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High-accuracy measurements of A~(0) data for elastic scattering and inelastic scattering to the first
excited state for n+ Pb have been performed at 6, 7, 8, 9, and 10 MeV. In addition, o(0) was rnea-
sured at 8 MeV. These data provide an important subset for the growing database for the n+ 'Pb sys-
tem from bound-state energies to energies above 40 MeV, the limit of the range of interest here. This
database has been interpreted via several approaches. First, a conventional %'oods-Saxon spherical opti-
cal was used to obtain three potential representations for the energy range from 4 to 40 MeV: "best fits"
at each energy, constant-geometry global fit with linear energy dependences for the potential strengths
for the range 4.0—40 MeV, and an extension of the latter model to allow a linear energy dependence on
the radii and diffuseness. A preference for a complex spin-orbit interaction was observed in all cases.
Second, the dispersion relation was introduced into the spherical optical model to obtain a more "realis-
tic" representation. In our approach, the strength and shape of the real potential was modified by calcu-
lating the dispersion-relation contributions that originate from the presence of the surface and volume
imaginary terms. Two potentials were developed, one based only on the scattering data (from 4.0 to 40
MeV) and another based additionally on single-particle and single-hole information down to a binding
energy of 17 MeV. In addition, the o.(0) and A~(8) measurements were compared to earlier convention-
al and dispersion-relation models. One of the latter of these included an l dependence in the absorptive
surface term, and we applied this model in the 6- to 10-MeV region to describe all the o.(0) and the new
A~(0). A reasonably good overall description was obtained by all the models; however, only the I-
dependent model came close to giving a detailed agreement to the data around 7 MeV, a region where
some abnormal angular dependences occur in the data.

I. INTRODUCTION

Since the publication of Mahaux and Ngo [1] in 1982,
one of the most intriguing developments in nucleon-
nucleus scattering is the gradual recognition of the im-
pact of the dispersion relation which connects the imagi-
nary (absorptive) central potential to the real central po-
tential. The existence of the relation, which occurs be-
cause of causality requirements, was pointed out for nu-
clear systems by Feshbach [2] in 1958, but its importance
was ignored in most optical-model analyses. Mahaux and
Ngo showed that the dispersion relation (DR) provided a
convenient method for interconnecting the shell-model
potential for bound states to the nucleon-nucleus poten-
tial for scattering in the continuum. They were also able
to obtain the Hartree-Pock potential (the mean field) for
finite nuclear systems. Their specific examples were neu-
tron scattering from the closed-shell nuclei Pb and
"Ca. In the last few years many DR analyses have been
published because of the successes illustrated in their pa-
per.

The system Pb(n, n) has been central to much of the
development of optical-model potentials and, in particu-
lar, the inclusion of the dispersion relation. There are

numerous reasons for this. First, there exists a wealth of
high-accuracy differential cross-section o.(0) and total
cross-section O. z- data over a wide energy range. Second,
there also exists a large amount of complementary infor-
mation about bound states, both particle and hole states,
for the n+ Pb system. In addition, many phenomeno-
logical models have been developed which have shown
that Pb(n, n) is a good candidate for a spherical-
optical-mode (SOM) representation. Last, there is a large
amount of complementary Pb(p, p) data; this feature
permits detailed comparison between models for the two
scattering systems and allows investigation of isospin and
Coulomb effects.

Detailed information about Pb(n, n) elastic-scattering
differential cross sections cr(0) have been obtained in a set
of careful measurements performed at Ohio University
[3—5). From a comprehensive analysis of this work in
1985, Armand, Finlay, and Dietrich [5] found that the
data set could not be 6t at all energies using Woods-
Saxon (WS) form factors with constant geometry. The
fits to the differential scattering data below E =20 MeV
required variations in the geometries of the real volume
and imaginary surface potentials. In particular, they ob-
served that the real radius increased and the depth of the
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real volume potential flattened as the neutron energy de-
creased from 20 to 5 MeV. This resulted in a volume in-
tegral for the real potential that showed an anomaly
below 20 MeV similar to what had been predicted by
Mahaux and Ngo [1]. In a subsequent paper, Johnson,
Horen, and Mahaux (JHM) [6] invoked a DR constrained
optical model with fixed geometry to analyze both the
scattering and bound-state data and deduced a unified
description of the mean field. This work clearly exhibited
the changes in the depth and radius of the "effective" real
volume potential brought about by the DR. Following
this publication, Jeukenne, Johnson, and Mahaux (JJM)
[7] expanded this analysis. Although the DR models do a
remarkable job of describing most of the data, they do
not give precise reproductions of the scattering data,
especially in the backward-angle region below 10 MeV.

While the optical models were being developed in the
work to be reported in the present paper, Finlay et al. [8]
presented optical-model analyses of o (8) and A~(8) data
for Pb(p, p) for 9(E 61 MeV and of o(8) for

Pb(n, n) for 4(E (40 MeV. In addition to conven-
tional SOM analyses, they performed analyses first in-
volving the dispersion relation (but without considering
the bound-state information in the region E (0) and then
involving non-Woods-Saxon shape potentials via a
Fourier-Bessel description. They confirmed the anoma-
lous energy-dependent behaviors of the root-mean-
squared radius and the volume integral for the real poten-
tial for Pb(n, n) for E (8 MeV.

At the Triangle Universities Nuclear Laboratory
(TUNL), we have developed a time-of-flight system to
measure the analyzing power function A~(8) for neutron
scattering in the 6—19-MeV energy range. One of our
earliest measurements was a determination of A (8) at 10
and 14 MeV for Pb(n, n) by Floyd [9]. Since that time,
we have improved our facility for conducting such exper-
iments more efficiently, and this has allowed us the
unique capability to obtain detailed shape information of
A~(8) with high statistical accuracy. As these techniques
were developing, calculations by one of the present au-
thors (D.H. ) suggested that the Pb(n, n) system would
be a good testing ground for parity-dependent potentials,
as well as I-dependent potentials, if one had high-
accuracy A (8) data in the 6—10-MeV range. Since this
energy region was also the region where Armand, Finley,
and Dietrich [3] found interesting energy dependences in
their SOM analyses and where the DR was shown to play
a particularly sensitive role, we undertook such measure-
ments. In addition, in order to complete the o(8) data-
base in the 4.5—10-MeV range, we measured o(8) at 8

MeV for ' Pb(n, n). In the process of these measure-
ments, data for A~(8) and o (8) for inelastic scattering to
the first excited state (3 ) were also obtained.

We note that analyzing power data for neutron scatter-
ing in the 6—10-MeV range play an important role in test-
ing nucleon-nucleus scattering models for heavy nuclei.
The reason for this is that the complementary piece of in-
formation that is indeed useful at higher energies, i.e.,
scattering observables for Pb(p, p) are almost complete-
ly described by the Coulomb scattering process. For in-
stance, all the detailed information about the nucleon-

nucleus spin-orbit interaction is completely masked for
Pb(p, p) below 10 MeV.
The presentation here is organized in the following

way. Details of the experimental techniques and pro-
cedures for data analyses and uncertainties are described
in Secs. II and III, respectively. Conventional spherical-
optical-model analyses for Pb(n, n) over the energy
range from 4.0 to 40 MeV are detailed in Sec. IV. The
SOM analyses are extended to include the dispersion rela-
tion in Sec. V, where eventually the single-particle infor-
mation is fit along with the data set for (n, n) scattering.
A brief summary is given in Sec. VI. In this section we
also compare the data with calculations using the DR
models of JHM and JJM. (By the time the paper of Fin-
lay et al. [8] appeared, all the conventional SQM and
some of the DR calculations reported in the present pa-
per had been completed [10]. The database in the present
paper is larger than in Ref. [8], and differences in the de-
rived parameters are attributed in part to the improved
database and in part to the relative weights given to
different data sets in the fitting procedure. )

II. EXPERIMKNTAI. TECHNIQUES

A. Introduction

Differential cross sections o(8) and analyzing powers
A (8) were measured using the neutron time-of-flight fa-
cilities at TUNL. With the exception of the ion source
used, both types of measurements utilized similar or iden-
tical equipment and followed somewhat similar pro-
cedures. Since much of the time-of-Right equipment and
procedures have been documented elsewhere [11,12], this
paper will only give detailed descriptions for the tech-
niques that are new or particularly important in relation
to the high accuracy of the data.

