-particle
multiplicity [18,33—35]. At lower energies, E / A

=20—50 MeV, comparable information on impact pa-

rameter has been extracted from measurements of the
linear momentum transfer to fusionlike residues [36—38],
charged-particle [38,39], or neutron [40,41] multiplicities.

Information about the orientation of the reaction plane
can be derived from the azimuthal anisotropies of the em-
itted particles. Such anisotropies may occur at higher en-

ergies, E/A ) 100 MeV, due to sideward ffow of nuclear
matter caused by compressional effects [22,23]. At lower
energies, E/A ( 100 MeV, azimuthal anisotropies can re-
sult from a collective deflection of light particles to nega-
tive angles caused by the attractive nuclear mean field

[42—49]. Information about the orientation of the reac-
tion plane may be obtained by diagonalizing the trans-
verse momentum tensor [42,43]. The reaction plane is
then given by the plane spanned by the beam axis and the
major axis of this tensor.

In studies of intermediate-energy nucleus-nucleus col-
lisions (E/A (100 MeV), diagonalization of the trans-
verse momentum tensor was first used by Wilson et aI.
[42,43] for the analysis of near-symmetric collisions be-
tween relatively light nuclei ( A =40). In these measure-
ments, light particles were detected in 4~ geometry with
energy thresholds well above the exit channel Coulomb
barrier. The efFect of such thresholds on the accuracy of
reaction plane determinations is not obvious. On the one
hand, the azimuthal anisotropies of emitted particles in-
crease strongly with the kinetic energy of the emitted
particles [42—49], and it is not clear that the inclusion of
low-energy particles will improve the accuracy of the re-
action plane determination. Qn the other hand, an im-
provement in accuracy of reaction plane determinations
might nevertheless be obtained from the increase in sta-
tistical accuracy resulting from the larger numbers of
detected particles and from the inclusion of
intermediate-mass fragments (IMF's) or fission fragments
into the analysis. These latter reaction products are
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known [44,48—50] to exhibit particularly strong azimu-
thal anisotropies.

In this paper, we compare different techniques which
can be employed for the determination of the reaction
plane on an event-by-event basis. For this purpose, we
performed measurements for the asymmetric reaction

Ar + ' Au at E/A =35 MeV using the Michigan State
University (MSU) Miniball [51],a new, low-threshold, 4ir
charged-particle detection array. For this reaction, the
decay of heavy reaction residues by fission and/or emis-
sion of intermediate-mass fragments occurs with high
probability. Thus, it will be possible to compare the ac-
curacy with which the orientation of the reaction plane
can be determined from the distribution of emitted light
particles or coincident fission fragments. In addition, it
will be possible to assess the effects of particle detection
thresholds.

This paper is organized as follows. Experimental de-
tails are given in Sec. II. In Sec. III, we define the
methods which will be employed to extract the orienta-
tion of the reaction plane. Representative energy spectra
and multiplicity distributions are presented in Sec. IV. In
Sec. V, experimentally extracted azimuthal anisotropies
with respect to the reaction plane will be presented and
various methods wi11 be compared . Section VI presents
numerical simulations which serve to illustrate the accu-
racy with which the reaction plane can be reconstructed
for events with different multiplicity. The inhuence of
unknown weight functions is explored and the extraction
of experimental uncertainties of reaction plane recon-
structions is discussed. A summary will be given in Sec.
VII.

II. EXPERIMENTAL DETAILS

The experiment was performed at the National Super-
conducting Cyclotron Laboratory of Michigan State Uni-
versity. An Ar beam of energy E/A =35 MeV and in-
tensity I= 10 particles per s was extracted from the
K500 cyclotron and transported to the 92-in. scattering
chamber which housed the MSU Miniball phoswhich
detector array [51]. The areal density of the gold target
was 1 mg/cm . During the experiment, a vacuum of
better than 10 torr was maintained in the scattering
chamber. Water and hydrocarbon vapor components in
the residual gas were strongly reduced by a large cold
trap filled with liquid nitrogen. By this means, carbon
deposits on the target were reduced to a negligible level.

Light particles and complex fragments were detected
using rings 2 —11 of the MSU Miniball phoswich detector
array [51]. In this configuration, the array covered
scattering angles of 0&,b = 16 —160 and a solid angle cor-
responding to 85% of 4~. In Table I, we list the solid an-
gles and the ranges of polar and azimuthal angles which
are covered by individual detectors of the Miniball. Ad-
ditional details about the geometrical shapes of the detec-
tors are given in Ref. [51]. Each phoswich detector con-
sisted of a 40-pm- (4 mg/cm ) thick plastic scintillator
foil backed by a 2-cm-thick CsI(T1) crystal. The scintilla-
tion light was read out by photomultipher tubes. All
detectors had aluminized Mylar foils (0.15-mg/cm My-

TABLE I. Coverage in solid angle, polar and azimuthal an-
gles for individual detectors of the Miniball. Ring 1 was not
used in this experiment.

Ring

1

2
3
4
5
6
7
8
9

10
11

0 (deg)

12.5
19.5
27.0
35.5
45.0
57.5
72.5
90.0

110.0
130.0
150.0

AA (msr)

12.3
14.7
18.5
22.9
30.8
64.8
74.0

113.3
135.1
128.3
125.7

40 (deg)

7
7
8

9
10
15
15
20
20
20
20

b, P (deg)

30
22.5
18.0
15.0
15.0
18.0
18.0
20.0
25.7
30.0
45.0

III. DEFINITION OF REACTION PLANES

In this section, we describe various methods for ex-
tracting the orientation of the reaction plane on an
event-by-event basis. In Sec. III A, we describe the ex-
traction of the reaction plane from fissionlike events
detected in the Miniball. In Secs. III B and III C, we de-
scribe several procedures for determining the reaction

lar and 0.02-mg/cm aluminum) placed in front of the
plastic scintillator foils. As a precaution against secon-
dary electrons, rings 2 and 3 were covered by aluminum
foils of 0.81-mg/cm areal density. The detector array
was actively cooled and its temperature was stabilized.
Gain drifts of the photomultiplier tubes were monitored
by a light pulser system [51].

The anode currents from the photomultipliers were
split and read out by three different FERA-ADC's gated
over the time intervals ht~„, =0—30 ns, At, &, =100—500
ns, and At„;& =1.0—2.4 ps, where t =0 is defined as the
leading edge of a given detector signal. In addition, the
relative times of all discriminator signals were recorded.
More details about the electronics and data acquisition
system can be found in Ref. [51]. Particles punching
through the 4-mg/cm plastic scintillator foils were
identified by atomic number up to Z = 18 and by mass
number, as well, for H and He isotopes. The approxi-
mate energy thresholds are E,h/A =2 MeV for Z =3,
E,h/A =3 MeV for Z=10, and E,h/A =4 MeV for
Z=18 fragments. Particles of lower energy which were
stopped in the scintillator foils were recorded but could
not be identified by atomic number.

All events in which at least two detectors fired were
recorded on magnetic tape and analyzed off line. Ran-
dom coincidences were negligible due to the low beam in-
tensity.

