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Probability and selection rule for nuclear excitation by electron transition
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A quantum-mechanical formalism to calculate the nuclear excitation by electron transition (NEET) is
presented. Emphasis is on the explicit calculations of the transition matrix elements for electric multiple
and magnetic dipole NEET and discussions of the selection rules. One of the features of this formalism
is that the part of the matrix element in connection with the nuclear partner is related to the nuclear par-
tial radiative width, which is a measurable quantity. This makes it available to evaluate the NEET prob-
ability more reliably. The predicted results for NEET probabilities in ' Os, ' Au, and Np are given
along with the available measured data.

I. INTRODUCTION

An excited atomic state, e.g. , a E-shell hole state, may
decay through various processes. In addition to the
known x-ray and Auger electron emissions, nuclear exci-
tation by electron transition (NEET) has attracted much
attention. In this process the excitation energy is
transferred from the electron system to the nucleus via
the near-field interaction. NEET is the inverse process of
internal conversion. In the earlier stage of this study, it
was recommended that NEET could be used to separate
isotopes [1]. Recently, there are some suggestions that
NEET perhaps is a useful technique in developing a
gamma-ray laser, which is considered one of the major
scientific and technological challenges in the next decade
[2,3]. The idea is that [4] as the electron system has rela-
tively larger electromagnetic multipole moments in com-
parison with that of the nucleus, it could effectively ab-
sorb energy from external irradiation fields. Then NEET
or other techniques would be used to transfer the energy
from the electron system to the nucleus to accomplish a
fast nuclear interlevel transfer. In this process the elec-
tron system plays a role of an intermediate mechanism
for transferring energy, angular momentum, or parity
change from the irradiation field to the nucleus. The
probability for a nuclear transition induced directly by an
external laser field proves to be extremely small [5,6].

There are few experimental investigations on NEET
[7—9]; all of these were made at Osaka University. As for
theoretical studies, only preliminary calculations were
published up to now [1,10]. There are no complete calcu-
lations for magnetic dipole NEET. Even for electric mul-
tipole NEET, the matrix elements in connection with the
nuclear partner were treated improperly. The hindrance
factors [11],which prove to be very important especially
for electric dipole transitions, have never been discussed
in any previous calculations. This ignorance might lead
to a great overestimation of the predicted NEET proba-
bilities.

A strict treatment of NEET requires the solution of the
complete channel equations including all possible decay
channels as well as intermediate states. As the main aim
of this paper is put on the explicit calculations of NEET
matrix elements and discussions of the NEET selection
rule, we proceed with the following calculations based on
the framework of nonrelativistic quantum mechanics.
First, we present a simplified formula to evaluate NEET
probabilities, which shows a Lorentzian resonance struc-
ture and the resonance width represents the effect of x-
ray and Auger electron emissions. Then we give detailed
calculations of the transition matrix elements for electric
multipole and magnetic dipole NEET. One feature of
these calculations is that the matrix element in connec-
tion with the nuclear partner is expressed in terms of the
nuclear partial radiative width, which is a measurable
quantity and has been systematically studied with collec-
tions of a large body of data. This treatment makes it
possible to evaluate the NEET probability more reliably.
All of those are contained in Sec. II. Section III gives the
predicted results for NEET probabilities in ' Os, ' Au,
and Np along with the published data. Section IV is a
brief conclusion.

II. PROBABILITY, MATRIX ELEMENT,
AND SELECTION RULE

%e first calculate the NEET probability. The initial-
and final-state wave functions of the nucleus-electron
system for a NEET process are written as
4; =%(I;II; n, lj;FM) and 4f .=4'(If II&nflfjfFM), re-
spectively. I is the nuclear state spin, H is its parity,
(n, lj ) designates a single-electron state in an atom,
F=I+j is the total spin of the nucleus-electron (or hole)
system, and M is its projection. In the NEET process,
the nucleus is excited from the state (I, II,. ) to the state
(IfIIf ), while the atom decays fr om 1ts lnltlal state
(n;1;j, ) to the state (nflfjf). The unperturbated energy
eigenvalues of 4, and 4f are E, and Ef, respectively.
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Provided only the lowest order of the NEET process is
taken into account, the wave function of the whole sys-
tem is

la, (t)l' =e (2)

where r, = I/A, ; is the lifetime of the initial electron (hole)
state. Inserting Eq. (1) into the Schrodinger equation,

i' =(Ho+&')q'(t),
at

where &' is the nucleus-electron interaction. The equa-
tion for the NEET amplitude is

%'(t)=a, (t)%, +af(t)%f .

