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We determine the parameters of an algebraic radial wave function (a solution of the Ginocchio poten-
tial) corresponding to the ds,, valence neutron orbital of '’O by making a fit to the high ¢ magnetic
electron scattering data. The wave function so determined is similar to other finite well wave functions
also fitted to these data. It has, however, an rms radius about 6—10 % larger than the corresponding
Woods-Saxon wave functions. We suggest from this result that (i) the determination of rms radii of
valence nucleon radial wave functions from magnetic electron scattering is more model dependent than
previously realized, and (ii) the Okamoto-Nolen-Schiffer anomaly in 4 =17 may be underestimated by

previous calculations with finite wells.

I. INTRODUCTION

Electron elastic determines the spatial distribution of
the charge and magnetization density of the nucleus in its
ground state [1]. Elastic charge scattering arises from
coherent contributions to the charge density operator
and therefore cannot tell us about the contribution of the
individual proton orbits to the total charge density. In
contrast, elastic magnetic scattering is capable of provid-
ing information on the radial distribution of valence or-
bits for both protons and neutrons. In particular, a mi-
croscopic nuclear theory explanation of the magnetiza-
tion data [2,3] of 17O begins with the simple shell-model
picture that the entire magnetic cross section originates
from the ds,, neutron outside a doubly closed '®O core.
This simple picture is not adequate to explain the entire
range in g of the data and many other effects have been
examined [4]. In spite of this plethora of effects, magnet-
ic electron scattering stands out as a relatively clean
means of probing fundamental aspects of the strong in-
teraction. It was early realized that at high g the
highest-order allowed multipole (M5) is dominant and
configuration-mixing effects are minor in this region.
This means that individual shell-model orbitals can be
obtained from the high ¢ data [1,10,13]. The primary
purpose of this paper is to determine from the 'O data
an algebraic radial wave function for the d5,, neutron or-
bital of the independent particle shell model. Having ob-
tained this wave function, we then compare with other
studies of the magnetization density of 7O to draw the
tentative conclusions: (i) the determination of rms radii of
valence nucleon radial wave functions from magnetic
electron scattering is more model dependent than previ-
ously realized and (ii) the Okamoto-Nolen-Schiffer (ONS)
anomaly [14] for the case of 4 =17 may have been un-
derestimated by previous calculations. A precise
knowledge of the systematics of the ONS anomaly is
needed to assess the recent flurry of explanations of the
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anomaly which appeal to traditional sources of nuclear
charge asymmetry (primarily p — o mixing) [15] or which
attribute charge asymmetry to a partial restoration of
chiral symmetry in nuclei [16].

To arrive at these results we begin with the finite well,
proposed by Ginocchio, which allows analytic bound-
state and scattering solutions [17]. The Ginocchio poten-
tial is well suited for nuclear physics applications: To an
excellent approximation, the parameters can be separate-
ly tuned to reproduce specific features of nuclear charge
form factors and the Ginocchio potential reproduces the
charge form factors of '°0 as well as a Woods-Saxon po-
tential. We have reexamined the radial distribution of
the ds,, orbital in the extreme single-particle model of
70 assuming the Ginocchio potential describes the nu-
clear mean field. Because the orbitals are analytic, one
can refine the calculation of the 7O form factor to the so-
phistication desired. Because the orbitals arise from a
finite well, one can examine the single-particle picture
(and eventually higher-order effects) accurately and trans-
parently.

Of those higher-order effects which are important in
the M5 multipole, we neglect three-body force and rela-
tivistic effects, but do pay careful attention to meson-
exchange currents and the nucleon electromagnetic form
factor. A consistent treatment of three-body force, rela-
tivistic, and exchange current effects has been described
[18], but the primary aim of this work is a study of realis-
tic wave function effects so we follow the usual approach
in order to compare with other calculations. Further-
more, we leave configuration-mixing effects (which large-
ly effect M 3) for a future effort [19].