Energy calibrations, accurate to within 5%, were ob-
tained by measuring the elastic scattering of He, Li, ' B,' C, ' 0, and Cl beams from a ' Au target at incident
energies of E ( He)/A =4.5, 9.4, 12.9, 16, and 20
MeV; E( Li)/A =8.9 MeV; E(' B)/A =15 MeV;
E(' C)/A =6, 8, 13, and 20 MeV; E(' 0)/A =6, 8, 16,
and 20 MeV; and E( Cl)/A =8.8, 12.3, and 15 MeV.
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plane from the distributions of light particles and
intermediate-mass fragments emitted in a given event.
Throughout this paper, the "trigger" particle was elim-
inated from the algorithm used for the determination of
the reaction plane to avoid self-correlations. Corrections
for recoil effects were taken into account when the reac-
tion plane was determined from the distribution of coin-
cident light particle and intermediate-mass fragments.

A. Fission plane

The Miniball was originally designed as a low-
threshold device for the detection of intermediate-mass
fragments. Unit elemental identification was obtained for
particles with Z —1 —18 that punched through the plastic
scintillators. It was also possible to discriminate lower-
energy heavy fragments that stopped in the fast plastic
scintillators from light particles. Indeed, from the mea-
sured pulse height in the fast gate, the corresponding
time information, and the absence of signals in the slow
and tail gates, it was possible to select low-energy heavy
fragments which could result from fission. Even though
the detection efFiciency for fission fragments was not uni-
ty, significant numbers of events containing two fission-
like fragments were observed. The association of such
events with fission or fissionlike processes is corroborated
by the measured azimuthal correlation between coin-
cident low-energy heavy fragments detected in rings 4—7,
9, and 10. (Ring 8, at Oi,b=90', was not used for the
identification of fissionlike events since low-energy heavy
particles emitted at 0&,b=90 are largely stopped in the
target which was oriented normal to the beam axis. )

Figure 1 shows the distribution of relative azimuthal
angles, b,Pff, between coincident low-energy heavy frag-
ments. These angles were defined over the angular inter-

val of b,Pff =0'—180' via the relation

+IPff cos [ cosljkf icos/f 2+ sinPf, sin/f 2 ]

where Pf i and /f2 denote the azimuthal angles of the two
fragments. As expected for fission, the azimuthal correla-
tion is strongly peaked at b,Pff = 180', see solid line. The
width of the distribution is due to smearing of the angu-
lar correlation by pre- and post-fission particle emission
and by the finite granularity of the Miniball. The peak at
b,Pff =180 is broadened and shifted to smaller angles
when energetic particles are emitted normal to the fission
plane. This effect is illustrated by the dashed, dot-
dashed, and dotted lines in Fig. 1 which show the azimu-
thal correlations of low-energy heavy fragments detected
in coincidence with particles emitted with large momen-
tum components normal to the fission plane. In our
analysis, two coincident low-energy heavy fragments
were associated with fission when they satisfied the condi-
tion b,Pff =95 —180'. For such events, we defined the
orientation of the fission plane as

F 2 [ff,+(tfz+ 180'], modulo 180

While the conservatively wide cut on b,Pff reduces the
loss of efFiciency for reactions in which particles are emit-
ted with large momentum components normal to the
fission plane, it also causes some loss of resolution in the
determination of the fission plane due to an increased
background of particles not resulting from fission. Thus,
the present results can be improved by employing detec-
tors capable of better discrimination between low-energy
intermediate-mass fragments and fission fragments.

B. Gaussian distributions of sing

Collective rotations or the deAection of particles in the
mean field may lead to a hindrance of emission in a direc-
tion perpendicular to the reaction plane [44—49]. As a
most simple ansatz, one may assume Gaussian distribu-
tions of the form

P(@:p)~exp[ co (E,M, 9)sin (P——N)], (2)

0.4
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where 4 denotes the azimuthal angle of the reaction
plane and P is the azimuthal angle of the emitted particle.
The weight function co(E,M, O) can depend on the
particle's energy E, mass M, and polar angle 8 with
respect to the beam axis. For simplicity, we do not ex-
plicitly carry the additional dependence on the magni-
tude of the impact parameter of the collision. Distribu-
tions similar to Eq. (2) also describe the shapes of azimu-
thal distributions for fission of rapidly rotating fusion
residues [44].

In the following, we assume that individual emissions
are uncorrelated, i.e., we neglect many-particle correla-
tions. Under this assumption, the joint probability for
emitting X particles in a particular event can be written
as

FIG. 1. Azimuthal correlations between low-energy heavy
fragments detected in rings 3—7, 9, and 10. The solid curve
shows the inclusive correlations; the other curves show correla-
tions when a trigger particle with the indicated transverse
momentum is emitted at 8=45' and normal to the fission plane.

P(@:p„.. . , p )

N
~ exp g co; (E;,M;, 9, )sin —(P; —@) (3)

In a typical nuclear collision experiment, the orientation
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of the reaction plane is unknown, and one can try to
reconstruct it from the measured distribution of emitted
particles. When %particles are detected in a given event,
the most probable orientation of the reaction plane corre-
sponds to the maximum of the joint probability. The
necessary condition

I

1.0—

0.8—

d
P(@:pi . . px) =0

dN

can be cast into the form

N

g ro (E;,M~, O;)sin2$;

tan(2CI ) =
g co (E;,M~, O, )cos2$,.

(4)

(5)

0.6—

0.4—

0.0 —
I

0

200 20

90

Over the angular interval of @=0'—180, this equation
has two solutions, @, and +2, which differ by 90'. These
two solutions give the maximum and minimum of the
sum

N
X(@)= +co (E;,M;, 8;)sin ((tI, —4&) . (6)

The value of 4, which gives the minimum, corresponds
to the most probable orientation of the reaction plane. It
is straightforward to show that the two solutions of Eq.
(5) define the directions of the principal axes of a tensor

0„=g(co;„co; ),

where i is the particle index, and n and I label the com-
ponents of the two-dimensional vector

(rIi;~, rIi;2)

= [co(E;,M, , O,. )cosP;,co(E;,M~, O; )sing; ] . (8)

fO'P(0)dk

fP(e)de
( y2 ) 1/2

The maximum and minimum values of the sum in Eq. (6)
are equal to the lengths of the major and minor axes of
the tensor 0„

For illustration, Fig. 2 shows a few representative ex-
amples of the family of curves represented by Eq. (2) (for
@=0 ). For ease of representation, we have normalized
all curves to P(0 )= l. One may characterize these and
similar distributions by the variance

1 //2

FIG. 2. Family of azimuthal distributions with respect to the
reaction plane described by Eq. (2). The curves are labeled by
the azimuthal anisotropy coefficient, Eq. (10).
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ance appears more appropriate since the azimuthal an-
isotropy coefficient becomes overly sensitive to the func-
tional form with which the tail of the distribution is de-
scribed.

As a most simple ansatz, one may assume that the
weight function co(E,M, O) is linearly dependent on the
transverse momentum of the emitted particles,

ro(E, M, O) =E sinOv'2ME =EP sinO .