B. Cross-section measurement

For the a(8) measurement at 8 MeV, a direct-
extraction negative-ion source was used to produce a 50-
keV dc deuteron beam. The deuteron beam was ac-
celerated by a model FN tandem Van de Graaff accelera-
tor. The H(d, n) He reaction at 0' was used as the
source of neutrons. Prior to acceleration, the deuteron
beam mas chopped and bunched to obtain 1.5-ns pulses at
the deuterium-gas target. The beam of pulsed deuterons
(Ed =4.7 MeV) had a time-averaged intensity of 2 pA at
the pulse repetition rate of 2 MHz. The neutron energy
spread due to the energy loss of the deuterons in the 6
atm cm of deuterium gas was 180 keV. Three cylindrical
scattering samples were used: Pb, a standard carbon,
and a standard polyethylene. The samples were suspend-
ed by a thin steel wire with their axes of symmetry per-
pendicular to the horizontal scattering plane. The dis-
tance from the center of the gas cell to the center of a
sample was 12.4 cm. The Pb sample contained 116 g
and was 3.25 cm high by 2.0 cm in diameter. It had an
enrichment of 99.7/o.

For o (8) measurements the time-of-flight spectrometer
facility consisted of four neutron detectors: two main
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detectors a neutron-Aux monitor, and a pulse-timing
monitor. The arrangement of the two main detectors rel-
ative to the scattering sample is shown in El-Kadi [11]
and is similar to that shown below in Sec. IIC. The
detectors were cylindrical liquid organic scintillators that
allowed good pulse-shape discrimination between events
induced by neutrons and y rays.

The main right and left detectors were heavily shield-
ed, and tungsten shadow bars (at least 50 cm long) were
positioned so that the detector, the front edge of the
detector collimator, and much of the detector casing
were shielded from the direct Aux of source reaction neu-
trons. Flight paths of 2.9 and 3.9 m were used for the
right and left detectors, respectively. (Use of the designa-
tion right corresponds to the case of the incident particles
scattering to the right side in a horizontal scattering
plane, viewed from above. ) The neutron-flux monitor
was suspended from the ceiling of the target room and
was used to monitor the flux from the source reaction.
The pulse-timing monitor was located near 0' reaction
angle.

Standard time-of-Bight and pulse-shape-discrimination
electronics were employed. An energy bias of about 2
MeV was used on the main detectors. Data acquisition
and storage was controlled using a Digital Equipment
Corporation VAX-11/780 computer.

The o.(8) measurements were made from 16' to 40' in
4' increments and from 45 to 160' in 5' increments. Data
taken with the Pb sample in place were referred to as
"sample-in" data, while data accumulated with an empty
wire hanger in place were referred to as "sample-out"
data. From 16' to 40 both detectors were used to obtain
measurements at the same scattering angle simultaneous-
ly, with one detector on each side of the beam axis. Such
measurements were useful in checking for normalization
differences between the two detectors and for recognizing
and canceling out scattering-angle shifts. Such angle
shifts can be caused by beam-steering effects or a
misaligned scattering sample. [In the forward-angle re-
gion, a slight scattering-angle shift can give noticeably
different measured cross sections. For example, near 16',
a change of 0.5' at 8.0 MeV produces a 4.6%%uo change in
o (8).]

At the beginning, middle, and end of the angular distri-
bution measurement, the yield for neutron scattering
from hydrogen was measured for normalization purposes
and as a check of systematic drifts in the system. These
normalization measurements were made by successively
scattering from a polyethylene sample and a carbon sam-
ple. The measurements were made at an angle (8„b=30 )

chosen to maximize the separation of the hydrogen-
scattering peak from the elastic- and inelastic-scattering
peaks of carbon. Incidental to the elastic-scattering data,
which is the focus of the present study, data were extract-
ed for inelastic scattering to the first excited state
(1"=3, Q =2.614 MeV).

rons. The beam was ramped within the source, bunched,
and chopped to obtain a pulsed deuteron beam. The po-
larization transfer reaction H(d, n) He at 0' served as
the source of polarized neutrons. The polarization of the
deuteron beam was determined by the quench-ratio
method, which has been discussed by Ohlsen and Keaton
[13]. The polarization of the neutrons was determined
from the measured deuteron-beam polarization using the
polarization transfer function determined by Lisowski
et al. [14].

The beam of pulsed polarized deuterons typically had a
time-averaged intensity of 150 nA and a vector polariza-
tion of about 65%%uo, of which approximately 90% was
transferred to the neutron beam. The repetition rate of
the beam bursts was 4 MHz, and the pulses had a full
width at half maximum (FWHM) of less than 2 ns. The
deuterium-gas thickness ranged from 7.5 atm cm for 6-
MeV neutron production to 20 atm cm for 10-MeV neu-
trons. The respective energy spreads were 0.35 and 0.44
MeV. The same Pb scattering sample as was employed
in the cr(8) measurements was used here.

For the A (8) measurements, the time-of-Sight spec-
trometer facility consisted of six heavily shielded detec-
tors. All of the detectors were liquid organic scintillators
and provided good pulse-shape discrimination. The
detectors, which are shown in Fig. 1, were arranged in
three pairs, each pair consisting of a detector placed at an
equal angle of the left and right sides of the incident
beam axis. Simultaneous measurements with detectors
placed at equal angles help to minimize instrumental
asymmetries.

The detector pair 1 and associated shadow bars were
also used for the cr(8) measurement. The minimum and
maximum angles for simultaneous measurements when
both of these detectors were at equal angles were 16' and
159, respectively. Flight paths of 3.0 and 3.9 m were
used for the right and left detectors, respectively.

Detector pairs 2 and 3 employed copper and
polyethylene shadow bars. They were used over an angu-

C. Analyzing power measurements

For the A (8) measurements the Lamb-shift
polarized-ion source produced a polarized beam of deute-

FIG. 1. Arrangement of the six main neutron detectors for
the A~(0) measurement.
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lar range of 105'—149' and 120'—164', respectively. All
four detectors used in pairs 2 and 3 were rectangular in
shape. Pair 2 detectors were 7.6 cm wide, 12.7 cm tall,
and 5.1 cm thick and were placed at a flight path of 2.6
m. Pair 3 detectors were 7.6 cm wide, 15.2 cm tall, and
5.1 cm thick and were placed at a Qight path of 2.7 m.
The overall time resolution, including the effects of the
neutron energy spread, was about 3.4 ns at E=6.0 MeV
and about 2.6 ns at E= 10.0 MeV.

The A (8) measurements were made from 16' to 40' in
4 increments and from 45' to 160 in 5' increments. Data
were accumulated for four experimental configurations:
sample-in spin up, sample-in spin down, sample-out spin
up, and sample-out spin down, where "spin up" and
"spin down" refer to the polarization direction of the in-
cident neutron beam. The direction of the spin of the in-
cident neutron beam was inverted about every 20 min by
changing the direction of the deuteron polarization at the
polarization-ion source. The deuteron-beam polarization
was measured about every 10 min.

The counting statistics obtained ranged from 0.6% to
3.3% and depended on o(8). The measuring times
ranged from 1 to 12 h, the latter to obtain a 3.3% statisti-
cal uncertainty at 6.0 MeV at 0&,b= 130'. Since the cross
section for inelastic scattering to the first excited state of

Pb is small compared with the elastic-scattering cross
section, analyzing power values for inelastic scattering
from the first excited state of Pb had much larger sta-
tistical uncertainties, ranging from 4.5% to 27%.

III. DATA REDUCTION AND PRESENTATION

A. Cross-section measurements

1. neutron-yield extraction

tory system and calculates corrections to the data using
an iterative procedure. In each iteration of the process,
the simulation employs a library of total and differential
cross sections to generate time-of-Sight spectra at each
detector angle. When sufhcient histories have been ob-
tained, values generated from the current o.(8) library are
used with yields calculated from the simulated time-of-
Aight spectra to generate correction factors. The correc-
tion factors are applied to the experimental data to obtain
corrected o(8) values. After each iteration calculated
yields are compared to experimental yields to check for
convergence. Convergence is said to occur when both
agree to within a set percentage. If convergence is not
achieved, the cross-section library is updated with
coef5cients from a Legendre polynomial fit to the correct-
ed experimental data of the present iteration, and the
iteration process continues. The code EFFIGY15 also cal-
culates the mean energy of the incident neutrons and the
mean scattering angles.