We find, in agreement with earlier results [10], that the
set of well parameters fitted to charge scattering, which is
somehow ‘““‘averaged” over all the occupied proton orbits
of %0 does not agree with the parameters which best fit
the magnetic scattering of a single valence neutron. We
show that the d5,, wave function of the Ginocchio pa-
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rametrization of the nuclear mean field compares well
with the only self-consistent microscopic calculation
available [20]. We extract a ds,, radius with a smaller
uncertainty than before because of our use of analytic or-
bitals and because data at high g has become available
since the earlier calculations. The obtained radius is
about 10% larger than that of the most recent Woods-
Saxon parametrization; a result which has implications
for Coulomb-energy differences of mirror nucleus pairs
[14] and thus for nuclear charge asymmetry.

II. FORMALISM AND RESULTS

The evaluation of the transverse form factor in terms
of single-particle reduced matrix elements of the mul-
tipole operators is well known [21,22]. Convenient tables
exist which summarize the matrix elements in terms of
angular momentum factors times radial integrals of
single-particle wave functions [23]. We assume the in-
dependent particle shell model (i.e., no configuration mix-
ing) and use closed-form single-particle wave functions
derived from Ginocchio’s finite well. This well and its or-
bitals are a little complicated so we refer to the original
article [24] for a description of the general potential. We
employ a limiting case which is finite at the origin and
the effective-mass parameter is set to zero so that the
mass does not depend on the radial coordinate (i.e., the
well is local in each partial wave). The Ginocchio poten-
tial is similar in shape to a Woods-Saxon potential but it
is angular momentum dependent. Spin-orbit splitting is
incorporated by having the strength parameters depend
on the spin alignment relative to the orbital angular
momentum. The potential is characterized by the param-
eters s, A, and v;;- The scale parameter s, in units of in-
verse femtometers, defines a dimensionless radial coordi-
nate and effectively determines the depth of the potential
at the origin for some fixed value of / and j. The poten-
tial is actually a function of a dimensionless coordinate y
which varies from 0 to 1 as the radial coordinate varies
from zero to infinity. The shape of the potential is deter-
mined by the parameter A which appears in the implicit
definition of y. For given values of s and A, the spin-orbit
parameters v;; are then fixed by the single-particle bind-
ing energies in the nucleus. These analytic bound-state
wave functions, unlike the orbitals of the harmonic-
oscillator potential, thus have the correct behavior at
large r. They also differ at large r from the wave func-
tions of the microscopic theory of Ref. [20] which had
Gaussian tails for » > 10 fm.

Because the potential is given as a function of y, it is
convenient to use y (r) as the independent variable of in-
tegration in the radial integrals. The transformation to
z=In[2/(1—y)] as the independent variable is helpful
numerically [25] because of the peaking of the integrands
near y =1. There are no problems with granularity in the
integral, as could happen with the usual finite well solu-
tions when the form factor is evaluated at high momen-
tum transfer q. For example, Woods-Saxon wave func-
tions exist only on a finite mesh from numerical integra-
tion of Schrodinger’s equation or as a set of expansion
coefficients in a suitable basis. The Ginocchio wave func-

tion is readily available for every value of y, allowing
adaptive techniques to evaluate the required integrals for
any desired g. We used an algorithm based upon com-
posite trapezoid sum with cautious Romberg extrapola-
tion [26].

For orientation we first fitted the charge form factor of
%0 with the values 1/s=7.75 fm and A=2.75 and the
v;;’s appropriate to the three proton single-particle ener-
gies of !°O. There is a rather definite physical
significance of each parameter for the charge distribu-
tion, as noted in Ref. [25]. An adjustment in the depth of
the p,,, potential at the origin (obtained by varying s)
changes primarily the location of the first diffraction
minimum and hence the size of the calculated nucleus.
An adjustment of the shape parameter A changes pri-
marily the height of the second diffraction maximum.
The fit by eye for ¢ <3 fm ™! appears equal in quality to
earlier fits with Woods-Saxon potentials [27]. The
Woods-Saxon potential has four parameters: an overall
strength ¥V, a well radius r,, a diffuseness parameter a,
and the spin-orbit strength V. Electric charge scatter-
ing is sensitive to only the two parameters a and the ratio
V,/r3 and is virtually independent of ¥V, [28]. Other
experimental probes of the nuclear wave function are
then needed to learn about the remaining parameters of
the Woods-Saxon potential.