Here, c is a proportionality constant. For E. =O the az-
imuthal distributions are isotropic; for c.)0 the azimu-
thal distributions are enhanced in the reaction plane.
Qualitatively, such an ansatz accounts for the experimen-
tal observation that azimuthal anisotropies increase with
mass and energy of the emitted particles and that they
are most pronounced at angles close to 8=90' [42—50].
With this ansatz, the orientation of the reaction plane is
determined by solving the equation

or the azimuthal anisotropy coefficient

A~=P(0 )/P(90 )=exp[co (E,M, O)] . (10)

For orientation, the relation between co, ((tI ) ', and A
&

is depicted in Fig. 3.
While parametrizations of the form of Eq. (2) are

reasonable, they are by no means unique. Nevertheless,
azimuthal anisotropy coefficients and variances of experi-
mental azimuthal distributions are useful parameters for
their characterization. For broad probability distribu-
tions, the azimuthal anisotropy coefficient is a useful and
sensitive parameter. For narrow distributions, the vari-
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FICx. 3. Relation between weight function, variance, and az-
imuthal anisotropy coefficient for the family of curves described
by Eq. (2). [For definitions, see Eqs. (9) and (10).]
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1V

gp; sin 8;sin2$;

tan(2@) =
g p; sin 8;cos2$;

(12)

PA)

N
~exp a g [p„.—p;sin 8;sin (P; —@)]'

and using that solution which gives the minimum of the
sum

This maximum can be determined numerically by finding
the maximum of the sum term in the exponent or by solv-
ing the equation for dP /d @=0.

N
X (@)= gp, sin 8;sin (P; —4) . (13) IV. ENERGY SPECTRA

AND MULTIPLICITY DISTRIBUTIONS

Equations (12) and (13) are mathematically equivalent to
the method used by Wilson et al. [42,43] who proposed
to reconstruct the orientation of the reaction plane by
minimizing the sum of the squares of the momentum
components perpendicular to the reaction plane, Eq. (13).
Equation (12) is also mathematically equivalent to the di-
agonalization of the transverse momentum tensor,
A„=g;(p;„p; ), where

p; =(p;&,p;2) =(p;sin8;cosP;, p, sin8;sing, . )

is the transverse momentum of particle i.

C. Rotating hot gas

In order to explore whether reaction plane determina-
tions based upon Eq. (12) are sensitive to the functional
form of the azimuthal distributions, we have employed an
alternative parametrization of the azimuthal emission
probability which is related to the energy and angular
distributions for particles emitted from a hot gas rotating
about an axis perpendicular to the reaction plane and
moving with a velocity u parallel to the beam axis [46].

A simple expression can be obtained by neglecting
Coulomb effects and writing Eq. (5) of Ref. [46] in a
slightly different form:

P(E, ) ~ exp( E, /T; ), — (19)

characterized by temperature parameters T; indicated in
the figure and also listed in Table II. Transverse energy
distributions approximated by Eq. (19) will be used in the

For reference, Fig. 4 presents the energy spectra of
light particles detected at 0&,b=45 . At this angle, parti-
cle emission is dominated by noncompound emission pro-
cesses. While the low-energy portions of the spectra are
likely to contain contributions from the decay of equili-
brated heavy reaction residues, contributions from quasi-
elastic projectile breakup reactions are of minor impor-
tance. Particles emitted at this angle were chosen as
"trigger particles" for the analysis of azimuthal distribu-
tions with respect to the reaction plane since (i) the az-
imuthal distributions at this angle are known [49] to ex-
hibit large anisotropies, and (ii) the yields of
intermediate-mass fragments emitted at this angle are
sufficiently large to allow an analysis of their azimuthal
distributions.

Transverse energy distributions, E, =E sin 0, for pro-
tons, deuterons, tritions, and a particles are shown in
Fig. 5. The distributions shown in the figure were ob-
tained by integration over all detector rings. The solid
lines in the figure represent simple exponential probabili-
ty distributions of the form

J, (iK)
P(@:p)~p, exp( p, /2MT)— (14)

Ar+ ' Au, E/A=35MeV, 8& b
——45'

I I I I

I
I I I I

I

I I I

Here, J& denotes the first-order Bessel function, and

K= [p, —p sin 8sin (P —@)]'R co

~2 ~2+ m 2U2 2m' cosg (16)

The momentum in the rest frame of the emitting source is
given by
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If one neglects nonexponential factors and factors which
are independent of azimuthal angle, one can approximate
J& (iK) /iK as proportional to exp(K) and make the ansatz

50 100

E (MeV)

I 1 I I I I i I I . I I I

150

P(4, p) ~exp[r[p, —p sin 8sin (P —N)]' ], (17)

where Ir=Rro/T is considered as an unknown width pa-
rameter. The orientation of the reaction plane can then
be extracted by maximizing the joint probability

FIG. 4. Energy spectra of particles detected in ring 5 {cen-
tered at O~,b=45 ). The sharp cutoffs in the energy spectra of
the hydrogen isotopes at E~=70 MeV, Ed=100 MeV, and

E, = 120 MeV reflect software gates eliminating particles punch-
ing through the CsI{Tl) crystals.
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FIG-. 5. Transverse energy spectra measured in this experi-
ment. The solid curves show the exponential approximation to
these energy spectra used in the Monte Carlo calculations as
discussed in Sec. VI. The sharp drop in the energy spectra at
high energies is an experimental artifact due to particles punch-
ing through the detectors.

FIG. 6. Two-dimensional contour diagram of the relative
probabilities for detecting a total of N& identified charged parti-
cles of which N&MF particles are identi6ed intermediate-mass
fragments (Z ~ 3).

V. COMPARISON OF DIFFERENT METHODS

Monte Carlo simulations discussed in Sec. VI.
Figure 6 presents a two-dimensional contour diagram

of the relative probability to detect a total of Nc
identified charged particles with XiMF identified
intermediate-mass fragments among them. Over a rather
broad range of particle multiplicities, the average number
of detected intermediate-mass fragments is of the order of
unity.

Figure 7 presents experimental multiplicity distribu-
tions for the emission of charged particles [P(NC), left-
hand panel] and intermediate-mass fragments [P(N,MF ),
right-hand panel]. The solid points represent inclusive
distributions, and the open points correspond to distribu-
tions detected in coincidence with two fission fragments,
selected, as before, by the requirement b, /&&=95' —180.
The selection of events with two fission fragments in the
exit channel leads to a slight suppression of reactions
with high charged particle and IMF multiplicities. Nev-
ertheless, the two distributions are rather similar, indicat-
ing that the requirement of two fission fragments in the
exit channel imposes only a relatively modest bias on im-
pact parameter selection.

In this section we compare various methods which can
be employed to tag the orientation of the reaction plane.
In Sec. VA, we compare azimuthal distributions deter-
mined by using Eqs. (1) and (12). Recoil eft'ects are dis-
cussed in Sec. VB. In Sec. VC, we discuss angular
differences between reaction planes determined by the
various methods. A quantitative comparison of azimu-
thal anisotropy coefBcients and variances extracted by
means of the fission and transverse momentum tensor
techniques is given in Sec. V D; dependences on particle
type and energy are explored. In Sec. V E, we discuss the
inhuence of detection thresholds on the accuracy of reac-
tion plane determinations based upon Eq. (12). Unless
otherwise stated, all comparisons utilize the same set of
data, preselected by the requirement that two fission frag-
ments were detected and that, in addition, the combined
number of identified light particles and intermediate mass
fragments was %=4—9. Higher multiplicities were ex-
cluded in this analysis since they select more central col-
lisions for which the azimuthal distributions are reduced

A. Azimuthal distributions

Mass number Weight T (MeV) E& (MeV) Ez (MeV)

1

2
3
4

2.22
0.86
0.55
2.00

7.48
9.69

10.63
9.64

3
5
8

10

150
150
150
200

TABLE II. Parameters used in the Monte Carlo simulations
of the reaction plane reconstruction. E, and Eh denote the low-
and high-energy limits of the transverse energy spectra used in
the calculations.