The significance of attenuation, finite geometry, and
multiple-scattering corrections is seen in Fig. 3. The
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To obtain o(8) data, neutron yields were extracted
from so-called difference spectra (DIFF), which were ob-
tained by subtracting normalized sample-out time-of-
Aight spectra (OUT) from the corresponding sample-in
spectra (IN). Examples of an IN, a normalized OUT, and
a DIFF spectrum are shown in Fig. 2. Estimated back-
ground levels were drawn in the difference spectra to ac-
count for sample-correlated backgrounds that were not
measured in the sample-out count. In most cases a linear
function adequately described the residual background.
Wide windows were chosen about peaks of interest, and a
yield per monitor event was calculated. Absolute
differential cross sections were determined by comparing
the yields for Pb to yields for hydrogen scattering and
then normalizing to published n-p scattering cross sec-
tions [15].

2. Finite-geometry, attenuation,
and multiple-scattering corrections
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Neutron time-of-Aight measurements typically require
large samples and detectors, and so the effects of finite
geometry, Aux attenuation and multiple scattering on the
observed yield must be considered. Corrections have
been calculated with the TUN L Monte Carlo code
EFFICxY15, which simulates the experiment in the labora-

FIG. 2. IN, OUT, and DIFF spectra for the scattering of
8.0-MeV neutrons from Pb for |9=85 . Note the offset for
zero counts. The peaks for elastic and inelastic scattering are
labeled 0+ and 3, respectively. In the difference spectrum, the
nearly horizontal solid line is the estimate of the sample-
correlated background in the region of the peaks and the verti-
cal lines indicate the two summing windows.
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10

2
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scattering angles where the slope of o(8) is relatively
large; this is the worst case. Finally, the mean energy of
7.97 MeV (hereafter called 8.0 MeV) for the neutron
beam is believed to be known to within 60 keV.

The corrected o.(8) data for elastic scattering and in-
elastic scattering to the first excited state are shown in
Fig. 3 compared with expansions in terms of Legendre
polynomials. The values shown are for the center-of-
mass system. The error bars only represent the relative
uncertainties.

10 B. Analyzing power measurements
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FIG. 3. Top: attenuation, finite-geometry, and multiple-
scattering corrections to elastic-scattering data at 8.0 MeV.
Normalized yields, uncorrected for attenuation, finite geometry,
or multiple scattering, are indicated by X. The dashed curve is
a Legendre polynomial fit. The o.(0) obtained after EFFIGY
corrections are indicated by the squares; the solid curve is a
Legendre polynomial fit. Bottom: corrected o.(0) data for in-
elastic scattering from the first excited state. The curve is a
Legendre polynomial fit.

1. Calculation of analyzing powers

The diff'erence spectra for the A~(8) measurements
were similar to the time-of-Aight spectra shown for the
cr(8) measurements, except that the statistical fluctua-
tions were larger. In contrast to the cr(8) case, where all
good neutron events had to be included in the chosen
window, narrow windows were set about the peaks of in-
terest in A~(8) spectra in order to optimize the signal-to-
noise ratio. Four yields are obtained: left-detector spin
up ( YJ U ), left-detector spin down (YLD ), right-detector
spin up ( YRU ), and right-detector spin down ( YaD ).
These yields are combined to obtain the quantity ct(8) as
follows:

dominant correction is the Aux attenuation of scattered
neutrons as they traverse the scattering sample; this
causes a lowering of the experimental yields by approxi-
mately the same factor across the entire distribution. As
expected, corrections for finite geometry and multiple
scattering tend to deepen the valleys in the vicinity of
o(8) minima and sharpen the peaks in the vicinity of
cr(8) maxima.

3. Uncertainties and anal data

Two types of errors or uncertainties are associated
with the cr(8) data: relative and normalization. Relative
errors represent uncertainties in the shape of the distribu-
tions. These errors include the statistical uncertainties
from neutron-scattering yields and uncertainties in the
relative detector efficiencies and multiple-scattering
corrections. Relative errors vary from 3% to 5% for
elastic scat tering and from 3%%uo to 9%%uo for inelastic
scattering. The normalization uncertainty represents a
scale uncertainty. It includes uncertainties in yields from
n -p scattering used for normalization purposes, analytic
corrections applied to n-p scattering yields, n-p cross sec-
tions, and the ratio of the number of hydrogen atoms in
the polyethylene scatter to the number of Pb atoms.
The combined error for all these effects is estimated to be
3%.

The quoted uncertainty in o (8) data does not include
the contribution from the uncertainty in the angular posi-
tion of the detector relative to the incident-beam axis.
We estimate that our angular uncertainty is +0.1'. A
change of +0.1 typically causes an increase only of
about 0.2% in the above relative errors at forward-

ct(8) = YJU(8) YRD(8)

YLD(8) YRU(8)

Analyzing power values A~
' are calculated from a(8)

using the formula

A abs(8) 1 a —1

p„a+1
where p„ is the polarization of the neutron beam.

2. Finite-geometry, attenuation,
and multiple-scattering corrections

The observed analyzing power A' '(8) was corrected
for effects due to finite geometry, attenuation, and multi-
ple scattering using a TUNL version of a Monte Carlo
code JANE (written by Woye [16]). The code simulates
the experiment in the laboratory system and calculates
corrections to A' '(8) using an iterative procedure.
Since JANE must distinguish scattering to the left from
scattering to the right and keep track of the neutron po-
larization after successive scattering processes, the pro-
cedure for correcting A (8) data is more complicated
than that for correction o.(8) data. We will briefly out-
line our method here. A more detailed description of
similar corrections is given in Byrd et al. [17].

Because of the combination of the finite sizes of the
neutron source, scattering sample, and detector, the ob-
served analyzing power is the analyzing power averaged
over a range of angles. The mean width of the distribu-
tion of scattering angles is approximately 6. This large
width is mainly due to the scattering angle subtended by
the sample as seen by the neutron source. The mean
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scattering angle difFers from the nominal scattering angle
because o (8) changes for different regions of the scatterer
and because the attenuation shifts the effective center of
the scatterer closer to the neutron source.

Thus the results from JANE include both a change in
the magnitude of A' '(8) because of attenuation and
multiple scattering and a shift from the nominal scatter-
ing angle. The largest correction factors occur where
both o.(8) and Ar(8) are changing rapidly with angle.
The effect discussed by Tornow et al. [18] of an instru-
mental asymmetry caused by an apparent shift in the
center of the scattering sample due to the analyzing
power in the H(d, n ) He source reaction was not includ-
ed here, as it is negligible compared to the statistical un-
certainties.

The simulation using JANE is as follows. (See also
Roberts [10].) Employing a library of analyzing powers,
total and differential cross sections, and the physical pa-
rameters of the experiment, time-of-Right spectra were
generated for each angle. Successive iterations with JANE
were performed and the Ar(8) library updated after each
iteration. Convergence is reached when the corrected
A (8) of the present iteration do not disagree
significantly from the corrected A (8) of the previous
iteration. In practice, only three iterations of JANE were
usually needed to achieve convergence. The significance
of finite-geometry and multiple-scattering corrections ap-
plied to A'b'(8) data to obtain A (8) is shown in Fig. 4
for E =8.0 MeV. One notes that the dominant effect of
multiple scattering is to decrease the magnitude of the ex-
perimentally observed analyzing power. This happens
because the contribution from multiply scattered neu-
trons typically yields a smaller analyzing power.

3. Uncertainties andgnal data

The uncertainties for the present A (8) data also fall
into two categories: relative and normalization uncer-
tainties. Relative errors represent uncertainties in the
shape of the distributions and vary from about 1% to 9%
for elastic scattering and from 6% to 35% for inelastic
scattering. These uncertainties include the combined sta-
tistical and background uncertainties. The uncertainty in
the multiple-scattering corrections was generally comput-
ed to a statistical accuracy such that the uncertainty in
the corrections themselves had a negligible effect on the
quoted final uncertainties. However, when the multiple-
scattering corrections were applied to A» '(8) data, the
uncertainties for A (8) increased accordingly.