The %0 Ginocchio well parameters determined by the
charge distribution, however, yield a very bad representa-
tion of the 70O magnetic form factor. The M5 contribu-
tion at large ¢ >2.5 fm ™! falls lower than the data by an
order of magnitude. In this respect, the Ginocchio po-
tential is no different than the harmonic-oscillator poten-
tial [5] nor a Woods-Saxon potential [10].

To determine the parameters of the Ginocchio poten-
tial which best fit the 'O data above 2.0 fm ™!, we as-
sumed no quenching of the M5 multipole (consistent with
the quenching factor 1.03+0. 11 found by Hicks [10] and
0.92+0.09 obtained in another early analysis [29]). The
best fit to the high g data is shown in Fig. 1 as the dash-
dotted line. It was obtained with the parameters
A=2.975 and 1/5s=7.35 fm (corresponding to a well
depth at the origin of 50 MeV, or about 10 MeV greater
than the '°0 well). The ds,, wave function of this poten-
tial appears as the dash-dotted line of Fig. 2(a); it has an
rms radius of 3.68+0.04 fm. The errors associated with
the rms radius correspond to an increase in the y? per de-
gree of freedom (equals 1.17 in our displayed best fit)
from y? to y?>+1 as the input parameters are varied.
This is the point-neutron rms radius of the ds,, wave
function as corrections for the finite size of the neutron,
center-of-mass corrections, and meson-exchange currents
have already been included in the fit. The meson-
exchange current contributions [30] and center-of-mass
corrections [31] were calculated for a harmonic-oscillator
(HO) wave function (b =1.76 fm). The quality of the
description of the data by the HO wave function with the
same three corrections included can be inferred from the
short dashed line of Fig. 1.

The point neutron rms radius of the ds,, orbital ex-
tracted from the data was not affected greatly by small
changes in the input. For example, omitting the three
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highest data points gave an rms radius of 3.661+0.04 fm
with a lower xy2=0.45 corresponding to well parameters
A=3.025 and 1/s=7.425 fm. A center-of-mass correc-
tion with a different oscillator parameter (b =1.72) gave
an rms of 3.70+0.04 fm. It was difficult to fit the data
when meson-exchange currents were not included in the
fit. The best representation was with well parameters
A=2.975 and 1/5=7.05 fm corresponding to an rms of
3.59+0.04 fm. This was a poor fit with y>=3.4; the
theoretical curve was below the points ¢ =2-2.7 fm 1.

The finite size of the neutron’s magnetization was
parametrized by the latest information available to us.
That is, we combined the Sach’s form factors G ob-
tained from a recent determination of the deuteron struc-
ture function [32] and G, from inelastic electron scatter-
ing at higher momentum transfers [33] to form the
F,(g?) needed in the calculation. This seemingly ad hoc
parametrization does not differ much, in the momentum
range ¢ =2-3 fm ™!, from the Karlsruhe parametrization
[34] which was the last modern dispersion relation fit to
use all available data subjected to analyticity and unitary
constraints. The fitted d5,, wave function is not sensitive
to a choice between these two neutron form factors, but
an often used dipole (A=855 MeV) forces a new fit at
A=2.85 and 1/s=7.15 fm or rms radius of 3.73+0.04
fm. This is because the dipole is about 5% higher than
the more accurate parametrizations at g ~3 fm ..

To maintain a good fit to the data, a small change in
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FIG. 1. Magnetic form factor squared of 'O versus momen-
tum transfer. The short dashed curve gives the harmonic-
oscillator (b =1.76 fm) results while the dot-dashed curve
represents the Ginocchio potential result discussed in this pa-
per. Corrections for neutron finite size, center of mass motion,
and meson-exchange currents are included in both curves. The
data are taken from Ref. [2,3].