Azimuthal distributions of light particles and
intermediate-mass fragments are shown in Fig. 8.
Diff'erent panels of the figure show the azimuthal distri-
bution of the indicated "trigger particle" with respect to
the orientation of the reaction plane reconstructed from
the remaining detected particles. The distributions were
normalized to an average value of unity. An energy gate
of E/A =12—20 MeV was applied to the trigger parti-
cles, energy thresholds for all other particles were set as
discussed in Sec. II. Open points show azimuthal distri-
butions measured with respect to the fission plane, Eq.
(1). Solid points show azimuthal distributions measured
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FIG. 7. Charged-particle (left-hand panel) and IMF {right-hand panel) multiplicity distributions measured inclusively (solid
points) and in coincidence with fission fragments {open points).

with respect to the plane determined with the transverse
momentum tensor method [42,43], Eq. (12). Quantita-
tively consistent azimuthal distributions are extracted
from both methods, revealing enhanced emission in the
reaction plane. 2 Y(AP =0'—10')

Y( b,P =70' —90') (20)

In order to display similarities and differences between
various methods in a more compact form, we define the
experimental azimuthal anisotropy coefficient 2& as the
ratio of in-plane and out-of-plane yields,
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In this definition, statistical errors are reduced by in-
tegrating out-of-plane yields over angular intervals twice
as large as for in-plane yields. For strongly focused az-
irnuthal distributions, the azimuthal anisotropy
coefficient can be rather sensitive to resolution effects at
bed=0 and 90. Such e6'ects may be less relevant for
some applications. Therefore, we also extract the vari-
ance (P )' of the experimental azimuthal distribution,
see Eq. (9). The variance of an isotropic distribution is
52.

A
0
I

III

g~

P
egg

ogIII~ 0
oIgee~& III'0 SING Q

4I
PT

o FF 12—20 Mev/nucleon, 8z ——45', N=4 —9

0 45 90 45 90 45 0 45 90

4 («g)
FIG. 8. Azimuthal distributions of particles measured with

respect to the fission plane, Eq. (1) (open points), and with
respect to the plane determined from the major axis of the
transverse momentum tensor, Eq. (12) (solid points). The ele-
mental charge of the trigger particles, emitted at 0=45, is indi-
cated in the individual panels; the energy gates for the trigger
particles were E/A =12—20 MeV.

B. Correction for recoil effects

Determinations of the reaction plane may suffer from
self-correlations due to momentum conservation [23,30],
as the detection of a trigger particle with large transverse
momentum requires a corresponding opposing transverse
momentum for the remaining system. Distortions of an-
gular correlations from momentum conservation effects
are particularly pronounced for light systems
[30,45,46,53,54]. Since it is unknown how the recoil
momentum imposed by the trigger particle is distributed
among the remaining particles, corrections for such dis-
tortions are model dependent.

%'e have assessed the effects of momentum conserva-
tion by employing the technique proposed by Ref. [30].
In this approach, one assumes that the transverse
momentum P„of the trigger particle is balanced by a
coherently recoiling source of mass M&. Particles of
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mass I; emitted from this recoiling source carry an addi-
tional transverse recoil momentum, b,p, ,

= —P, m;/Ms.
From the measured transverse momenta p, ; of the coin-
cident particles, one constructs recoil-corrected trans-
verse momenta, p', ;, according to the prescription

p', ;=p, ;+P,m, /Ms . (21)

The orientation of the reaction plane is determined from
these corrected transverse momenta. The number of nu-
cleons in the recoiling source must be considered as an
undetermined parameter since it is not clear which parti-
cles share the recoil momentum imparted by the trigger
particle. If the entire residual system recoils collectively,
one would choose Ms =M„, [30], where M„, is the total
mass of the residual system. Such an assumption would
be well justified for the sequential decay of compound nu-
clei. However, for noncompound emission processes, the
situation is less well defined. An alternative extreme as-
sumption would be M&=2moZc, where mo is the nu-
cleon mass and Z& is the total charge of detected light
particles and intermediate mass fragments. Such a choice
could be reasonable if one assumed that all detected par-
ticles were emitted from a cleancut participant region,
containing equal numbers of protons and neutrons, which
did not interact with the spectator nuclei. The actual
recoil effects are likely to lie within these extremes. More
accurate evaluations of recoil effects require complete
dynamical treatments of the reaction.

In order to assess the importance of recoil effects in
more general terms, we have considered the mass, M&, of
the coherently recoiling source as an undetermined pa-
rameter and explored the sensitivity of the azimuthal an-
isotropy coefficient to this parameter for lithium frag-
ments of energies E/A ~ 8 MeV. The results are shown
in Fig. 9. For M& ~40mo, the extracted azimuthal an-
isotropy depends only weakly on Mz, however, for small-

er values, A& rises strongly as a function of Mz. Most
likely such a strong dependence arises from an over-
correction of the recoil effect. In any case, such small
values are difficult to justify for collisions excluding the
most peripheral interactions, and the resulting large
corrections must be viewed as unreliable. For the
remainder of our analysis, we chose M&=72p7lo corre-
sponding to a coherently recoiling source consisting of
twice the number of projectile nucleons. Our final results
and conclusions are rather insensitive to the applied
recoil correction.

C. Dift'erence between reaction plane orientations

It is important to know whether different techniques
determine similar planes. Figure 10 shows distributions
P(b, @) of relative orientations between planes extracted
by different methods. Since no polarizations are deter-
mined, the angle between any two planes can only be
defined between 64=0 and 90. For convenience of
comparison, we have adopted the normalization
P( b,@=0 ) = 1. For compactness of notation,
denotes the azimuthal orientation of the fission plane
determined from Eq. (1); C&~T and @„,denote the azirnu-
thal orientations of planes extracted from Eqs. (12) and
(18), respectively. The orientation of these latter planes
were extracted from the distributions of identified light
particles and intermediate-mass fragments.

The solid line in Fig. 10 shows the difference between
4 pT and C „,. Clearly, these two planes are virtually
identical. In view of the simple form of Eq. (12), the use
of this (or a mathematically equivalent [42,43]) equation
appears more convenient and preferable.

Relatively large differences exist between the orienta-
tion of the fission plane and the plane defined by the
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FIG. 9. Dependence of the azimuthal anisotropy coefficient
for Li fragments upon the assumed mass M, of a recoiling
source when one corrects for recoil eff'ects by means of Eq. (21)
and determines the orientation of the reaction plane from Eq.
(12). An energy gate of E/A ) 8 MeV was applied to the Li
trigger fragments.

FIG. 10. Distributions, P(hN), of relative azimuthal orienta-
tions between planes determined by various methods. N+ is the
azimuthal orientation of the fission plane, Eq. (1); N~T and C „„
denote azimuthal orientations of the planes extracted from the
light-particle and intermediate-mass fragment distributions by
means of Eqs. (12) and (18), respectively. Solid and open points:
~CF —Nzr~ distributions for all events and for events with at
least one energetic (E & 80 MeV) a particle detected in rings
4—7.
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orientation of the major axis of the transverse momentum
tensor constructed from the distribution of light particles
and intermediate-mass fragments. These differences are
shown by the solid points in Fig. 10. Nevertheless, the
most probable relative orientation between the fission
plane and planes extracted from the distribution of asso-
ciated particles is 6@=0.