Normalization or scale uncertainty includes uncertain-
ties in the deuteron-beam polarization and knowledge of
the tensor analyzing powers and vector polarization
transfer coefficients for the H(d, n) He reaction at 0'.
%'e estimate that these uncertainties combine to produce
an overall uncertainty in the neutron polarization that
ranges between +0.02 and +0.03.

The mean energy of the incident neutron beam was
known to within 0.8%.

After the A' '(8) were corrected for attenuation, finite
geometry, and multiple scattering, the extracted A~(8)
were described in the center-of-mass system with func-
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FIG. 4. Attenuation, finite-geometry, and multiple-scattering
corrections to A„' '{8}data at 8.0 MeV. Experimentally ob-
served analyzing powers are indicated by X, and the dashed
curve is an associated Legendre polynomial fit. Double-
scattering analyzing powers, calculated with JANE, are
represented by plus signs and are connected by a dotted line.
Final single scattering A„(0}are represented by solid squares,
and the solid curve is an associated Legendre polynomial fit.
Note that the largest corrections occur when both a.(0) and
A~(0} are changing rapidly.

tions that were derived from fitting an associated polyno-
mial expansion to the product Ar(8, E)o(8E) according
to

n

A (8,E)tr(8, E)= g 8&(E)P&'(cos8) .
1=1

This standard procedure is followed in order to locate
gross internal inconsistencies in the data. The discrete
values for o(8,E) used in calculating these fits were
determined from Legendre polynomial fits to o(8) data,
as previously mentioned.

Analyzing powers at 5.97, 6.97, 7.96, 8.96, and 9.95
MeV (hereafter referred to as 6.0, 7.0, 8.0, 9.0, and 10.0
MeV, respectively) for elastic neutron scattering are
shown in Fig. S. Figure 6 shows an expanded comparison
of the 10.0-MeV A (8) data to data previously measured
at TUNL by Floyd et al. [9]. The A (8) data for inelas-
tic scattering from the first excited state are shown in Fig.
7. The curves shown in Figs. 5—7 are fits based on Eq. (3).
Error bars shown in the figures include only relative un-
certainties.

4. Effect of compound nucleus contribu-tions on Ar (8)

Since the models used later in this work predict only
shape-elastic-(SE) scattering observables, compound-
nucleus (CN) contributions to o.(8) and A (8) must be
considered. The effect of the CN contribution is to dilute
the structure of the shape-elastic contribution. In the
present work, the energy spread was large enough that
effects of many CN states were averaged over. Thus we
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FIG. 7. Analyzing powers for inelastic neutron scattering
from the first excite s a e ofi 't d t te of pb. The curves are derived
from associated Legendre polynomial fits.

corrected for the compound-elastic (CE) contribution ac-
cording to the simple relation

~ sE(8) = ~,(8),cr(8)
3' sE(8) 3' (4)

where

cr(8) =o (8)+cr (8) .

For the elastic-scattering A (8) data at 8.0,.0 9.0 and
10.0 MeV, the effects of CE scattering are negligib e ac-
cor lng 0d' to the calculation of Armand, Fin ay, an

n ed. ForDietrich [3], and so these data were left unchange . or
the data at 6.0 and 7.0 MeV, corrections were applied us-
][ng eth CE cross sections presented in Armand, Fin ay,

IV. CONVENTIONAL
OPTICAL-MODEL ANALYSIS

A. Form of the optical model

The analysis utilized a spherical optical model (SOM)
with potential shapes based on the Woods-Saxon (WS)
form

1

1+exp [(r —R. ) /a. ]

and the derivative %'oods-Saxon form

(6)

and Dietrich. Figure 8 shows the CN effects at 6.0 MeV;
the CN effects at 7.0 MeV were much smaller.
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FIG. 6. Expanded view of the present 10.0-M-MeV data (solid
Flo d et al. [9]squares c) compared to measurements o y

e
' associated(represente yd b X). The curve is derived from an asso

'

Legendre polynomial fit to the combined sets of data.

FIG. 8. Effects of CN contributions at 6.0 MeV. Measured
A~(0) are indicate y, and b X and the dashed curve is derived from
an associated Legendre polynomial fit. Shape-elastic A~ 0 are
indicated by solid squares; the solid curve is derived from an as-
sociated Legendre polynomial fit.
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d
gws(r & a )= 4a

d fws(" +
dr

(7)

+2(V, , +iWa, ) — fws(r, R...axe l.o.1 d
r dr

where the successive terms are the real central potential
(volume form), imaginary central potential (composed of
a volume and a surface peaked form) and spin-orbit po-
tential (composed or real and imaginary parts with identi-
cal radii and diffusenesses).

Surface peaking of the imaginary potential is most
prominent for low-energy nucleon scattering, while at
higher energies the imaginary potential is dominated by
volume absorption. The spin-orbit potential is surface
peaked and can be complex, but the imaginary part has
traditionally been neglected for E (40 MeV. One reason
for this neglect is that, until recently, A~(g) data for neu-
tron scattering was not sufficiently accurate to explore
the strength of 8",,

B. Summary of database

Differential neutron-scattering data used in the
analysis came from three facilities. Differential cross sec-
tions were measured at TUNL at 8.0 MeV (present work)
and at 10.0, 14.0, and 16.9 MeV by Floyd [9]. In addi-
tion, tT(g) data were obtained at Ohio University at 4.0,
4.5, 5.0, 5.5, 6.0, 6.5, and 7.0 MeV by Armand, Finlay„
and Dietrich [3], at 20.0, 22.0, and 24.0 MeV by Finlay
et al. [4], at 9.0, 11.0, and 25.7 MeV by Rapaport et al.
[5], and at Michigan State University at 30.3 and 40.0
MeV by De Vito [19]. The 4.0—7.0-MeV Pb differential
cross sections, as adjusted by Armand, Finlay, and
Dietrich for CN contributions, were used for the optical-
model fitting.

The analyzing power data, which were all obtained at
TUNL, were from the present work at 6—10 MeV and
from Floyd [9] at 10.0 and 14.0 MeV.

Average total cross-section values cr T for ""Pb (52%%uo

Pb) were communicated to us by Larson, Hetrick, and
Harvey [20] from 4.0 to 80.0 MeV in steps of 2.0 MeV.
The tr T values at intermediate energies (i.e., 7.0, 9.0, 11.0
MeV, etc. ) were obtained through interpolation. An un-
certainty of 3.0%%uo was assigned the o.T values for the
fitting process. (Following this stage of the analysis,
Schutt et al. [21] reported tTT from 2 to 250 MeV. Their
data up to 80 MeV are illustrated in a later section. )

C. Analysis of the scattering data

1. Introduction

For the present calculations, iterations of the SOM pa-
rameters were performed using a modified version of the

Here the radius parameter is given by R;=r;3' and
diffuseness by a;. The SOM is then written as

I v(E)fws(" +v av)

' [ Wvfws (" &I aI ) + ~sg ws (" &I ar ) ]

search code GENOA (originally obtained from F. Percy of
Oak Ridge National Laboratory). The code was modified
at TUNL to include the effects of the Mott-Schwinger
electromagnetic interaction [22]. The code calculates
cross sections and analyzing powers from a one-body
Schrodinger equation using the chosen potential U(r);
relativistic corrections are not included. At each stage of
the iteration process, for each energy where o (8), A~(g),
and o T data exist, GENQA calculates chi square (y )

defined through the relation

x =
N

'
expt( g ) calc( g

expt( g

N& g expt(g ) g calc(g
+

g g expt( g

expt calc

+ (9)
exptOT

where g /N is the average chi square per data point,
cr'" '(8; ) is the experimental cross section measured at 8, ,
tT'"'(8,. ) is the cross section calculated from the optical-
model potential, b,o'"p'(8, ) is the error in the experimen-
tal cross section, and N is the number of experimental
cross-section points and similarly for the observables
A (8) and o T. At any energy one can insert a weight
factor inside the bracket for any set of the observables in
Eq. (9), and if the weighting factors are greater than uni-

ty, the total g per point increases artificially. Since the
amount of A~(g) data was appreciably less than o.(g)
data and since we were interested in stressing the deter-
mination of the features of the spin-orbit potential, the
3 (8) data were given a weight of 2. In the iteration pro-
cedure, values of one or more parameters are varied using
the automatic search feature to minimize y . A total
y /X was calculated for the entire data set when data for
more than one energy were employed in extensive
searches.