the shape parameter A must be accompanied by a com-
pensating change in 1/s. To a good approximation, the
region of parameter space which fits the data takes the
shape of long ellipses with major axis along the line
(A+0.7)=(1/5)(0.5 fm~1). This relationship is reminis-
cent of the “V,/ry” ambiguity of the Woods-Saxon po-
tential for scattering from the charge density, and has the
same explanation [28], which we adapt here. That is,
magnetic electron scattering from the highest multipole
of 70O depends upon the amount of intrinsic magnetiza-
tion, and hence on the wave function, at a given radius.
Thus, for example, if we deepen the well (by decreasing
1/s) we must also extend it (by decreasing A) in order to
keep the spatial distribution of the wave function approx-
imately the same. However, in the case of magnetic elec-
tron scattering, this argument can be sharpened by the
observation that the high g fit is most sensitive to the ra-
dial position of the peak of the wave function [10,13,22].
This is easily seen from the relation between the contribu-
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FIG. 2. Wave functions (squared) for ds,, neutron valence
orbitals of 1’O. The curves represent the harmonic oscillator
(short dashes), Woods-Saxon (long dashes) with parameters
from Ref. [35,3], a Brueckner calculation (solid line), and
Ginocchio (dots-dashes) wave functions. The harmonic-
oscillator and Ginocchio wave function were used to obtain the
magnetic form factor results presented in Fig. 1. Integrands for
the point neutron rms radius calculation. Curves are as in short
dashes-harmonic oscillator (rms radius=3.29 fm), long dashes-
Woods-Saxon (rms radius=3.37 fm) [3], solid-Brueckner calcu-
lation (rms radius~3.5 fm), dots-dashes-Ginocchio wave func-
tion (rms radius=13.68 fm).
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tion to the highest multipole and the radial wave function

u=ry:
®© 5 .
FMSOquO u(r)j,(gqridr . (1)

At high g, the smaller the r at which the peak of u? sits,
the more support for Fs. The single-particle density
(<u?) at very large radius does not significantly affect
F)s, but this density is heavily weighted at large 7 in the
rms integral. Thus it is possible for d5,, wave functions
of two different nuclear mean fields to both fit the data,
but have slightly different rms radii.

We illustrate the wave function part u? of the in-
tegrand of Eq. (1) in Fig. 2(a). The short dashed (dot-
dashed) lines represent the harmonic-oscillator (Ginoc-
chio) orbitals which produce the magnetic form factors of
Fig. 1. For comparison, we display as long dashes a
Woods-Saxon wave function which was phenomenologi-
cally successful in a fit to the '°0(d,p) 17O experiment at
three energies [35]. The parameters of this Woods-Saxon
potential (first line in Table 2 of Ref. [35]) give a good ac-
counting [3] of the 1’0 magnetic scattering form factor if
meson-exchange currents are neglected [36]. The solid
line is the result of a systematic approach (in the context
of Brueckner theory) to the calculation of self-consistency
effects in core plus valence nucleon systems [20]. This
microscopic ds,, wave function is underbound by ap-
proximately 1.5 MeV compared to experiment
(E5/,=—4.15 MeV). Therefore, for » =10 fm, the long-
range tail of the ‘“Brueckner” wave function falls off
slightly less rapidly than those of the Woods-Saxon or
Ginocchio parametrizations which do incorporate Es .
After r =10 fm the microscopic wave function decays as
a Gaussian because of the large but still modest
harmonic-oscillator basis space used to expand the wave
function. (The harmonic-oscillator orbital has, of course,
an incorrect Gaussian tail due to the extreme truncation
of a harmonic-oscillator basis space.) Except for this
small difference in the binding energy, the two finite well
orbitals of Fig. 2(a) are in quite good agreement with the
best microscopic calculation available [20].

It is, however, not the tail but the position of the peak
of u?(r) which determines the high g behavior of the
magnetic form factor. We note that the Woods-Saxon or-
bital peaks at a smaller value of r than the other three or-
bitals shown in Fig. 2(a). This follows from Eq. (1): the
orbital must peak at smaller 7 to fit the data because the
Fourier-Bessel transform does not include the additive
(positive) contribution from meson-exchange currents
which were included in the HO and Ginocchio fits. If we
had refit the Woods-Saxon orbital in the same way as the
latter two orbitals, it would have peaked at nearly the
same place. On the other hand, if one weights u2(r) by
r2, one has the rms integrand plotted in Fig. 2(b). A com-
parison of Figs. 2(a) and 2(b) shows clearly the major
difference between a Woods-Saxon and a Ginocchio ds,
orbital to be, not in the location of the peak, but on the
large r side of the peak. It is not surprising that the rms
radius of a Ginocchio orbital fit to the data is larger than
that of a Woods-Saxon fit. Indeed this is the case: our
best fit Ginocchio orbital has a point rms radius of