The rather broad distribution of ~IIi~ —III~T~ refiects
limitations of the transverse momentum tensor and/or
fission methods for average types of events. For example,
the distribution becomes narrower when one selects
events with at least one energetic (E ) 80 MeV) u particle
detected in rings 4—7, see open points in Fig. 10. Intrin-
sic uncertainties of the two methods will be discussed in
Sec. VI.

D. Azimuthal anisotropies

Figures 11 and 12 show azimuthal anisotropy
coefficients and variances of azimuthal distributions mea-
sured with respect to reaction planes determined with Eq.
(12) from the light-particle and IMF emission patterns
(solid circle) or, alternatively, with Eq. (1) from fission
fragments (open circles). In all cases, the trigger particles
were detected at 0=45'. Different panels show results for
different ranges of kinetic energy per nucleon of the
trigger particle. Consistent with previous observations
[44—50], the azimuthal anisotropies increase with mass
and kinetic energy of the detected trigger particle. In all
cases, the azimuthal anisotropy coefficients extracted
with the fission and transverse momentum tensor tech-
niques are very similar.

We have explored the possibility of determining the re-
action plane with improved resolution by including all
detected (but not identified) low-energy heavy fragments
into the analysis. For this purpose, low-energy fragments

stopped in the fast plastic scintillator foils were given the
weight of fast a particles with a transverse momentum of

pf =1.1sin 0 GeV/c . (22)

Our final conclusions are not very sensitive to this specific
choice, and qualitatively similar results are obtained for
slightly different weights. Azimuthal anisotropy
coefficients and variances extracted by diagonalizing the
momentum tensor for all detected particles [Eqs. (12) and
(22)] are shown by the open squares in Figs. 11 and 12.
With this combined technique, slightly larger azimuthal
anisotropy coefticients are extracted for heavy and ener-
getic particles than were obtained with either the fission
technique or the transverse momentum tensor technique
alone, pointing towards intrinsic limitations of both tech-
niques.

Similar improvements are also obtained when one ana-
lyzes data preselected by the condition that at least one
low-energy heavy fragment was detected, irrespective
whether it is detected in coincidence with a second frag-
ment or with several fragments. These results are shown
in Fig. 13. The open squares and solid points show an-
isotropy coefficients extracted by the transverse momen-
turn method including and excluding, respectively,
unidentified low-energy heavy fragments into the analysis
by means of Eq. (22). These results suggest that
significant improvements in resolution could be obtained
with detectors capable of identifying heavier particles and
with lower-energy thresholds than was possible in the
present experiment. However, the true improvement
may be less than suggested by the Fig. 13, since we could
not apply reliable corrections for recoil effects to
unidentified low-energy heavy fragments.
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FIG. 11. Azimuthal anisotropy coefficients with respect to
planes determined from fission, Eq. (1) (open points), from the
light-particle and IMF emission patterns, Eq. (12) (solid points),
and with the inclusion of unidentified low-energy heavy frag-
ments, Eqs. (12) and (22) (open squares). Different panels show
results for different energies of the trigger particles.

FIG. 12. Variances of azimuthal distributions with respect to
planes determined from fission, Eq. (1) (open points), from the
light-particle and IMF emission patterns, Eq. {12){solid points),
and with the inclusion of unidentified low-energy heavy frag-
ments, Eqs. (12) and (22) (open squares). Different panels show
results for different energies of the trigger particles.



2074 M. B.TSANG et al.

1 I I I

[
I I I I

t

I I I I

t
I ~ I I I

I

I

Ar+ Au, E/A=35 MeV 20—32 MeV
10 —

8 45o N 4 g
EM/AM=8 —12 MeV

0

6
I

I I

~ I
g ~

I I I I I I I

P I I I I I I I

0 LP+IMF+HF

1P —o U+IMF

0
0 ~ ~0

I I I I I I
I I I I

0 ~

0
0

Q

~ 8 E&/AM=12 —20 MeV

0— I. . . , I. . . , 1

0 5 10 15

0

~ &32 ]geV
I

~ E~/A = 16 MeV
& Eth, /A = 20 QeV

I I I I

M (u)

I

10

M (u)
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(open squares). Different panels show results for different ener-
gies of the trigger particles. Events were presorted by the re-
quirement of %=4—9 and at least one low-energy heavy frag-
ment in the exit channel.

K. EFects of detection thresholds

For increasingly violent heavy-ion collisions, fast parti-
cle emission leads to heavy residues of decreasing fissility.
Thus, the likelihood for fission in the exit channel de-
creases. Indeed, for nucleus-nucleus collisions at relativ-
istic energies, fission is only observed for peripheral col-
lisions [55—57]. For collisions at smaller impact parame-
ters, the orientation with respect to the reaction plane
must then be inferred from the light-particle and
intermediate-mass fragment emission patterns.

Optimum determinations of the reaction plane are ex-
pected when large numbers of energetic a particles or
intermediate-mass fragments are detected in the exit
channel. For a given class of collisions, one might hope
to improve the determination of the reaction plane by
raising the particle detection threshold in an attempt to
reduce the "noise" from randomly emitted particles
which bear little memory of the reaction plane. On the
other hand, low-energy particles might still retain some
limited memory of the reaction plane and their inclusion
might help improve statistical accuracy of reaction plane
determinations on an event-by-event basis. At present,
microscopic calculations predict the emission of low-

energy particles with limited accuracy only. Therefore,
the relative advantages of including or excluding low-
energy particles are best evaluated with real data.

In Fig. 14, we demonstrate the inhuence of particle
detection thresholds on the magnitude of the azimuthal
anisotropy coefticients for reaction plane reconstructions
based upon Eq. (12). The data set used in this analysis
was preselected by the requirement N =4—9 and the reac-
tion plane was determined from the subset of light parti-

FIG. 14. Inhuence of particle detection thresholds on azimu-

thal anisotropy coefficients determined by means of Eq. (12).
The applied energy thresholds are indicated in the figure.
Minimum energy thresholds of the detectors are given in Sec.
II.

cles and intermediate mass fragments which satisfied the
indicated threshold requirements. Thus, the bias on im-
pact parameter selection was kept constant, while the
number of particles included in the determination of the
reaction plane depended on the indicated energy thresh-
old. The results are clear: For the present reaction, the
inclusion of low-energy particles and intermediate-mass
fragments improves the definition of the reaction plane.

VI. MONTE CARlo SIMULATIONS

In this section, we explore the convergence of the
transverse momentum tensor method by performing
Monte Carlo calculations. In Sec. VIA, we investigate
improvements in accuracy as a function of particle multi-
plicity and average azimuthal anisotropy of the emitted
particles. In Sec. VI B, we explore the sensitivity to op-
timum choices of the weight functions used in Eq. (5). In
Sec.VI C, we discuss the determination of the experimen-
tal uncertainties of reaction plane determinations.

A. Dependence on azimuthal anisotropy and multiplicity

The accuracy with which the reaction plane can be
determined from the distribution of light particles de-
pends both on the charged-particle multiplicity and on
the anisotropy coefficient A& characterizing the azimu-
thal distributions of the emitted particles. In order to ex-
plore the degree of accuracy with which the reaction
plane can be reconstructed from the measured particle
distributions, we have performed Monte Carlo simula-
tions which generate events of fixed multiplicity with par-
ticles distributed azimuthally according to Eq. (2). In
this and the following calculations, we assumed stochas-
tic emission of light particles of mass A = 1 —4 with rela-
tive weight o; (i = 1 —4) taken from the p, d, t, and
n cross sections measured for the present reaction. The
probability distributions of the transverse energies
E, =(p /2m)sin 8, were approximated by exponential
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functions, Eq. (19), characterized by temperature pararne-
ters T; determined from the slopes of the angle-integrated
transverse energy distributions shown in Fig 5. As a fur-
ther simplification, we introduced sharp cuts in the range
of transverse energies over which the emission of parti-
cles was simulated. The detailed parameters used in the
simulations are listed in Table II. For computational
speed, the calculations were performed on a grid with
binning widths b,P = 1' and b,E, = b,E sin 8= 1 MeV.