2. Indiuidual butts

In the initial stage, optimum potential parameters were
obtained in a separate search at each energy. Starting pa-
rameters for searching on the 4.0—6.5-MeV data were the

Pb parameters reported by Armand, Finlay, and
Dietrich [3], while the starting parameters for the
7.0—40.0-MeV data were the Pb parameters with linear
energy dependences reported by Finlay et al. [4]. Con-
trary to most other analyses for Pb(n, n), an imaginary
spin-orbit term was included in our analysis. All
potential-well strengths were searched upon first, fol-
lowed by geometrical parameters, and finally by potential
strengths and geometrical parameters simultaneously.

In order to provide spin-orbit parameters for energies
where only cross-section data were available, energies at
which A (8) were available were searched upon first.
Using the results of these single-energy searches, mean
values of the strength, radius, and diffuseness of the real
spin-orbit potential were obtained. In these searches at
energies where A (8) data exist, the value of the imagi-
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FIG. 9. Optical-model calculations using parameters from Table I compared with o.(0) data (solid curves, best fits; long-dashed
curves, constant geometry, and short-dashed curves, E-dependent geometry; where the short-dashed curve is not evident, it lies under
the long-dashed curve). The data from 4.0 to 7.0 MeV have been adjusted for CN contributions.

nary spin-orbit strength was positive and ranged between
0.4 and 1.3 MeV. However, it showed no well-defined en-
ergy dependence. Therefore, for the searches at the ener-
gies where only cross-section data exist, it was decided to
fix the strength W, , to have a linear energy dependence
such that the depth was 0.6 MeV at E =0 and 0.0 MeV
at E =40 MeV. This energy dependence was based on
earlier SOM studies at TUNL and forces the W, , to
have a strength of about —0.68 MeV at E =80 MeV, a
strength close to the —0.65 MeV obtained by Schwandt
et al. [23j for Pb(p, p) scattering.

Final SOM parameters for the individual (single-
energy) fits, which we categorize as "best fits, " are listed
in Table I, and the corresponding calculations are shown
in Figs. 9 and 10. Table I also contains the volume in-
tegral per nucleon defined as

I I

f

~ I
f

I t
[

I I

14.0 Me V j'~

10.0~

1'=

()
9.0

0

7.0

1 f V(r)d r . (lO)

Except at 14.0 MeV, at all energies below 17 MeV the
volume absorption Wv favored negative values. In the
search process we set the strength to be zero at such ener-
gies. (See Table I.) For the present single-energy
searches, the sum over all points and all energies of y for
o (8), A~(0), and o T is 5200.

6.0

60 120
8 (deg)

3. Constant geometry Pts-
In order to examine the energy dependence of the real

and imaginary potentials in a consistent way, for SOM
studies below 40 MeV, traditionally one assigns constant

FIG. 10. Optical-model calculations using parameters from
Table I compared to A~(0) data (solid curves, best fits; long-
dashed curves, constant geometry; and short-dashed curves, E-
dependent geometry; where the short-dashed curve is not evi-
dent, it lies under the long-dashed curve). The data at 6.0 and
7.0 MeV have been adjusted for CN contributions.



MEASUREMENT OF Ay (g) FOR ll + Pb FROM 6 TO 10 2015

CD
VO

CD

CD

CD

CD
CD CD

CD

CD CD

CD
Ch
CD
QO

CD
QO

CD

QO

CD

CD
Ch

CD
QO

CD

. E
CP"a0
E

:6
0

C4

&g
bQ

8
bQ

M

QO
QO

CD

CV)

CD

QO

QO
QO

CD

CV)
QO

QO

CD

QO
CD

CD

CD

CD

QO
QO

CD

CD

Ch

CD

CD

CD

QO
QO

CD

CD

CD

CD

CD

CD

QO
QO

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD
Ch

QO
CD

VO

CD

QO
QO

CD

CD
QO

CD

QO
QO

CO

CV)
QO

CD

QO
cl

CD

QO
QO

C)

CV

CD

QO
QO

CO

CD

Ch
QO

CD

QO
QO

CD
QO
LCj

CD

QO
QO

CD

QO
QO

CD

CD

CD

CD
QO

CD CD

CD

QO

QO

Cvl

CD

CD

CD

QO

CD

CD

CD

CD

QO

CD

CD

CD CD

CD

CD

QO

CD

CD

CD

CD
CD

QO

CD

CD

CD

CD

CD

CD

VO

CD

QO

CD

CD
CD

CD

QO

CD

CD

CD

cV

QO

CD CD

Vl Ch

t
CD

CD

CD

CD
CD

c5
4P

CP

~ W

e5

0
O

4J
E'
c5

CCt



2016 M. L. ROBERTS et al.

values to the geometrical parameters and linear energy
dependences to potential strengths. The geometrical pa-
rameters can be assigned either by averaging the values
found in the individual Ats or by searching for values that
provide the best overall fit to the complete data set. A
combination of both approaches was adopted here.

For the starting parameters of the initial searches, the
best single-energy fits were used to determine average
geometrical parameters and to produce a linear least-
squares fit to the potential strengths. The imaginary
spin-orbit potential was taken as the linear energy-
dependent function used previously in the best-fit
searches of the cross-section data. The entire data set
was fit simultaneously, while holding the geometrical pa-
rameters constant and allowing the potential strengths to
vary linearly with energy. As the search proceeded, we
found that the strength of the real spin-orbit potential
could be heM constant without deleterious CAects. The
parameters resulting from the final search are given in
Table II, while corresponding fits to o.(9) and A~(0) are
shown in Fig. 9 and 10 as long-dashed curves. The aver-
aged ""Pb O. T data are compared to the predictions for

Pb in Fig. 11. The total y of 12200 obtained in this
global search of the 4.0—40.0-MCV data set can be com-
pared to the value of 5200 obtained in the best-fit
searches.

Comparisons for y between the present model and the
constant-geometry model of Armand, Finlay, and
Dietrich [3] for the energy region from 4 to 11 MeV are,
respectively, 7050 vs 13 200, and the constant-geometry
model of Finlay et al. [4] for 7—50 MeV are 9020 vs
16900. (For comparison, the parameters of Finlay et al.
[4] are included in Table II.)

4. Energy dependent geo-metry Pts

FollowlIlg thc1I opt1cal-IIlodcl fits to scattcI 1Ilg data
from 4 to 40 MCV, Armand, Finlay, and Dietrich ob-
served that the radius of the real central potential and the
I"adlus RIld diNuscncss of thc imaginary ccntIal potcIlt1R1
prefer some variation with energy. In order to investi-
gate these energy dependences for our more complete

iJ&&» I &~~J~,3
0 5 10 15 20 25 30 35 40 45

E (MeV)

FIG. 11. Comparison of the averaged total cross-section data
for n+""Pb to optical-mode] predictions for n+ Pb using the
constant-geometry parameters listed in Table II.

data set, we performed a search in which the geometries,
as well as the potential strengths, were permitted to vary
linearly with energy. Starting parameters were the same
linear least-squares Ats used initially in the constant-
geometry search. The strength of the imaginary spin-
orbit potential was held fixed to the linear energy depen-
dence discussed earlier. Optical-model parameters result-
ing from this search are given in Table II, while corre-
sponding fits are shown in Pigs. 9 and 10 as short-dashed
curves. For E e25 McV the o. T calculation obtained
here is nearly identical to the curve shown earlier in Fig.
11; for E & 25 MeV the calculated values are about l%%uo

higher than the curve in Fig. 11..
The g obtained for the present model is about 6% less

than that obtained with the constant-geometry model.
However, there is a reluctance on our part to introduce
four new energy dependences in order to achieve such a
small reduction in y . It is interesting to note, however,
that when an energy-dependent geometry is introduced
into the real central potential, the strength of the real
central potential becomes nearly energy independent.

