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A semiclassical model for a clustering in heavy nuclei is developed where the nucleus is viewed as a
composite system of pairwise correlated nucleons interacting with a particles. The nucleons are treated
microscopically by the use of a spherical shell-model basis while the n particles are considered as ele-
mentary bosons carrying angular momentum zero and one. The description of such a system is based on
a time-dependent variational formalism, which yields BCS-like equations for the ground and some low-
lying excited states. It is shown that the system may undergo transitions from a nucleon superfluid phase
to intermediate phases characterized by the coexistence of few a clusters with a nucleon pair condensate.
The model allows also to study in a random-phase-approximation context the fluctuations of the system
around the BCS-like configurations. Two peculiar aspects emerge, the occurrence of collective states
describing a wobbling motion of the a particles and the unusually large number of collective states
describing a coherent motion of nucleons oscillating in phase with a particles. The numerical illustra-
tive applications refer to Ra.

I. INTRODUCTION

Alpha clustering in nuclei is a very old though still cen-
tral subject in nuclear physics, which goes back to
Gamow's pioneering paper on the quantum treatment of
alpha-particle penetration through the Coulomb and the
centrifugal barrier [1]. The underlying idea of Gamow as
well as of later microscopic descriptions [2—4] of a-
particle decay was that such a particle is already formed
inside the nucleus before tunneling.

Alpha clustering plays an important role in the study
of light nuclei [5—9] and in connection with the analysis
of the asymmetric fission process [10—13].

Evidence in favor of alpha clustering in heavy nuclei
has more recently come from systematics for ground-
state widths [14] indicating large reduced alpha widths in
the vicinity of the Z =50 and 82 shell closures and from
a-transfer [15] reactions showing a large population of
excited states. This evidence is particularly strong in Ra
isotopes [16,17] and in Th [18,19], where the oc-
currence of low-lying negative-parity states, the sequence
of alternating parity high-spin levels, the enhancement of
the E1 transitions connecting these states seem to
represent the signature of molecular states in which the a
clusters perform collective dipole oscillations [20].

Several microscopic formalisms based on alpha cluster-
ing have been developed to study the properties of some
low-lying nuclear states. It is worth mentioning the quar-
tet [21—24] and the quadrupole [25] models. Because of
the intrinsic complexity of the problem, their actual ap-
plication has been forcefully confined mostly to light nu-
clei. These microscopic approaches deal also with the
internal structure of the cluster. It has been suggested in
this respect [26,27] that not only T = 1 but also T =0 in-

teracting correlated pairs, which favor deformation,
would be needed to describe four-body correlations, espe-
cially in heavy nuclei.

Nucleon pairing represents on its own a major example
of clustering in nuclei. The superAuid nuclear properties
are indeed explained [28] by assuming the nuclear ground
state to be a condensate of nucleon pairs coupled to J =0,
T = 1. Also pairs with higher spin have been considered.
In the interacting boson model (IBM) [29], for instance,
the low-lying properties of nuclei in different regions have
been explained in terms of strongly correlated J =0 and
J=2 pairs of nucleons, assumed to form s and d bosons.

Pairing correlations and a clustering may coexist in a
nucleus and may be considered in competition. The ques-
tion of whether nuclei are a superQuid condensate of a
particles rather than a nucleon pair condensate has been
raised [26]. Analysis carried out within schematic mod-
els [30,31] inspired by the work of Nozieres and Saint
James [32] on the condensation of excitons versus biexci-
tons in semiconductors have suggested that a phase of a
condensation may set in some heavy nuclei.

In this paper we intend to explore whether and how
heavy nuclei undergo a transition from a nucleon pair
condensate to an alpha condensate going through inter-
mediate steps with a few alpha clusters coexisting with a
pair condensate. Since a completely fermionic treatment
of the problem is practically impossible in heavy nuclei,
we developed a semiclassical model where the nucleus is
described as a system of nucleons pairwise correlated in-
teracting with e particles. The correlated nucleons are
treated in BCS approximation, while the cx particles are
considered as elementary bosons. Although explicitly ig-
nored, the nucleonic structure of the u clusters has been
effectively accounted for by a proper choice of the
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different pieces forming the model Hamiltonian. Also the
nuclear deformation, important in connection with o.-

cluster phenomena, has been simulated by blocking the
BCS ground state with two-neutron single-particle
creation operators.

A time-dependent variational formalism has been
developed to study the static properties of the (J =0+)
ground state and of the J =1 and 2+ excited states.
The same formalism allows naturally a description in ran-
dom phase approximation (RPA) of the small oscillations
of the system around the variational states, which lead to
new types of collective excitations.