For each event, Eq. (5) was used to reconstruct the
orientation of the reaction plane. For each ensemble of
events, characterized by a given weight function and a
fixed number of particles used for the reconstruction of
the reaction plane, we calculated the probability distribu-
tion, P(b,@), of relative orientations between the "true"
and reconstructed reaction planes. As before, we adopt-
ed the normalization P(b @=0 ) = l.

As a first instructive example, we performed calcula-
tions for the (unrealistic) case of constant weight func-
tions, co(E,M, O)=const, and studied the accuracy with
which the reaction plane was reconstructed as a function
of particle multiplicity. The results of these schematic
calculations are shown in Figs. 15 and 16. Figure 15
shows the azimuthal distributions of the reconstructed
reaction planes. Different panels in the figures are labeled
by the azimuthal anisotropy coefficients, A&=exp(co ),
characterizing the single-particle probability functions.
The curves in each panel are labeled by the number, N, of
particles used for the reconstruction of the reaction
plane. (Trivially, curves for %=1 are identical with the
single-particle distributions. ) The calculations confirm
the qualitative expectation that the orientation of the re-
action plane can be reconstructed with improved accura-
cy when more particles are detected. In general, howev-

er, the convergence as a function of N is rather slow. The
figure also illustrates that much can be gained, even at
very low multiplicity, if one detects particles which have
azimuthal distributions characterized by large azimuthal
anisotropy coe%cients 3&. The solid curves in Fig. 16
depict the rate of convergence in a more compact form.
Here, the variances, (bN )'~, of the distributions
P(b,@) are shown as a function of particle number N.
(Note that (bA& )'~ =52' for isotropic distributions, see
also Fig. 3.) The different curves are labeled by the az-
imuthal anisotropy coefBcients characterizing the under-
lying single-particle distributions.

In more realistic situations, the weight function de-
pends on particle type and energy. In such cases, the
convergence of reaction plane reconstructions as a func-
tion of particle multiplicity depends on the energy spec-
tra, the relative weights of various detected particles, and
on the functional form of the weight function. To illus-
trate this effect, we have performed calculations for
weight functions of the form co=op sinO for which the
transverse momentum tensor method is optimal and Eqs.
(5) and (12) are identical.

The dashed curves in Fig. 16 show that reaction plane
reconstructions converge slightly more rapidly as a func-
tion of particle multiplicity when the weight function is
proportional to the transverse momentum, Eq. (11), as
compared to the less realistic case when it is constant
(solid lines). Qualitatively, this more rapid convergence
is related to our previous observation that much can be
gained from particles with large transverse momenta for
which 3& is large. A set of N) 1 particles is likely to
contain some energetic particles for which the azimuthal
distribution is considerably more anisotropic than for the
average particle set. Such energetic particles can tag the
orientation of the reaction plane more accurately than
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FIG. 15. Probability distributions P(AN) for the angular
difference AN between the true and reconstructed reaction
planes. The azimuthal distributions of the emitted particles
were assumed to have the form of Eq. (2) with constant weight
functions, co=const. Different panels show results for different
azimuthal anisotropy coefficients, Eq. (10), characterizing the
single-particle distributions. The curves are labeled by the num-
ber of particles used for the reconstruction of the reaction
plane.
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FIG. 16. Variances of probability distributions P(h@) for
the angle, hN, between the true and reconstructed reaction
plane [Eq. (5)] as a function of particle multiplicity %. The
different curves are labeled by the azimuthal anisotropy
coefficients characterizing the single-particle distributions.
Solid and dashed curves show the results for weight functions
co=const and co= cp sinO, respectively.
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several particles with average azimuthal anisotropies,
provided the weights of these particles are properly taken
into account.

B. Sensitivity to optimum choice of weight functions
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FIG. 17. Probability distributions P(A4) for the angular
difference b@ between the true and reconstructed reaction
planes. The azimuthal distributions of the emitted particles
were assumed to have the form of Eq. (2) with co=const (left-
hand panels) and ~=op sinO (right-hand panels). The solid
curves show the results obtained by using the optimum relation,
Eq. (5), and the dashed curves show the results obtained by ap-
plying Eq. (12). Averages over light particles (A =1—4) were
performed with realistic weights. The top and bottom panels
show results for two different azimuthal anisotropy coefficients
(A&=1.4 and 2.0) for the average single-particle distribution.
The curves are labeled by the number of particles used for the
reconstruction of the reaction plane.

When the weight function co(E,M, O) is known, solu-
tions of Eq. (5) provide the best estimate for the orienta-
tion of the reaction plane. However, in general, the
weight function is not known, and one has to rely on
empirical procedures. For intermediate-energy heavy-ion
reactions, the diagonalization of the transverse momen-
tum tensor, Eq. (12), has been used with good success
[42,43]. It is, therefore, of interest to explore the conver-
gence of this method for azimuthal distributions of the
form of Eq. (2), but with weight functions different from
Eq. (11), i.e., for cases for which Eq. (12) does not present
the best possible method.

Such comparisons are presented in Fig. 17. In these
calculations, we have assumed azimuthal distributions
given by Eq. (2) with co=const (left-hand panels) and
co =&ep sin0 (right-hand panels). The dashed curves
show the distributions P(h@) obtained by reconstructing
the reaction plane with Eq. (12) and the solid curves show
the distributions obtained by reconstructing the reaction
plane with the optimum relation, Eq. (5). Trivially, the
two curves coincide for X= 1, giving the average single-
particle distribution. For larger multiplicities, the use of
the optimum relation, Eq. (5), gives narrower distribu-
tions for P(b,@). While the differences for co=const are
still appreciable, they become insignificant for
co =&ep sinO. Thus, reconstructions of the reaction

plane at low particle multiplicities are only moderately
sensitive to the detailed functional form of the weight
functions, as long as they account for the rough trends of
azimuthal anisotropies as a function of particle type and
momentum. This insensitivity to the detailed shape of
the weight function also provides a qualitative under-
standing for the improvement which could be obtained
by including particles which exhibit strongly anisotropic
azimuthal distributions, such as low-energy heavy frag-
ments, even when their weight functions are not accu-
rately known.

C. Estimate of experimental uncertainties

Experimental uncertainties of reaction plane recon-
structions can be estimated [22,23] by randomly subdivid-
ing each event of multiplicity N into two subsets 1 and 2,
each of multiplicity —,'X. For each subset, one determines
the orientation of the reaction plane according to Eq. (5)
and extracts the angle 5+,2 between these two planes.
From the probability distribution P(bA&, 2) one can make
inferences about the accuracy with which the reaction
plane can be reconstructed for the complete event.