TABLE II. Optical-model parameters for n + Pb scattering. '

Parameter

V (Me V)
rv (fm)
av {fm

v (MeV)

Ws (MeV

r, {fm)
a, (fm)

V, „(MeV)
r, „(fm)
a, , (fm)

~.. (Mv)
'Here E is the

Constant
geometry

46.727 —0.230E
1.245
0.690
0.0 for E &10.5

—1.845+0. 176E for E & 10.5
2.744+0. 544E for E & 10.5

10.031—0. 150E for E & 10.5
1.294
0.450
6.112
1.174
0.517
0.600 —0.016E

neutron energy in the laboratory system

Finlay et al. [4]

49.130—0.310E
1.205
0.685
0.0 for E & 11.2

—2.030+0.180E for E & 11.2
1.326+0.470E for E & 10.7
7.752 —0. 130E for E & 10.7
1.283
0.499
5.750
1.105
0.499
0.000

expressed in MeV.

E-dependent
geometry

45.299—0.083E
1.277 —0.003E
0.640+0.005E
0.0 for E &10.5

—1 ~ 110+0.112E for E & 10.5
4.057+0.447E for E & 10.5

10.284 —0. 146E for E & 10.5
1.321 —0.002E
0.344+ 0.008E
6.152
1.178
0.541
0.600—0.016E
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This ambiguity between an energy dependence in the
strength and an energy dependence in the geometry has
also been noted by both Armand, Finlay, and Dietrich
and JHM.

For completeness we mention that in the energy-
dependent geometry model of Armand, Finlay, and
Dietrich, the discrete values for the real and imaginary
potential strengths were reported at each energy; these
strengths were not parametrized with a single energy-
dependent function. However, even with our constraint
of requiring the strengths to vary linearly with energy, y
for our model is about a factor of 2 better than that of the
model of Armand, Finlay, and Dietrich.

V. DISPERSIQN-RKI. ATION DPTICAI. MDDEI.

A. Formalism and background

The average potential V (r, E) is expected to be a con-
tinuous function of energy which varies smoothly as the
nucleon energy E changes sign. When E is positive,
V(r, E) represents the real part of the optical-model po-
tential, and when E is negative, it represents the sheH-
model potential. Through the dispersion relation, data
from all energies can be utilized for parametrizing
V(r, E). This feature is especially useful for formulating
the shell-model potential because the limited amount of
data available for negative E can be augmented by the
abundant and varied scattering data for positive E.
Essentially, the information for negative E reduces to the
energies of the single-particle bound states. The primary
aim of the work described in this section is to deduce an
optical-model potential which spans the region from posi-
tive to negative energies. In the first part we compare the
known single-particle bound-state energies predicted by
our model to the reported experimental bound-state
values. Later, we use these known energies as an addi-
tional constraint.

The energy dependence of V(r, E) is quite complicated
in the region near the Fermi energy, the energy which
separates the occupied and unoccupied single-particle
states at negative energies. The energy dependence can
be described in terms of the dispersion relation, which
connects the real and imaginary parts of the optical-
model potential and which occurs because the target does
not remain in its ground state during the elastic-
scattering process. In the dispersion relation, the real
part of the optical-model potential is written as

V(r, E)=V~F(r, E)+b, Vq(r, E)+B,V~(r, E),

where V&F(r, E), b, Vz(r, E), and b, V&(r, E) are the
Hartree-Fock (HF), surface dispersive, and volume
dispersive contributions to the mean field, respectively
[1). The dispersive contributions b, V&(r, E) and
b, V~(r, E) are connected to the imaginary surface (Ws)
and imaginary volume (W~) parts of the optical-model
potential (OPM) by the dispersion relations

p + Ws(r, E')
A Vs(r, E)=—I, dE',E' —E

p + „W~(r,E')
6 Vy(r, E)=—f, dE',E' —E

(12)

(13)

In preparation for implementing the dispersion rela-
tion, another optical-model search was performed in
which the entire data set from 4.0 to 40 MeV was fit
simultaneously. A constant geometry and a linear energy
dependence on V was required, as in our earlier search.
However, two new additional conditions were applied.
First, the geometry of the imaginary volume potential
was set identical to the geometry of the real volume po-
tential. This was done so that the strength of the volume
dispersive contribution to the mean field could be added
directly to the strength of the Hartree-Fock potential.
Second, the strength of the imaginary spin-orbit potential
was taken to be zero. This was done in order to avoid the
difhculty in computing single-particle bound-state values
with a nonzero value for the imaginary spin-orbit poten-
tial strength. The appropriate starting parameters for
this search were taken from our constant-geometry set of
Table II.

After convergence, the new 8'& and 8'z were used in

where P denotes a principal-value integral.
While the energy dependence of V&F(r, E) is expected

to vary monotonically, this is not the case for b, Vs(r, E)
and b, V&(r, E). The rapid decrease of Wz(r, E) and
Wz(r, E) with decreasing energy due to threshold eff'ects

causes b, Vs(r, E) and b, V&(r, E) to have complicated en-

ergy dependences in the vicinity of the Fermi energy.
Satchler [24] pointed out that the addition of a deriva-

tive WS function (i.e., a surface term) and a WS volume
function with the same radius parameter (i.e., rs =rz—)

yields another WS volume function with a new radius pa-
rameter rv, where r~ where rv)rv if the depth of the
surface term has the same sign as that of the volume
term. This convenient result simplifies analyses that ex-
plicitly introduce the dispersion relation, but it also corn-
plicates the problem of distinguishing a surface contribu-
tion from a volume contribution. However, this result
could explain why some analyses that ignore the DR ex-
hibit an increasing radius rz(E) as E~O, since the DR
correction 6Vz adds constructively to the volume term in
this energy region.

The approach followed here for the DR analysis is
similar to that employed by Johnson, Horen, and
Mahaux (JHM), where the imaginary potentials are as-
sumed to have reAection symmetry about the Fermi ener-
gy. We note that the recent work by Finlay et al. [8] also
focuses on the DR and draws conclusions from investi-
gating volume integrals of the real and imaginary poten-
tials. Most of the present analysis was completed before
publication of Ref. [8];however, the results of the present
analysis tend to reinforce the conclusion of the n+ Pb
portion of their paper. A comprehensive overview of re-
cent developments in the dispersive optical-model formu-
lation is given in the review by Mahaux and Sartor [25].

B. Optical-model search
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Eqs. (12) and (13) to calculate the surface and volume
dispersive contributions to the mean field, and the HF
component of V(r, E) was determined using Eq. (11).
The code GENOA was then modified to include explicitly
VH„(r, E) of Eq. (11) and to require it to be an exponen-
tially decreasing function [6] of (E EF—), where the Fer-
mi energy E~ was chosen to be —6.0 MeV, as in Ref. [6].
The strength and exponential coefficients were inserted
into GENOA as search parameters. The potential V ( r, E)
was thereby represented in the search as the right-hand
side of Eq. (11). Throughout the search process the
dispersive contributions were recalculated according to
Eqs. (12) and (13). The iterative process was repeated un-
til no improvement was seen in the fits to the scattering
data. Final parameters are listed in Table III. The VH„
obtained in this search (on only the scattering data) is la-
beled as "potential A" in Table III. The corresponding
fits to the cr(8) and A (8) data are shown by the solid
curves in Figs. 12 and 13. Optical-model predictions of
az(E) for Pb are shown in Fig. 14 in comparison to
energy-averaged data of Larson, Hetrick, and Harvey
[20] for ""Pb and data of Schutt et al. [21] for Pb. En-
ergy dependences of VHF, VH„+EVv, 8'v, EVv ~s
and 5V& are shown in Fig. 15.

To compute single-particle bound-state energies, the
real part of the Hartree-Fock optical-model potential
VH„(r, E) was extended to energies below EF. The
Hartree-Fock potential was approximated by a linear ex-
trapolation of the VHF(E) formula in Table II:

VHF(E)=46. 338—0.261(E EF—) for E &EF . (14)

Using the computer code BOUNDSTATE (provided by C.
Johnson of Oak Ridge National Laboratory), eigenvalues
associated with V(r, E) were calculated and compared to
experimental energies of the weakly and deeply bound
single-particle valence and hole states. Table IV lists the
neutron bound-state energies (E„,~ ) predicted by our ex-
trapolated optical model compared to the empirical
values based on separation energies, neutron single-
particle states in Pb, and single neutron-hole states in

Pb. In Table IV the left-hand column specifies the
principal, orbital, and total angular momentum quantum
numbers. Experimental values of the single-particle
bound-state energies were taken from Table III of
Johnson, Horen, and Mahaux [6] and are listed in the
column labeled "Experimental E„&. ." The column labeled
"Extrapolated VHF" lists the Hartree-Fock potential

TABLE III. Optical-model parameters for n + 'Pb obtained in the dispersion-relation analysis.