This project is achieved according to the following
plan. The model Hamiltonian is described in Sec. II.
Equations of motion for the classical coordinates describ-
ing the system are derived in Sec. III. The BCS-like
equations are presented in Sec. IV while the RPA eigen-
value problem is formulated in Sec. V. The numerical ap-
plications referring to Ra are commented upon in Sec.
VI and a summary of the main results is presented in the
concluding Sec. VII, where the Anal conclusions are
drawn.

II. THE MODEL HAMILTONIAN

As stated in the Introduction we intend to study a cou-
pled system of interacting nucleons and a particles. The
nucleon subsystem consists of protons and neutrons mov-
ing in a spherical shell-model potential, with like nu-
cleons interacting through a pairing force. We denote
their single-particle energies by eJ and the corresponding
creation and annihilation fermion operators by c and
c . The a particles are treated as elementary bosons
moving in a mean Aeld generated by their interaction
with the surrounding medium and described by a spheri-
cal harmonic-oscillator well. For our purposes it is
necessary to consider a truncated well such that only two
bound states, the Os and the 1p states, be allowed, the
third lying at the edge of the continuum spectrum. The
boson creation and annihilation operators for the n states
are denoted by Aim and A&m and the a particles in the Os

and 1p are referred to as a0 and a1.
The full model Hamiltonian describing the interacting

system of a particles and nucleons has the form

H = g (E) A, )c~
—

c~ , .+ g (coq —4A, )AqM AqM
—

—,
' g G PQ, +Xo(ptpt Ao+H. c. )

J{=0, 1)M ~=p, n

+X, (1V +8'„)(1V +8 )+Xp g q2„Q2 „(—)"—&2~ (2.1)

where ~=p, n, g, g„,and 8' are the number operators
for protons, neutrons, and e particles, respectively, Pt
and their Hermitian conjugates P, are the pairing opera-
tors, q2„and Qz„ the nucleon and alpha quadrupole
operators, respectively, J the total angular momentum of
the whole system, A, , A. , and A, 2 are Lagrange multipliers.
More explicitly the pairing and quadrupole operators
have the form

~{p}+~{n}+~ 1.(a )

v v

where the proton and neutron spins are given by

(2.3)

(2.4)

while the angular momentum carried by the n1 system is

pt ypt (a, )j„'=&2(A, A, ),„. (2.5)

= Q Qcj ~ cj sj m&sjmm ( 1)
J m

q,„=+&jmlr'z, lj'm'&c, c,'
1/2

(2.2)

1S
32~ [(,A, )2„+( A, A, )2

MCO1

—2(A, A, )~„],
where M stands for the mass of the a particle and cu1 is
the frequency of the a, particle.

The total angular momentum operator is

[We use the tensorial coupling with the phase convention
(cjc~)»=+CD' ~c~ c~ s~. . The other conventions

are those of Rose. The Wigner-Eckart theorem is used in
th«orm & jmlTk, lj™&=c'"„'& jllTkllj'& ]

The terms containing the Lagrange multipliers k, s are
constraint operators on the total spin J and the number
of protons, neutrons, and e particles. Being A&f and
A I elementary boson operators, the Hamiltonian clearly
breaks the gauge symmetry. In fact,

[H, A' +8„+48' +48 ]%0 . (2.6)

This breaking is enforced, as we will see, by the trial wave
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III. SEMICLASSICAL DESCRIPTIQN

Instead of solving the stationary eigenvalue problem
we seek the solutions P(t) of the corresponding ™
dependent Schrodinger equation. One thus obtains infor-
mation not only about the static properties of the station-
ary solutions but also about the dynamic of the excitation
process. The time evolution of g(t) is entirely determined
by the variational principle

s f '(d, . iR, Hdf, )dt'=0, — (3.1)

provided the trial wave functions Pf span the whole
Hilbert product space Sf(3S of fermion and u-particle
states.

We choose variational states of the following type:

= JVexp(ZOA o Zo Ao )exp[Zi( A i] + A i ) )

function, which violates also the rotational symmetry.
Hence the need for introducing constraining terms which
restore at least on average the two symmetries

The Hamiltonian displays three interaction terms.
These were chosen on the ground of the following physi-
cal motivations. (a) The first one having the coupling
constant Xo accounts for the fact that an a particle can
be formed out of or can be split into two T = 1 pairs of
nucleons. (b) The second in X, simulates an interaction
between ot particles. Because of the constraint on the
total number of constituents, 8~+8'„canbe expressed
in terms of 8' +8 thereby generating terms

0 1

in (8' +A' ) specific of a-pairing interaction. (c) The
0 1

quadrupole-quadrupole term is dictated by the fact that
the a particles cluster in deformed nuclei. This is in fact
a cooperative process. The formation of a particles
reduces the number of pairs thereby favoring the defor-
mation of the mean field and consequently of the nuclear
shape. This in turn induces distortions on the motion of
the a particles, whose trajectories are expected to lie
close to the nuclear surfaces. It is indeed reasonable to
assume that the a clusters are formed out of valence nu-
cleons whose single-particle wave functions overlap each
other mostly near the nuclear surface.