The NEET probability is normally very small, and the
excited electron state decays chiefly through the channels
of x-ray or Auger electron emissions. Thus it is justified
to assume

where I;=fiA, ; is the level width and &f; is the transition
matrix element, which we will discuss shortly. The
NEET probability is

P= a (~) '=
(Ef E,—)'+ r', /4

(6)

Equation (6) shows a Lorentzian resonance around
E&=E,, and I,. is the resonance width. For inner-shell
hole states of intermediate or heavy elements, the values
of I,. can be of an order of several tens of electronvolts
[12].

Now we turn to the calculation of the transition matrix
element and study the transition-selection rule. Begin-
ning with an electric 2 -pole multipole transition, the in-
teraction Hamiltonian can be written as a scalar product
of two tensors of rank L:

'=PL(N)VL(e)—:g (
—I)"PL„(N)YL, „(e), (7)

daf (t)
i =Efaf(t)+%f;a;(t),

dt

and the initial condition af (0)=0. Noting that
—iE.t/R —A, .t/2

t ta, (t) =e

it then yields

a (t)=
(Ef E, )+tr, /—2

iEf tie i(E&—E, )tlat ), tl2- . — .
Xe f 1 —e

(4)
where

„(N)=y e„r„'Y,„(r„)
k

is the known nuclear electric 2 -pole multipole transition
operator,

4me 1
LP 2L +1 L+1

is related to the 2 -pole multipole field at the origin pro-
duced by the electron, and YL„(r) is the spherical har-
monics. Then the transition matrix element is

Pf (IfIIfnf lfjfFM
l VL (N) PL (e ) lI; II;n; l;j;FM )

1/2

fJ F —I/2+2 —~. 4'tr—(2If + 1 )(2jf +1 )(2l,. + 1)(2j,+ 1)

(2L +1)
X'lV(I j;Ifjf,FL)%V(lj,lfjf, —,'L)(If IIf l PL (N)lI;II; ) f Jlf(r)r ' '~%, (r)dr, (10)

where the 'N's are Racah coefficients and R(r)=A„f&(r)
is the electron (or hole) radial wave function.
(Ifllfl &L(N)lI;II, ) is the nuclear reduced transition
matrix element, which is related to the reduced transition
probability by

The connection between the reduced transition probabili-
ty and the partial radiative width is straightforward. As
we know well that the partial radiative widths have al-
ready been systematically investigated and a great deal of
data have been collected, Eq. (11) provides a solid foun-
dation for estimating the transition matrix elements. We

note that Morita [1] evaluated the matrix element by a
entirely coherent model (IfIIf l PL(N)lI, .II, ) =ZeR&,
where Z is the nuclear charge and R& is the nucleus ra-
dius. This is certainly severe overestimation, especially
for an electric dipole transition in heavy nuclei. It is well
established that most of the electric dipole transition
strength is collected to the giant dipole resonance region.
The E1 transition probability is even less than a single-
particle value, the Weisskopf unit, by a hindrance factor
[11],which is on the average of the order of 10 —10
From Eqs. (7) and (8), it is clear that the transition-
selection rules are analogous for both the nucleus and
electron partners in an electric 2 -pole NEET process.

Now we proceed to calculate the magnetic dipole
NEET probability, which was never discussed in detail
previously. The Hamiltonian for the interaction of a
point nuclear magnetic moment p& with magnetic field B,
produced by the electron at the nucleus is
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~~(M1)— PI e~

where

(12) operator, and pB =eA/2mc is the Bohr magneton. The
«st term in Eq. (14) is called the Fermi contact interac-
tion.

p„:. piv g(g~kNk +gimel),
k

(13)

where

4PB
Pp= 5(r, )s,

31"e

stemming from the fact that s electrons have nonzero
probability densities at the origin. s is the electron-spin

pz =eh'/2Mc is the nuclear magneton, g,k =2.79 for pro-
tons and —1.9 for neutrons, and g&k =1 for protons and 0
for neutrons. Writing the explicit expression of B, (e.g. ,
see Ref. [13]),it yields

(14)

2pB
Pt=

e

3(r,s)
e

I'e

is the contribution from the electron probability density
outside the nucleus. It is easy to verify that

—s + r„= &Sv—r( Y2s),
3(r s)

r

8~ g c I „2„+.,Y2 „+ (& )s
P

(17)
Note that Y2(r, ) is a spatial tensor of rank 2, which may
change the orbital angular momentum by two units.
Then the transition matrix element for a magnetic dipole
NEET is

Af (I'f IIfnI lIj IFM l&' "lI; II; n, l,j,FM ).