3.6840.04 fm which is about 6—10 % larger than compa-
rable Woods-Saxon radii. Those point nucleon radii in
the literature which (we believe) also include the three
(finite nucleon size, center of mass motion, and meson-
exchange current) corrections in the fit to the data are
3.4940.09 fm [10], 3.354+0.03 fm [29], and 3.46 fm [3].
(We have scaled the values 3.36 fm of [3] and 3.37 fm
obtained by us [36] to roughly account for meson-
exchange-current corrections.) Alternatively, one could
take the point of view that meson-exchange-current
corrections are nearly canceled by core polarization
effects [37] so one should leave them out for a better esti-
mate. This procedure, advocated in Ref. [3], yields the
smaller rms radii 3.39£0.09 fm [10], 3.36 fm [3], and
3.59+£0.04 of the present investigation. Again the best-fit
Ginocchio orbital has a point rms radius which is about
7% larger than comparable Woods-Saxon radii.

The results to this stage raise the issue of whether the
Ginocchio wave function is physically acceptable since it
has a somewhat larger radial extension than those of the
traditional Woods-Saxon well. The full test of the useful-
ness of Ginocchio’s potential in nuclear physics must
come from a variety of experimental probes, such as
those of Ref. [29, 35]. At the moment we have evidence
of its successful description of scattering from the charge
densities of 2C [25], 'O (this paper and [38]), and *®*Pb
[17], and the magnetization density of 7O (this paper).
In addition, the B(E2) electromagnetic transition rates
of %0 are quite well reproduced by a large shell-model
calculation with the Ginocchio potential wave functions
[38].

We close by briefly commenting on the comparison of
binding-energy differences of mirror nuclei (such as "O-
") with calculated electromagnetic effects [14]. The
binding-energy difference should mainly be determined
by the direct Coulomb interaction of the odd nucleon
with the core. Many other correction terms modify this
direct Coulomb interaction contribution only slightly.
The total calculated electromagnetic energy differences in
light mirror pair (4 <41) are about 5-6 % smaller than
experimental measured values [14,39]. This “Okamoto-
Nolen-Schiffer anomaly” has often been characterized by
the rms radius of the odd nucleon—the larger the rms ra-
dius, the smaller the direct Coulomb interaction. Experi-
ence gained from shell-model calculations with Woods-
Saxon potentials indicate a nearly linear dependence be-
tween the value of the valence-orbit rms radius and the
Coulomb energy difference. Increasing the rms radius of
the odd nucleon by 2% results in a 19 decrease of the
theoretical direct Coulomb energy difference [40]. A
similar trend (but with different numbers) has been ob-
tained with single-particle wave functions deduced from
Hartree-Fock calculations [41,42]. If (i) this linear
dependence upon the rms radius also holds for the Ginoc-
chio orbitals and if (ii) they provide a correct description
of 170, then the Okamoto-Nolen-Schiffer anomaly can be
estimated for the 4 =17 pair by interpolation of the re-
sults of Table 4 of Ref. [40]. The anomaly then increases
from 310 keV of Table 6 (quoted, for example, in the
third of Refs. [16]) to 420 keV or about 35% over
Woods-Saxon estimates for the 4 =17 pair. (If one does
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not correct the data for meson-exchange-current contri-
butions, the finite size rms radius of the Ginocchio orbital
is 3.68 fm, and one estimates a discrepancy of 360 keV or
15% more than the Woods-Saxon estimate.) More work
is needed to substantiate assumptions (i) and (ii).

In conclusion, we have successfully described the !0
magnetic form factor at high ¢ by orbitals of a finite well
which are available in closed form. The d5,, Ginocchio
wave function has a point rms radius of 3.68+0.04 fm.
This radius is about 6—10 % higher than that of Woods-
Saxon orbitals which describe the same data. Yet, both
finite well orbitals bracket the one obtained from a micro-
scopic Brueckner calculation of '70. If one assumes that
the Ginocchio potential provides a good description of
the mean field of the nucleus, two conclusions can be
drawn from this result: (i) the determination of rms radii

of valence nucleon radial wave functions from magnetic
electron scattering is more model dependent than previ-
ously realized, and (ii) the Nolen-Schiffer anomaly may be
underestimated by current calculations. A need for fur-
ther experience with this interesting new potential is sug-
gested by our results.
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