The deformation however is simulated by the action of
two neutron pair operators c . c,with j, and m

&Jl ml Jl ml ~

given on the BCS vacuum. The resulting state is a super-
position of states with total spin J =0,2, . . . , 2j &

1 .
The choice of neutron rather than proton blocking opera-
tors is dictated by the fact that heavy nuclei have an ex-
cess of valence neutrons.

The variational principle (3.1) provides a set of equa-
tions of motion for the classical coordinates Zo, Z, ,z,
Since the trial wave function breaks gauge and rotational
symmetry, we shall select those solutions which obey the
restrictions

& qf .lE, +A. +48'.,+48'.
, ~ yf .& =~,

&
=J(~+1)

(3.3)

(3.4)

=E (given) (3.6)

This equation expresses the fact that & is a constant of
motion in accordance with any time-dependent formal-
ism derived from a variational principle.

The matrix elements involved in (3.1) can be easily
evaluated if one uses the quasiparticle representation

where the values of N, and J are given.
The parameters Zo, Z &, z;, and their corresponding

conjugates Z 0,Z *, ,z,
* are smooth complex functions of

time. We will use the parametrization
~1 +kZo =Roe ', Z, =R e ', zk =pke

k =2, . . . , n, + 1, (3.5)

where n, denotes the number of nucleon states. These
complex variables define a manifold which plays the role
of a classical phase space. The set of solutions of Eq.
(3.1) and of their complex conjugates
M(t)=(ZO(t), Z&(t), z2(t), z3(t), . . . ; Zo (t), Zi (t), z2 (t),
z 3 ( t ), . . . ) defines a point in the classical phase space.
Once we know M(to) for a given time to, the set tM(t)I,
is fully determined for any t and defines a classical trajec-
tory of our system. The classical trajectories are con-
tained in the energy surface defined by

& lpf ~~H Qf

~&:&(Zo&Zigzag&z3&

&Zo &Zf &z2 &Z3 & )

Xc c expJim& J& m&

—Z*, (A„+A, , )]

(z, P," z,*P; ) ~0&f ~0&.—.,

(3.2)

exp[ Tf ] ~0 &f =exp (z,.P,' z,'P, )~0&f- . .

Jp,J„
=—iBCS &

f f f—e Ckm e = ukCkm Skm vkCk —m = km

where

(3.7)

(3.8)

where JV denotes the normalization constant and
~0 &f, ~0 & the vacua for nucleons and a particles.

The n components of the trial wave functions are
coherent states with respect to the ao and a

&
"oscilla-

tions" and as such are suitable for a semiclassical descrip-
tion of the a system. These states clearly break gauge
and rotational symmetries. The nucleon component is a
BCS wave function which does not preserve the number
of protons and neutrons. The BCS state is not deformed.

The u and v coeKcients are related to the particle phase-
space coordinates by

'+k
uk =cos2pk, vk =sin2pk e (3.9)

Using the fact that e f ~0 &f is a vacuum state for the
quasiparticle operators ak and that the trial wave func-
tions gf are eigenstates of the operators A 0 and A i + r

ADA a —ZOPf a~ A 11 Pf a A i —i pf a=Z14f a, (3.10)



1932 RADUTA, DELION, URSU, AND LO IUDICE

one easily obtains for & the expression given in Appen-
dix A. In terms of the classical coordinates the con-
straints (3.3) and (3.4) on the number of particles and on
the total spin have the expressions

2&IUJ I'f).+2uj' +41zol'+8lzil'=N, ,

»,' C, +4IZil'= J(J+1),
(3.11)

(3.12)

k =2, 3, . . . , n, +1 . (3.13)

We also put

%o 4o& 0') (3.14)

so as to have a unitary notation for a and nucleon coordi-
nates. The equations of motion for these new coordinates
are

a& = dye' =. (3.15)

where 0k =(2jk+1)/2 and Cz is given by Eq. (A3).