The problem can be analyzed in two steps. First, the
experimental distribution P(b,@,z) is used to make an es-
timate for the probability distribution P~, &2~&(bA&) of the
angle between the true reaction plane and the reaction
plane determined from —,'N particles. Second, one uses
the distribution P~, &2~~(b@) to make an estimate about
the distribution P~(b.@) for events with N detected parti-
cles. In this step, one must estimate how the accuracy of
the extraction of the reaction plane is improved by in-
creasing the number of detected particles from —,'N to N.
Numerical calculations, performed for single-particle dis-
tributions of the form of Eq. (2), indicate that both steps
can be made rather quantitatively and with little depen-
dence on detailed model assumptions.

Figure 18 shows experimental distributions P(b, @,z)
extracted from our data using Eq. (12). The left-hand
panel shows the distribution extracted from identified
light particles and intermediate-mass fragments and the
right-hand panel shows the distribution for which low-
energy heavy fragments were included according to the
prescription of Eq. (22). The solid lines show the results
of Monte Carlo calculations for the distribution P(b,@,2)
for events generated with multiplicity X= 8, using weight
functions co= E psin9 [Eq. (11)] and transverse energy dis-
tributions given by Eq. (19) and Table II. In these calcu-
lations, the weight factors c. were adjusted to reproduce
the experimental distribution. The dot-dashed and
dashed curves show the calculated distributions
P~, & ~&(26@) and P~(h4) for the relative orientations be-
tween the true reaction plane and the planes reconstruct-
ed from subset containing —,'%=4 and from the full set
containing X =8 particles, respectively. Even though the
distributions for P(b@,z) are broad, the predicted accu-
racy of the reaction plane determination for the full event
is rather satisfactory, especially when low-energy heavy
fragments are incorporated into the analysis. The rather
large difference between the distributions P(6@&2) and
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P(, /z)~(b, @),solid and dot-dashed curves, arises from the
convolution of the probability distribution P(»z)&(b, 4)
with itself:

P(bC', ~)=fP(, /~)~(C )P(, /~)~(C'+DC', ~)dC' . (23)

The difference between the distributions P(&/z)z(b, @)and
P&(h@), shown by the dot-dashed and dashed curves,
arises from the improvement in accuracy with a doubling
of the multiplicity, see also Fig. 16.

The calculated probability distributions P(b,@) for the
angle between the true and reconstructed reaction planes
are qualitatively similar in shape to the family of curves
represented by Eq. (2), compare Figs. 2, 15, and 17.
Therefore, one may hope to be able to relate the most im-
portant characteristics of the functions P(b,+,~) and
P(&/z)&(h@) without much sensitivity to details of the
weighting functions or particle multiplicities employed
for the reconstruction of the reaction plane. In order to
explore this possibility, we have performed a number of
calculations with Eqs. (2), (11), and (12) using various pa-
rameters c and different multiplicities. For each of the
calculated distributions, P(bA&&z) and P(&/z)z(h@), we
have extracted the azimuthal anisotropies, 3+ and

12

/1@ [Eq. (10)], and the variances, (b,Nfz)'/ and
(1/2)X

( bA&(, /z)~ ) ' [Eq. (9)]. The relation between the calcu-
lated azimuthal anisotropy coefficients is shown by the
open points in the bottom panel of Fig. 19; the points in
the top panel show the relation between the variances.

The calculated relation between these quantities follows
rather closely the relation obtained by convoluting func-
tions of the form of Eq. (2) (with co=const) in analogy to
Eq. (23). This latter relation is shown by the solid curves
in Fig. 19.

Reversing the argument, one may use the solid curves
shown in Fig. 19 to assess the shape of the distribution
P(, /z)z(h@) from the measured distribution P(b,@,~).
The results shown in Fig. 16 suggest that the extrapola-
tion from P(, /~)~(b, @) to P~(b 4) may be somewhat un-
certain if the exact shape of the weight function is not
known. In order to assess such uncertainties, we have
calculated the variances, ( b,@(&/z)z ) ' and ( b,@&) '

of distributions, P(»z)&(M&) and P&(M&), for a broad
range of multiplicities and/or azimuthal anisotropy
coefficients of the average single-particle distributions.
Examples of such calculations are shown by the open and
solid points in Fig. 20. Open and solid points represent
calculations with momentum dependent ( tu =e p sinO) and
momentum independent (co=coo =const ) weight func-
tions for various choices of the parameters c. and coo, re-
spectively. The numerical simulations indicate that the
dependence on the weight function is rather weak. More-
over, the variances of the two distributions are found to
follow a nearly universal curve, independent of the value
of X. (Trivially, for very large X, the central limit
theorem predicts that the two distributions should be re-
lated by a factor of &2.) Hence, the extrapolation from
(4@(»z)&)' to (b,C&z)' is also rather model in-
dependent. For future reference, we have fitted the
points in Fig. 20 with a simple polynomial of the form
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197 ( +@2 ) 1/2 —2 292+ 0 276( +@2 ) 1/2

+0.0135(AC (~/g)~ ) (24)

0.0 I

45 90
AC, s (deg)

90

10
50

p, 40

~ 30
cI
v 20

20

I I I I I
I I I

(/@2 ) 1/2
N/8

30 40 50

FIG. 18. The points show distributions P(A4») for the angle

A4» between two reaction planes, each extracted from subsets
of detected particles containing half the total event multiplicity
using the transverse momentum tensor method, Eq. (12). The
left-hand panel shows the distribution extracted from identified
light particles and intermediate-mass fragments; the right-hand
panel shows the distribution obtained by also including
unidentified low-energy heavy fragments accoring to Eq. (22).
The solid lines show results of Monte Carlo calculations for the
distribution P(4+») using N=8 and co=up sinO with c, adjust-
ed to reproduce the data. The dot-dashed and dashed curves
show the calculated distributions P(, /2)~(AN) and P~(A@) for
the relative orientations between the true reaction plane and the
planes reconstructed from —'N=4 and N=8 particles, respec-

tively.

0
0 j.o

A
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15 20

FIG. 19. The open points show the relation between azimu-
thal anisotropy parameters ( 2 + and 2 + ) and variances

12 (1/2)N
((h@fz)' and (6@I,/zI~)' ) of distribution P(b@&z) and
P(1/2)&(4@) obtained by the Monte Carlo simulations described
in the text. The curves show the relation obtained with Eq. (23)
when one approximates the distributions P„/„~(P) by analyti-
cal functions, PI, /zI~(P) ~ exp( —co'sin'P).
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FIG. 20. Relation between the variances, (4&~, ~&I~)' and

(b@&)'~, of distributions, P~, zz~~(64) and P~(bCP), calculat-

ed for a broad range of multiplicities and azimuthal anisotropy

parameters. Open and solid points represent calculations with

momentum-dependent (co=cp sinO) and mornentum-

independent (co=coo) weight functions, respectively. The curve

represents a polynomial fit, Eq. (24).