Parameter'

~HF
b

Value

potential A: 46.338 exp[ —0.261(E E„)/46 3—38].
potential B: 47.591exp[ —0.332(E E~)/47. 591] for —E)EF

47.591—0.332(E —EF) for E & E~

rHF 1.221
0.720

v

r w

Qg
V

~~v

0.0 for E &11.4 MeV
—2.032+0.178E for 11.4&E & 50.7 MeV
7.0' for E&50.7 MeV

rHF

aHF

calculated from Eq. (12) and 8'z above

2.966+0.512E for E &10.5 MeV
9.749 —0. 134E for 10.5 &E &72.8 MeV
0.0 for E &72.8 MeV

r ~s
ag S
~~s

1.291

0.463

calculated from Eq. (11) and 8'& above

rs. o.

&S.O.

6.214
1.147
0.546

'Potential strengths are in MeV and geometries are in fm.
For both potentials A and B, EF= —6.0 MeV.

'In order to apply the dispersion relation to the n+ Pb data set, the value of 8'z(E) for E & 40 MeV
is needed. From fits to total cross section data, Johnson, Horen, and Mahaux [6] determined that Wz is
approximately 7 MeV at 80 MeV. Therefore, WI (E) was parametrized by our linear expression up to
E =50.7 MeV, and beyond this the constant value of 8'v(E) =7.0 MeV was used.
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FIG 12 Dispersion relation optical model calculations compared to ~(g) data. Curves are calculations based on a global Ats

The solid curves are from a fit to scattering data only, while the dashed curves are also based on information from bound-state ene-
gies (see text). Where the dashed curve is not evident, it lies under the solid curve. The data from 4.0 to 7.0 MeV have been adjusted

for CN contributions.

strengths from VHF (set A) and Eq. (13). Predicted
bound-state energies are listed under "Predicted E„I ."

For the next stage we used the experimental bound-
state information to determine a potential that would
give a better fit to the combined database (scattering plus

bound state); we first calculated the strength for VH„ that
yields the observed E„I exact1y. For this all the other pa-
rameters, including the contributions 6Vz and 6Vz,
were taken from Table III. At each energy where we had
scattering data, we also obtained the values for VHF that
produce the best fit when the rest of Table III is used.
These two sets of potential strengths were then fit using a
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FIG. 13. Optical-model calculations compared to A„(0)
data. See caption of Fig. 12. The data at 6.0 and 7.0 MeV have
been adjusted for CN contributions.

FIG. 14. Dispersion-relation optical-model predictions of the
Pb total cross section compared to the data. The solid curve

is a prediction based on a global fit to scattering data only, while
the dashed curve is based also on bound-state energies. The
data are for ""Pb (so1id circles) from Ref. [20] and for 'Pb
(crosses) from Ref. [21].
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linear least-squares routine to obtain the optimum pa-
rametrization of the complete database. This VH„ is
given in Table III as set B. (In this stage of analysis, no
other parameters were searched upon. ) Using this new
Hartree-Fock potential, the bound-state energies and
scattering data were recalculated. The column labeled
"Fit" lists the Hartree-Fock potential strengths at the
bound-state energies using set B. Predicted bound-state
energies using this new Hartree-Fock potential are listed
in the column labeled "Fit E„I ." The neutron single-
particle energies (at E )E~) for n + Pb and single-hole
energies (at E (EF) for a neutron removed from Pb
are drawn in Fig. 16 for graphic illustration of the agree-
ment of the measured energy-level diagram to that pre-
dicted by the models of Table III. Additional improve-
ment in the fit might have been obtained if the spin-orbit
parameters had been allowed to move from those of
Table III and, particularly, if an energy dependent V, ,
was permitted; however, this option was not pursued.
Fits to o(8) and A~(8) are shown as dashed curves in
Figs. 12 and 13, while the predicted o.T is shown as a
dashed curve in Fig. 14. The total y for fits to the
4.0—40.0-MeV n + Pb scattering data set increased
from 14500 to 16100 when using VH„of set B. [Al-
though it is not shown here, the 3HM dispersion-relation
model predicts similar bound-state energies as our "Fit
VHF"', the y for the ~- ~0 MeV scattering data with their
model is about 25% larger (20400), however. These cal-
culations for 6—10 MeV are illustrated below. ]

0
0

I

60 8020 40
E —EF (MeV)

FIG. 15. Energy dependences of the Hartree-Fock (V»),
Hartree-Fock plus volume dispersive (VHF+hV~), imaginary
volume (Wv), volume dispersive (b, V&), imaginary surface (8'z),
and surface dispersive (AVz) parts of the optical-model poten-
tial.

C. Comparison of the scattering data
with the DR models of JHM and JJM

In this section we compare the 6—10-MeV data with
calculations using the constant-geometry dispersion-
relation (DR) models of JHM [6] and JJM [7]. We focus
on the data in this energy range as this is the range of the
new measurements. The two models will be denoted as
DR (JHM) and DR(JJM). They differ only in that the

TABLE IV. Neutron single-particle and single-hole bound-state energies and strengths of the
Hartree-Fock potentials.

3
d3/2

2
g7/2

4
$1/2

3d 5/2
1 ~

j15/2
1 ~

~ 11/2
2
g 9/2

3I 1/2
2f5/2
3
P3/2

1 ~

&13/Z
2f7'
1~ 9/2
1~ 11/2

Experimental
E,

(Mev)

—1.40
—1.44
—1.90
—2.37
—2.51
—3.16
—3.94
—7.37
—7.94
—8.26
—9.00
—9.71

—10.78
—16.50

Extrapolated
VHF

(MeV)

45.153
45.163
45.280
45.400
45.436
45.603
45.803
46.696
46.844
46.928
47.121
47.306
47.586
49.079

Predicted

(MeV)

—1.02
—0.94
—1.38
—1.78
—1.02
—1.70
—3.25
—6.70
—7.21
—7.41
—7.24
—9.46
—9.70

—14.76

Required
VHF

(MeV)

45.983
46.047
46.480
46.536
47.682
47.583
46.886
47.691
47.837
48.156
49.461
47.639
48.877
51.228

Fit
VHF

(MeV)

46.088
46.101
46.249
46.401
46.446
46.657
46.912
48.046
48.235
48.341
48.587
49.823
49.178
51.077

Fit
E,

(MeV)

—1.45
—1.47
—1.80
—2.30
—1.69
—2.47
—3.96
—7.61
—8.24
—8.39
—8.34

—10.61
—10.88
—16.38
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ments for the (b) group are

Wsb(E)=0 for —6(E & —2 MeV,

Wsb(E)= —0.7959(E+2) MeV for —2(E &6.5 MeV,

Wsb(E)= —0. 1033(72—E) MeV for 6. 5 (E &72 MeV,

Wsb(E) =0 MeV for E )72,

and, for the (c) group,

W,.(E)=0 for —6&E & —5 MeV,

W„=—0.3646(E+S) MeV for —S&E &12 MeV,

Ws, (E)= —0. 1032(72—E) MeV for 12 (E (72 MeV,

t h))

EXP SCAT SCAT
+BS ONLY

FIG. 16. Neutron-particle and neutron-hole states. Com-
pared are experimental values (EXP) obtained from data tables,
predicted values (SCAT) using the SOM based on scattering
data only, and predicted values (SCAT+BS) using the SOM
based on scattering data and bound-state energies (see text}.

a, , =0.50 fm .

The imaginary surface potential for the DR(JHM) con-
sists of line segments

imaginary surface potential in DR(JJM) is l dependent,
which, of course, through the DR, makes the dispersive
surface potential also I dependent. The l dependency was
attributed to two groups of l values: group (b) for I = 1,
3, and 6 and group (c) for I&1, 3, and 6. All potentials
were assumed to have Woods-Saxon form factors and are
given as

VHF(E)= —46.4exp[ —0.31(E E~)/46. 4] for —E )EF,

rHF —rw —1.240 fm
V

aHF=aw =0.68 fm,
V

Wz(E) = —0. 17(E —10) MeV for 10(E & 50 MeV,

Wz(E)= —6.8 MeV for E ) 50 MeV,

V, , =5.75 MeV,

r, , =1.105 fm,

and

Ws, (E)=0 for E )72 .