The classical equations of motion can be put in canoni-
cal form if they are written in terms of the conjugate
coordinates (rk, yk ) defined by (3.5) and by

ro=Ro, r, =2R „rq=(Ak 5k )—sin 2.pq,

for r =0, where the functions at the right-hand side (rhs)
of the equations in Appendix B become singular and
therefore cannot be used to describe the behavior of the
system around the origin of the phase-space coordinates.
Being highly nonlinear, the classical equations of motion
can be solved only by adopting some approximation. We
shall first search for the stationary points of the energy
surface and then select the minimum energy points which
satisfy the constraints (3.16) and (3.17). Let us denote
one of the minima of & by (Pk, jj, ), k =O, l, . . . , n, + l.
After expanding the rhs of the equations in Appendix B
around (Pk, &)ok ) and keeping only the linear terms we can
easily integrate the resulting system of equations. The
corresponding solutions are closed trajectories surround-
ing (r)„yk). The coordinates (rk, qr), ) are, therefore, not
suitable wher~ the minimum point has at least one vanish-
ing component. This happens when the angular rnomen-
tum of the composite system is zero. For J =0 indeed,
Eq. (3.17) is satisfied by r') =u =0. In this case we haveJ)
either to use the (z,z*) representation and keep the con-
straint (3.17) or to keep the (r, y) representation but
change the constraint such that the minimum has non-
vanishing components. We opt for the second alternative
and require that the ground-state mean value of the static
quadrupole operator

where the overdot denotes time derivative. Their explicit
form is given in Appendix B.

Expressed in these new coordinates, the constraints
(3.11) and (3.12) become

n +1

16m.
20 g &j m

I
r y2o jm &c~~c~~

Jm

+g & Ill r I'2o I 1M & ~ iM ~ iM
M

2 g rk+2+4(ro+r, )=N, ,
k=2

(3.16) (3.20)

J(J+1)
1 — C +ri =

Jl
(3.17)

be the experimental value Qo""'.
This yields the relation

According to Appendix B, r, is a constant of motion.
This is a classical counterpart of the fact that quantum
mechanically the Hamiltonian (2.1) commutes with 8

1

where

Ma)1
(3.21)

IH, A'. j=o. (3.18) Mao. ..2J,C. = —4 (N+ —', )C)~2o)~2C
' o'

m coo
(3.22)

(Here we consider only the EN=0 component of the
quadrupole operator associated to the a system. ) Using
the equations of motion given in Appendix B we get

n +1
r'„+2r'o =0, (3.19)

k=2

which states that at the classical level the total number of
particles is preserved. Constraint (3.16) is therefore au-
tomatically satisfied by the classical solutions. The same
does not hold, however, for the spin constraint, since
rj. %0, as indicated by the equations listed in Appendix
B. Constraint (3.17) can therefore be satisfied only in the
stationary points of &.

Before closing this section we would like to comment
on the transformation relating the old coordinates (z,z')
to the new ones (r, p). This transformation is not defined

Here m and M stand for the nucleon and a-particle
masses, respectively, So denotes the spherical shell-model
frequency, and N is the principal quantum number for
the neutron orbital (j,m, ). With these new constraints
the J =0 case is formally identical to that of JWO if we
replace CJ with C~ and J(J + 1)/2 withJ)m) J&m&—(Mo), /)ri)Qo )".

Since r1 is a constant of motion, the problem in the
(r, y) representation is simplified by fixing its value. One
solves, indeed, only 2n, +2 equations describing the
motion of the coordinates ( rk, yk ) with k A 1. Taking
r, =0 for the J=0 case we get from Eq. (3.21) a nonvan-
ishing solution for uj provided C. and Qo"i" have op-

posite signs. So for m, = —,', Qo")" should be positive since
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C. &&@&0, while for m&=j& one obtains nonvanishingJ)
solutions for uJ only for oblate deformations.Jl

IV. BCS TREATMENT OF THE COMPOSITE
SYSTEM OF NUCLEONS AND a PARTICLES

equal to zero if we require that the momentum of the u
particle, which is proportional to (Ai, —A&) (k =0, 1),
vanishes in the ground state.

Under these conditions the occupation probabilities are
given by

As already mentioned, the classical equations of
motion, before being solved, are linearized around the
minimum points of the energy surface (A=E)'. The sta-
tionary points satisfy the equations

(4.1)
1

J)

I-.„—X,.I kej, ,Q(E„—X,) +b,,

IE)
—X„I

(%~
—X„)+b,

„

(4.5)

(4.6)

These will be solved separately for J =0 and JAO. Let us
consider the J=0 case. Since r& is a constant of motion
and accounts for the number of a& particles in the
positive-parity J =0 state, we take r'i =0. Equation (3.21)
then determines u . For spherical nuclei it gives u =0

J) J)
and U =1.