The arguments can be generalized to assess the relative
accuracy of reaction plane determinations by the fission
and transverse momentum tensor methods for events in
which two fission fragments are detected in the exit chan-
nel. Figure 21 shows the distributions, P(b,@), for the
relative orientations of planes determined from two half-
subsets of light particles and IMF's [P(b,@i z), solid
points]; from one half-subset and fission fragments
[P(b,4~ i), star-shaped points]; froin fission fragments
and the full set of %=4—9 light particles and IMF's
[P(h@F z), open squares]. In order to obtain estimates
of the primary distributions [P~»z~&(b, @), Pz(bA&),
P~(h4)] of the experimentally determined planes with
respect to the true reaction plane, we assume that the rel-
ative orientations between two planes A and B can be de-
scribed by convolutions of the form

P(b@~ ~)= JP„(C&)P~(C&+6@~ ~)d4, (25)

where P~(@) and P~(N) denote the probability distribu-
tions for the angle 4 between the true reaction plane and
the planes A and 8, respectively. For simplicity, we as-
sume that the distributions P„(@) and P~(4) can be
parametrized in terms of Eq. (2) with co=const. The
dashed curves in Fig. 21 show the convolutions of the in-
dividual reaction plane distributions, Eq. (25). From the
convolution of the two half-sets, we extracted the shape
of the distribution P~»z~z(b@), shown by the dot-dashed
curve. Using this information, we estimated the shape of
the distribution, Pz(b, @), of fission plane orientations
(dotted curve) from the relative distributions of the
planes extracted for one half-subset and from fission. Fi-
nally, we made an estimate of the shape of the distribu-
tion, P&(b,@),of planes extracted from all light particles
and IMF's (solid curve). As might have been expected
from Figs. 8 and 11, the estimated distributions Pz(4@)
and Pz(b, @) have similar azimuthal anisotropies for the

0.2 I, , I

0 45 90
b4 (deg)

FIG. 21. Distributions for the relative orientations of planes
determined from two half-subsets of light particles and IMF's
(solid points), from one such half-subset and from fission (star-
shaped points), and from the full set of light particles and IMF's
and from fission (open squares). The dashed curves represent
convolutions of the estimated distributions, P(&~&)&(hN),
P~(b, &), and PF(h@), shown by the dot-dashed, solid, and dot-
ted curves, respectively.

0.0

present reaction, in qualitative agreement with the obser-
vations of Ref. [49].

In order to obtain an estimate of the azimuthal distri-
bution of the various trigger particles with respect to the
true reaction plane, we assume that the accuracy of reac-
tion plane determinations does not depend on the trigger
particles. This assumption may not be strictly valid since
different trigger particles may originate from collisions
with different ranges of impact parameter characterized
by different azimuthal distributions of the emitted parti-
cles. Furthermore, we assume that the experimental az-
irnuthal distributions can be described by convolutions of
the form of Eq. (25), where the distributions P„(@)and
P~(@) represent the distributions of the trigger particle
and of the experimentally determined reaction plane with
respect to the true reaction plane, respectively. The dis-
tribution of fission planes, PF(@), could have been taken
from Fig 21. Instead, the Qssion distribution, the indivi-
dual trigger particle distributions and the distribution of
planes, Pz, (@), extracted from detected light particles
and IMF's (excluding the trigger particle) were fitted
simultaneously to the data shown in Fig. 8 and to angular
correlations, P(b@~ ~&,~), between the fission plane
and the plane de6ned by the N —1 light particles and
IMFs which were detected in coincidence with the
trigger particle. The fission distribution, P~(N), extract-
ed from this global fit displayed an azimuthal anisotropy
coefficient of 3@+=7.0+0.3 consistent with the results
shown in Fig. 21 and providing an additional cross check
for the accuracy of our previous results obtained by sub-
dividing each event into two subsets containing equal
numbers of particles. The extracted distribution
P~, (N) was found to be slightly less anisotropic that
the distribution Pz(@) shown by the solid curve in Fig.
21. This slight difference is consistent with the fact that,
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In this paper, we have investigated and compared vari-
ous methods to determine the orientation of the entrance
channel reaction plane from the distribution of detected
particles. In order to allow a comparison of methods
utilizing light particles with that using fission fragments,
we studied the asymmetric reaction Ar+ ' Au at
E/A =35 MeV.

For this reaction, very similar azimuthal correlations
were observed with respect to the fission plane and with

Ar + Au, E/A = 35 MeV

1.0

0.5

~ 0.0 :

p. 1 0 ====-=- -=

0.5- PT

0.0 '

0

12—20 MeV/nucleon, ez=45', N=4 —9
I ~ ~ . ~ ~

45 90 45 90 45 90
(t' («g)

45 90

FIG. 22. Azimuthal distributions of the various trigger parti-
cles with respect to the measured reaction plane (solid points).
Dashed curves show assumed distribution with respect to the
true reaction plane. Solid curves show the results obtained by
the convolution described in the text.

in Fig. 22, one less particle is used for the construction of
transverse momentum tensor. Within the experimental
uncertainties, the difference between extracted distribu-
tions P~(@) and P~, (@) is consistent with the calculat-
ed multiplicity dependence shown in Fig. 16.

For illustration, Fig. 22 gives a comparison of these
global fits (solid curves) with the experimental distribu-
tions extracted by means of the transverse momentum
tensor method (solid points). (Fits of similar quality are
obtained for azimuthal distributions measured with
respect to the fission plane. ) For ease of presentation, all
calculated distributions shown in the figure were normal-
ized to P(0)= l, and the normalization of the experimen-
tal distributions was treated as a fit parameter. The
dashed curves show the extracted distributions of the in-
dicated trigger particles with respect to the true reaction
plane. Quite clearly, all measured azimuthal distribu-
tions are strongly damped by the finite resolution with
which the reaction plane is determined experimentally.
For particles heavier than o. particles, the measured az-
imuthal distributions are more sensitive to the limited ac-
curacy of the experimental reaction plane determination
and less sensitive to the azimuthal anisotropy of the un-
derlying triple differential cross section of the trigger par-
ticle.

VII. SUMMARY AND CONCLUSION

respect to the plane defined by the orientation of the ma-
jor axis of the transverse momentum tensor. The recon-
struction of the reaction plane was shown to improve
with lower detector thresholds and when unidentified
low-energy heavy fragments, stopped in the scintillator
foils of our detectors, were incorporated into the analysis.
Further improvements could be expected with detectors
capable of identifying such particles and measuring their
energies.

The convergence of the transverse momentum tensor
method was explored via Monte Carlo simulations. The
quality of reaction plane reconstruction was found to be
sensitive to the azimuthal anisotropy of the average
single-particle distributions; it was only moderately sensi-
tive to the multiplicity of detected particles. Exact
knowledge of the weight functions, characterizing the
dependence of azimuthal anisotropies on energy, angle,
and particle type, was found to be of minor importance as
long as known dependences were taken into account in an
approximate way.

In situations in which the transverse momentum tensor
method is close to optimal, one can obtain reasonably ac-
curate information about the resolution of reaction plane
reconstructions by dividing events into two parts, each
with half of the original multiplicity, and determining the
probability distribution of the angle between the reaction
planes determined for each of these subsets. From this
experimental probability distribution, one can unfold the
resolution of reaction plane reconstructions for each of
these parts in a fairly model-independent fashion. Furth-
ermore, the extrapolation of the resolution for the full
event was found to be relatively insensitive to the func-
tional form of the weight function. In practically all
cases, the azimuthal distributions of trigger particles
measured with respect to experimentally determined re-
action planes were found to be strongly damped by the
accuracy with which the reaction plane can be deter-
mined experimentally.

Detailed comparisons of experimentally measured tri-
ple differential cross sections with theoretical predictions
must account for the intrinsic resolutions with which the
reaction plane was reconstructed. The accuracy of reac-
tion plane reconstructions was shown to depend strongly
on the azimuthal anisotropies of the detected particles
which are largest for complex particles. On the other
hand, many microscopic theories presently predict only
single-nucleon distributions. In order to be able to make
quantitative comparisons of experimental triple
differential cross sections with predictions of single-
particle theories, one must solve the problem of relating
the azimuthal distributions of nucleons to those of com-
plex particles.
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