The real surface geometry was set equal to that of the
imaginary surface, i.e., rw = r& = 1.27 fm ands s
a =a =0.58 fm. The calculations were performedWs Vs

using the computer code GENOA modified to include l-
dependent surface terms. In Figs. 17 and 18 the calculat-
ed curves are compared with the o'(8) and A~(0) data,
respectively. The 6- and 7-MeV data are corrected for
CN contributions. The dashed curves represent the
DR(JHM) and the solid the DR(JJM). As can be seen in
these figures, the DR(JJM) tends to improve the agree-
ment with the data, more so for the cross sections, which
were the only data available at the time that the models
were developed.

None of the constant-geometry DR models lead to pre-
cise "fits" of the data and, especially, simultaneous fits to
both o.(9) and A (0) as good as those which were
achieved with our "best-fit, " single-energy OMP searches

$0

10.0 MeV
10

10

10

10

10

10

10

10
W&(E) = —0.4(E E~) MeV for —6 & E (—10 MeV,

Wz(E)=0. 103(E —72) MeV for 10&E (72 MeV,

and

10
30 60 90 120 150 180

8 (deg)

Ws(E) =0 for E )72 MeV .

For the l-dependent DR(JJM), the corresponding seg-

FIG. 17. o.(0) compared to earlier DR models. The solid
curve represents predictions for the I-dependent JJM model and
the dashed curve for the JHM model.
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FIG. 18. A~(0) data compared to earlier DR models. See

caption of Fig. 17.

VI. SUMMARY AND CONCLUSIONS

We have measured o.(0) for elastic and inelastic neu-
tron scattering at 8.0 MeV on Pb and A (8) for elastic

that resulted in the parameter sets given in Table I. We
have performed numerous searches in the 6—10-MeV
range starting with the DR parametrizations in an effort
to determine whether precise fits could be obtained with
small adjustments to the parameters. In all of these
efforts, the imaginary volume potential was kept equal to
zero. The searches involved (a) adding a Fourier-Besse1
term to the real potential of the DR(JHM), (b) searching
on all the potential depths of the DR(JJM), (c) searching
on single potential terms [i.e., both depth and geometry
of the DR(JJM)], and (d) searching on the geometries of
the DR(JJM). In none of these searches did we obtain
precise fits to the data. Those which showed significantly
improved fits were accompanied by relative changes in
parameters at the 2%%uo level, i.e., changes in magnitudes
which were comparable to the dispersive correction
terms. From searches on the 7-MeV data, it was clear
that improved fits to a(8} and A„(0) could only be
achieved with smaller values of the surface diffuseness.

Finally, we compared the data to the I-dependent DR
model of JHM that has an energy-dependent a~ and

S

av . This model, in which the integral of the real surface
S

potential is related to the integral of the imaginary sur-
face potential through the DR constraint, was shown to
yield the best fits to the scattering data below about 10
MeV. Although this model does not rigorously satisfy
the DR because the true radial shape of the real surface
potential does not conform to a WS form factor, it has
been shown [7] to yield a(8) values which are similar to
those derived from an /-dependent DR model with a
weak energy-dependent a~ and with a b, Vz(r, E) that

S
was deduced from Ws(r, E) by numerical integration.

and inelastic scat tel ing at 6.0, 7.0, 8.0, 9.0, and 10.0
MeV. These measurements have been utilized in con-
junction with previously measured a(8}, A (8), and o T
data to obtain an accurate data set for neutron elastic
scattering from Pb from 4.0 to 40.0 MeV. Various
models were used to describe this data set. We first per-
formed searches on the data at separate energies using
conventional optical-model analyses. In these, the real
volume, imaginary volume (E &17.0 MeV), imaginary
surface, and real and imaginary spin-orbit potentials had
Woods-Saxon form factors. Best fits were obtained by al-
lowing essentially all of the parameters (i.e., potential
depths and geometries) to vary in the search at each ener-
gy. These resulted in fairly good simultaneous fits to all
the data. Although the deduced parameters did not ex-
hibit a smooth dependence with incident neutron energy,
there was an indication of some trend in some of the
geometrical parameters (e.g. , the radius of the real
volume potential).

We next proceeded to seek a global fit using fixed
geometries and energy-dependent strengths. The detailed
fits to the differential scattering and analyzing power data
were poorer than those obtained from the individual
"best fits, " although o.T between 4.0 and 40.0 MeV was
still quite well reproduced.

A global search was performed in which the geometri-
cal parameters of the real volume, imaginary volume, and
imaginary surface potentials were allowed to vary linear-
ly with energy. This parametrization gave fits similar to
those attained with the global search with constant
geometries.

Overall, our global fits, which include the new data, are
similar to those achieved by Armand, Finlay, and
Dietrich [3] in their analysis over the smaller energy
range 4—11 MeV. Although both of these parametriza-
tions seem to reproduce the kinematic trends in the data,
they do not yield precise fits or fits that are as good as the
best fits attained for the data at each energy.

The new A (0) data help to constrain the spin-orbit
parameters. In the above global models we found that
the data were described quite well by a s.o. potential
which had a constant strength for the real part. The data
also show evidence for a need for an imaginary s.o. poten-
tial with a strength of the same sign as the real part.

A dispersion-relation analysis similar to that reported
by JHM was performed, except here we have used an
iterative global method of search and included the
analyzing power data. Our resulting VH„(r, E) potential
differed slightly from that of JHM; i.e., we found
VHF(E+)=47. 591 vs 46.4 MeV and r&=1.221 vs 1.240
fm, respectively. The fits to the data were quite similar.

We have also compared the data with the A~(8) calcu-
lated using the constant-geometry DR models with (JJM)
and without (JHM) I dependence in the imaginary surface
potential. The l-independent DR(JHM) tends to repro-
duce the features of the data, but does not provide good
fits, especially below about 10 MeV. However, the l-
dependent DR(JJM) noticeably improves the fits.

We then use the DR(JHM) and DR(JJM) parametriza-
tions as starting conditions and sought to determine
whether more precise fits to the scattering and analyzing
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power data at each energy in the 6.0—10-MeV region
could be obtained. It was found that where significant
improvements in the fits resulted, the varied parameters
changed by the order of 2% (i.e., changes comparable in
magnitude to the DR corrections).

Finally, we have found that the o ( 8) and Az ( 6() data at
6.0 and 7.0 MeV could be better fit by the I-dependent,
energy-dependent diffuseness DR model of JHM. Al-
though this model does not strictly satisfy the DR, it pre-
dicts cross sections that are in good agreement with a
rigorous DR model of a similar type (i.e., 1-dependent,
weak energy-dependent diffuseness model of JJM). The
fits achieved by this model are comparable to the best fits
attained with searches using a SOM with WS form fac-
tors.

Hence, although use of the DR constraint with WS
form factors is reasonably successful at predicting the
n+ Pb dynamics in the energy regions from about —20
to 40 MeV and leads to a simple understanding of the
OMP parameters, the requirement of energy dependence
in the geometry of the imaginary surface potential to
more precisely fit the scattering data below about 15 MeV
introduces complexities which make a DR analysis
difficult. This is especially so because the form of the real
surface potential can no longer be described at all ener-
gies with a WS form factor. The origin of this energy
dependence arises from the fact that the amplitudes of
the different partial waves contain nodes in the nuclear
surface region which tend to decouple the corresponding

partial waves from excitation of collective surface modes
[26]. Such excitations are the main contributor to the
imaginary surface potential. The net result is to make the
imaginary surface potential / and energy dependent [6,7].
In light of these difficulties, it is no wonder that Mahaux
and Sartor [27] have opted to ignore this energy interval
in their more recent applications of the moment ap-
proach to the DR.

A major problem to be faced in trying to deduce
whether the data can be precisely fit with a self-consistent
DR model is the lack of sensitivity at the (less than or
proportional) 2% level of determining individual parame-
ters. It is not clear whether assuming a WS form factor
for the imaginary surface potential or an energy-
independent spin-orbit potential is proper at this level of
sensitivity. It is clear that to push the model beyond the
simple fixed geometry representations will be difficult.
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