J)
It is well known that the BCS equations produce real

solutions for the gap parameter. We suppose that the gap
remains real even when nucleons interact with o. parti-
cles. A sufhcient condition for this to occur is jr=0,
kA j, . For k =j, one can take jv =0 when vj = 1 and

yj =m/2 if v~ Wl. The v and u coefficients satisfy the

equations

C

0 —1 2Jl

G u

0

)+X~
2j) —1

(4.7)

For given r~ and r, the equations for 6's and k's are

G, nfl u~ Iv~ I
=l, ,

where X„A,have the expressions (4.3), while e&, e. , 5„
are given by

Eg=Cg+X, P, 6 U p

Ivy,
I'= —1— u '„=1—Iv„I',

Q(ei, —X,,) +b, ,
(4.2)

2u
~ +2+ Q„Ivj I

=N —2( |+sr'i)=N„',
Jn

2g 0~Iv~ I
=Z —2(r&&+P, )=N',

Jp

where

(4.3)

with ~' taking the complementary values of ~.
For a given r&& the gap parameters l, and the Lagrange

multipliers X's are determined by the following equations:

G, y &.u, I v, I
= 3. ,

J~

Jn

2g 0 Iv I
=Z —2P(), (4.4)

co, —4A, +X, (N, —4P())+X~ 1—

—2A.~ =0,
where Xz is defined by Eq. (A4).

For JWO we keep the condition that b,„and b, are
real numbers. Again this is true if y& =0 for any value of
k ) 1. Also the angular variables yo and y& can be put

4X,
co()

—4A, + +X, (N, 4r'())=0, —
6„G~

4(r()+r, ) =N, —N' N„'=4N-
2u C. +2r', =J(J + 1),

(4.8)

X()
coo 4A,~+

2+7,
23, 8l„h,,

'

—4u, Iv, I

'+
p n p

co, —4A, +X, [N, —4PD 4r',]—+X, [N, 4PD 4r'i ]=0, — —

+X& 1 — r'.2

2j, —1 J&

—2A,q=O .

It is understood that Eqs. (4.5), (4.6), (4.7), and (4.8) are
to be solved iteratively.

Once the stationary equations (4.1) are solved for J =0
and JAO and a stable solution is found for each value of
J we have to linearize the equations of motion around the
minima and solve the resulting equations. This is fully
equivalent to the standard RPA procedure for any
many-body system. The specific feature of our case is
that we deal with a composite system of nucleons and a
particles.

V. RPA DESCRIPTION

The linearization of the equations of motion (3.15)
leads to a system of equations for the deviations of the
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phase-space coordinates from their static values:

9k ~k ~k Jk Pk 9 k

The result is

(5.1)

n +1

Pk X ~ki
i=0
iAO

n +1

qk
= g &kiPi

i=0
i%1

(5.2)

P
V q

(5.3)

where the coefficients A k; and %k; are listed in Appendix
C.

These equations can be easily solved. Let us define the
transformation

vectors (Q) and (P), respectively, and 9 and 9' as
(n, +1)-dimensional matrices, Eq. (5.3) defines a unitary
transformation and can therefore be reversed giving (q,p)
in terms of the RPA conjugate variables (Q, P). The re-
sulting classical Hamiltonian & is a quadratic form in Qk
and Pk.

This classical function can be quantized by one of the
following procedures.

(a) Using for Qk and Pk their expressions (5.9), one can
check that & is independent of time and of theyhases 5k
and depends only on the squared amplitudes Qk. These
can be fixed by using the Bohr-Sommerfeld quantization
procedure, which generates a discrete spectrum. The
classical function & assumes indeed the following expres-
sion:

which relates the coordinates p and q to a new set of
coordinates P and Q fulfilling the following equations:

~n n . . . n+ 1 X nk~~k
k%1

(5.11)

P = —coQ, Q=coP . (5.4)

These equations of motion yield a simple relation between
the row vectors involved in (5.3):

where nk &IV.
(b) Alternatively one can regard the canonical variables

(Qk, Pk ) as quantal operators satisfying the commutation
relations

V=V . (5.5} [Q kP ]k=iA . (5.12)

Using (5.3), (5.4), and (5.5) one obtains the following ei-
genvalue equations:

8 A .
p p.

x e (5.6)

[H, A'p+ 8'„+48' ]=0 (5.7}

which determines the vectors 9' and 9 as well as the ei-
genvalue co.

Equation (5.6) admits a spurious solution with co=0.
This corresponds to the breaking of the symmetry prop-
erty expressed by

The classical function %(Q,P) becomes then a quantal
Hamiltonian. This can be brought into diagonal form
through the canonical transformation

i'
Qk =ak&2(Bk+Bk ), Pk = —(Bk Bk ), —

Qk 2

where the new operators have a boson character:

[Bk,Bk ]= 1 .

(5.13)

(5.14)

The constants ak are chosen so that the coeKcients of the
cross terms BkBk+H.c. vanish. The resulting Hamil-
tonian is

and rejects a well-known property of the RPA equations
of motion.

Let us label the n, +1 physical solutions of the RPA
equations according to the ordering sequence

HB g ~~k (Bjk jk+T}
k

(5.15)

~ ~ o (C01 C02 -~n +1 ~

S
(5.8)

a& = agf
(q p}=

Bp Bg
(5.10)

If we interpret Qk and Pk as components of the column

The corresponding eigenstates are denoted by Vk and Qk,
with components Vk;, Qk; (i = 02, ,3. . . , n, +I). Once
the energies cok are determined, Eqs. (5.4) can be easily
integrated. The solutions are

Qk Qksin(~kr+~k } Pk Qkcos(~kt+~k }
0

where Qk and 5k are integration constants.
The classical energy 0 can be easily expressed in terms

of the conjugate coordinates (Qk, Pk) after expanding
&(r, y) in terms of (qk, pk ) up to second order.

In fact, the linearized equations (5.2) also have a
canonical form:

where the label J indicates that the variational procedure
is carried out for a given value of the total spin.

This is nothing but the zero-order boson representation
of the initial Hamiltonian describing the system of mutu-

ally interacting fermions and a particles. It gives the
same excitation energies of the semiclassical Hamiltonian
(5.11),but has in addition the zero-point energy term.

The J=0+,2+, 1 states, though obtained by solving
separately three difFerent variational equations, are ap-
proximately mutually orthogonal. %'e then assume that
the boson operators B,B corresponding to difFerent
values of J commute with each other.

The present QRPA approach, formally identical to the
usual many-body QRPA description, deals with a com-
posite system of nucleons and ao particles. Both nu-
cleons and a's are treated on an equal footing. Even the
classical coordinates for nucleons and ao particles have a
similar meaning, being in both cases mean values of their
number operators
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ff g. J cj gf ,)). .
m

(5.16)

2~0 I I I i

~

I I I I

~

I I I I

~

I I I l~ i

VI. NUMERICAL APPLICATIONS AND DISCUSSION

The formalism described in the previous sections was
applied to Ra.

The single-particle space chosen consisted of two major
spherical shells for both protons (4fico&, 5%coo) and neu-
trons (5trico&, 6tricoo). The strengths of the proton- and
neutron-pairing interactions were fitted to the mass
differences of Ra and the neighboring odd nuclei.
Since the BCS quantities depend only on the difference
ro, —co&, this was determined as follows [33]. The a-
particle formation amplitude was computed microscopi-
cally and then interpreted as an eigenfunction of a Hamil-
tonian with an effective potential. The potential so ob-
tained could be assimilated to an oscillator well. The
computed energy distance between the first two bound
states of this potential, about 5.63 MeV, was assigned to
the energy difference co&

—cop. The coupling constant X&
of the term simulating the pairing interaction between o.'

particles was fitted [30] to the mass difference of Ra
and the average mass of Ra and Th with the result
X, =0.32 MeV. The Xp and X2 strengths were deter-
mined by imposing that the variational states J=1 and
J=2 lie above the ground J=O state by an amount
which is equal to the observed low-lying excitation ener-
gies E, and E +, respectively [34]. The resulting values

were Xp =2 X 10 MeV and X2 = —0.01 MeV.
The 8CS equations were solved successively for

J =0, 1,2. Being a constant of motion, the number of a&
particles was chosen to be r, =0 for J =0,2 and r, = 1 for
J=1. Correspondingly the J=0 and 2 states resulted to
have positive parity while the J= 1 state assumed a nega-
tive parity.

The occupation probability for the single-particle
states is plotted in Fig. 1 for protons and in Fig. 2 for
neutrons for J =0 and J=2. While the protons behave
similarly in the J=0 and J=2 states, the neutrons have
a sharp Fermi surface in the J =2 state but a diffuse one
in the ground state. This refIIects the fact that only neu-
tron alignment is responsible for exciting states with
J+0. For the J=0 case we plotted in Fig. 3(a) the gap
parameter as a function of the number of ap particles. A
transition from a nucleon superAuid to a normal phase is
registered for rp=3, which corresponds to the double
magic closure reached by the nucleons. The dependence
of the proton gap parameter Az on the pairing strength
G~ and on Xo is illustrated in Figs. 3(b) and 3(c), respec-
tively. The dependence of h„onG„andX0 is shown in
Figs. 3(d) and 3(e). One may notice that, as G decreases
or Xp increases, 6 reaches a secondary minimum at
F0=6 corresponding to a shell subclosure for protons.
Such a behavior can be easily understood since the nu-

0.5

0 0 I I I

3S 40 48 44
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46 48 50

cleon pairing correlations tend to stiffen the system
against u clustering while the term in Xp favors the clus-
tering of a neutron pair with a proton pair. The neutron
gap 6„is rather insensitive to changes in X0 but varies
with G„even more than in the proton case. By a modest
increase of G„ the first minimum disappears, while a
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FIG. 2. The same as in Fig. 1 but for neutrons.

FIG. 1. The proton occupation probability (~v;~ ) as a func-
tion of the corresponding energies for Ra. The dashed line
refers to J=2, the solid line to J =0. The parameters have the
following values (in MeV): ~& —coo=5.63, G„=0.1, G~ =0.14,
X0=2X 10,XI =0.32, and X2 = —0.01.
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FIG. 3. (a) The gap parameter for protons (dashed line) and neutrons (solid line) as a function of the average number of ap parti-
cles, rp. The parameters are those of Fig. 1 for J =0+. (b) The gap parameter for protons h~ as a function of the average number of
ap particles for three distinct values (in MeV) for G~: 0.1 (solid line), 0.08 (dashed line), 0.12 (dash-dotted line). The remaining param-
eters are cu&

—Np=5 G =0.1 Xp=X2=0, and X, =0.3. (c) The gap parameter for protons as a function of the average number of ap
particles for three distinct values (in MeV) of Xp. 0 (solid line), —0.001 (dashed line), +0.001 (dash-dotted line). Here G~ =0.1 and
the other parameters are the same as in (b). (d) The gap parameter for neutrons as a function of the average number of ap particles
for three different values (in MeV) of G„:0.1 (solid line), 0.08 (dashed line), 0.12 (dash-dotted line). Here G~ =0.1 and the parameters
are the same as in (b). (e) The gap parameters for neutrons as a function of the average number of ap particles for three different
values (in MeV) of Xp. 0.1 (solid line), 0.08 (dashed line), 0.12 (dash-dotted line). The remaining parameters are those from Fig. 1.
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FIG. 4. The energies of states 0+ and 1, obtained by the
variational equation, as functions of r0, the number of a0 parti-
cles. The strength parameters are the same as for Fig. 1.

FIG. 6. Even-odd staggering computed with three different

values (in MeV) of the strength parameters X, : 0.2 (dashed), 0.3
(point-like), 0.4 (dash-dotted). The other parameters are given

the following values (in MeV): co&
—co0= 5, G„=G~ =0.1,

X0 =X2 =0.

small reduction generates a secondary minimum at
Z =70 and N = 114 corresponding to a shell subclosure.

The above results clearly show the competition be-
tween nucleon pairing and a clustering. This is more re-
markable since in our formalism the appearance of an a
particle does not induce explicitly a blocking of the
single-particle orbits, but only affects the occupation
prrobability amplitudes via the restrictions coming from
the particle number conservation.

The energy of the J=O ground and J=1 states are
plotted in Fig. 4 as a function of the number of ao parti-
cles. Both energies have a minimum at r0=2 corre-

sponding to a formation of an a cluster coexistence with
the nucleon superAuid phase. The difference between the
two energies corresponding to the minimum point is just
the experimental value E, =0.41 MeV.

Since the strength parameters supposedly do not vary
significantly in going to neighboring nuclei, we have cal-
culated the BCS ground-state energy of neighboring
even-even nuclei by keeping the strengths constant. We
obtained (Fig. 5) a sawtooth behavior which follows rath-
er closely the experimental behavior. The agreement may
be improved if we allow the strength parameters to vary
with A. Such a staggering effect is indeed very sensitive
to the X& parameter. We plotted for the sake of illustra-
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FIG. 5. Even-odd staggering predicted by the present formal-
ism (dashed line) compared with the experimental data [35]
(solid line). The strength parameters are those determined for
220Ra

FIG. 7. The BCS ground-state energy of Ra as a function
of r0 for five values of X&. The remaining parameters are the
same as in Fig. 6.
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the ao particle is 0.364, while for J = I the ao particle os-
cillates with an energy of about 0.309 MeV. These states
describe clearly a wobbling motion. We shall therefore
call them wobbling e vibrational states.

The J =2 case is completely different. Among the 24
RPA states there are 9 collective states describing a
coherent motion of several quasiparticle pairs oscillating
in phase with the ao particles. The occurrence of a large
number of collective states was quite unexpected in view
of the fact that the usual many-body RPA predicts very
few collective states, one for a pure system of protons or
neutrons and two, at most, for a proton-neutron system
[35]. The present result may simulate a transition to de-
formation induced by n clustering.

For the sake of illustration we give in Table I the ener-
gies of the RPA collective states describing the Auctua-

tions around the J =2 variational state and having large
no components.

It is interesting to analyze the zero-point energy of the
"almost" pure ao vibrating states

E = 2'&+ 2'&+E =0.736 MeV

This is very close to the value of E„determined by an
empirical procedure adopted in Ref. [13], where the
zero-point energy of the a particle was introduced as a
fitting parameter to correct the Q value entering the
WKB integral of the a-penetration probability. The
empirical value necessary to get a good agreement with
the experimental lifetimes Ra —+ ' Ru was E, =0.72
MeV. Our formalism may then provide a theoretical
justification to such a fitting procedure.
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study of the gross features of the low-lying states of the
heavy nuclei which are candidates for exhibiting a-like
correlations. The next step is to see if the model can ac-
count satisfactorily for a-decay processes and a-transfer
reactions. This analysis is in progress.

APPENDIX A

We give here the explicit expression of the mean value
of the Hamiltonian (2.1) using the trial wave functions

[Eq. (3.2)]:

& gf .III I gf .&
—=~=2(E, —

A,„)u,+2 +

+u (v*5„+vib,„*)—G„uj (1+2/v) / )+(coo 4~ )IZOI
P n

+(co,—4A, )~Z, ~

+4 —u (Zov~ h~+Zvvj*b~ )+ (Zoh„b~+Zo b.„*b~)

+2X, [JZ, /'+2/Z, /'] u,'. + y Q, /vj f' +X,u,
' fZ, /' —2X,(u,'C, +2)Z, J'),

J~

(A 1)

where 6 is the gap parameter

'+k
&,=—,'G, g Qk sin4p„e

k
r T

C. stands for the following sum:
J&m&

C = g J(J+1)(C ' ' 0)
J=even

(A3)

and X2 is defined by

X2 = —X2

' 1/3

&A Ii"l'2IIA & C-', o-', (A4)

Here m stands for the nucleon mass and X2 is the quadrupole coupling constant.

APPENDIX B

We give the explicit form of the equations of motion in the coordinates ( rk, pk ):

Xp
gp =cop 4A,~+ 2+r,

I(gp gj ) &((Ip gj ) 4 iy —i
sin4p~ (b, e ' +h~e ' )+ (b,„b,e '+b~b, „*e ')

6 J) P 6 G ~ P P

+X, 2cos22p + g 2Q sin 2p~
J~

—p~=co& —4A, +X& 2cos 2pj + g 2Q sin 2p +X~ 1 — r —2A,2, .

J~ 1
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C—
yk =2(E& —A. )+2X,(ro+r, ) —26, (1—5k. )sin 2pk+5kj 6„2 +cos 2p —3 sin 2p

n j&

cos4pk
b,, e "+6,* e "—G„sin4pj cos(yj —q&k)5 „(15k—j )

1 «qQ —
gk ~ ~

—'~qQ f'k ~—4Xo+ro (g, e ' " +5', e o "
) —5, sin4p cos(po —

q& yk—)
I
k

2
5k J2 P]y k + 1

2j1

&(yQ tP ) &(yQ y )

p n p

G„
'k =(Qk —5k )sin4pk — (b, e "—b—,,* e ")+5„„sin4psin(y —

yk )

' +Q +k 4 ' +Q +k2iXo+ro —(6, e ' " b.*, e ' "
)
—i5,—sin4pJ sin(yo —

y~ yk)—, k ) 1 .G, k
k

In the above equations we have introduced the new notation r'k which takes the value ~k =p when ~k =n and vice versa.

APPENDIX C

Here we give the explicit expressions of the matrices A &; and Xk; entering the linearized equations of motion (5.2):

2X, u'„—Iv„I'
A~= u Iv I

—,Aok =Ak =2Xi+
P Qr'o uk Vk

—5 u Iv I, k)1,
k

A(k=Ak)=2X), k &1, kAj)', A) = — Xq,
2j, —1

b,
Akk =5kk [2(Ak —5kj )ukIvkI ]

' —4G, ukIvkl +L,„—4XoV Po 6 uj.
, lvj, l(5,„,6, 45,„pXoV r'o)

+6,
k)

4xo+r'o u„'—Iv„I' uk,—6, , +6
k)' k G 2uk Ivk I uk Ivk

p n

0
+ok =&ko=gXo&&ouk Ivk I «k 5k), ) 6

—"J, Iv'J, I5-kp

I

8,, —4Xo&t'o
" —u, Iv, I(6„5,„—4XoV t'o5, , ) —uk lvk I(&k —5k, )(6.„+4Xo+r'o5,„., )

k

k, k, )1.
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