=( —1) ' ~ Q(2j/+ 1 )(2I&+1)%'(Ij,IIjI,F I )(. IIII& p lI,. II,. )

''
5~ p5I p —pgAi (0)AI(0) + 2iM& J 8&( r) 8; ( r)dr—2 1

i f 3 B J' I

X 5, , ( —1) ' 'Ql, (l, +1)(2l, +1)(2j,+1)lV lj, lIj&, —1

1& 1/2 j&

+3@'5+(2l;+1)(2j,+ 1)Ct~p z p l; 1/2 j;
2 1 1

where %(0) is the value of electron radial wave function
at the origin, the C's are the Clebsch-Gordan coefFicients.

a b c
d e f
g h j

is the Wigner 9j symbol [14], and (I&III lpllI, .II, ) is the

reduced matrix element of nuclear magnetic moment,
which is related to the usually accepted magnetic dipole
reduced transition probability by

2I~+ 1
Xf ', l (I&Hf lp'I lI;'&;

l

(19)

In total there are three terms on the right-hand side of

TABLE I. Theoretical values for NEET probabilities and measured data. E; and Ef are the unperturbated energy eigenvalues of
the initial and final states of the nucleus-electron system. I'; is the level width of the initial electron (hole) state [12]. I &; is the nu-
clear partial radiative width, taken from Ref. [16] 1's Os), [17] (' Au), and [18] ( Np), respectively. F is the total spin of the
nucleus-electron system. Wf*; and I'* are the transition matrix element and NEET probability by assigning the nuclear reduced radi-
ative partial width the single-particle value (the Weisskopf unit). Af; and P are the corresponding values calculated by using the pub-
lished data for I &;. P,„~, are the measured NEET probabilities published in Refs. [7—9].
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34
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0.40
0.343
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Type of
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Ml
M1
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&fj
(eV)

0.155
0.225
3.1

2.45

1.2X 10
1.2X 10
3.6X10-'
2.3 X lo-'

&f)
(eV)

3.7X10-'
4.3X10 '
0.15
0.122

1.2X10 '
4.2X 10
8.5 X 10
5.6X10-'

~expt

(1.7+0.2) X 10
(2.2+1.8) X 10
(2.1+0.6) X 10



PROBABILITY AND SELECTION RULE FOR NUCLEAR. . . 1913

Eq. (18). The first one comes from Eq. (15), which is of a
nonvalishing value only for the s-s wave transition. The
next is the contribution from the electron orbital angular
momentum operator in Eq. (16), whereas the third one
stems from Eq. (17). It should be noted that the selection
rule for electrons in magnetic dipole NEET is different
from that of the nucleus partner. The latter is still a
spin-Sip transition, but the former allows change of two
units for single-particle orbital angular momentum.

III. NEET IN ' OS, ' AU, AND PU
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As an example, we calculate the NEET probabilities in
Os, ' Au, and Np in terms of the formalism given

above. The nuclear and atomic level diagrams concerned
are shown in Fig. 1. Table I lists the parameters used in
the calculations and the calculated results along with the
available measured data. For each NEET process, if
there is more than one channel available (e.g., mixed
M1-E2 transitions or different allowed values of the sys-
tem total spin F), then the results for each channel are
given. As indicated above, a crucial point in the calcula-
tions is the evaluation of the nuclear matrix elements,
which are deduced from the measured radiative transi-
tion probabilities in the present project. In order to
demonstrate the importance of this treatment, we present
two sets of the predicted interaction matrix elements and
NEET probabilities in Table I. One is that calculated
with the published data of partial radiative widths,
whereas the other set is obtained by assigning a single-
particle value, the Weisskopf unit, to the reduced transi-
tion probabilities. The ratios of the two sets for NEET
probabilities would just be the hindrance factors, which
are 0.057 (' Os, Ml transition), 0.0356 (' Au, M 1 tran-
sition), and 0.00234 ( Np, El transition), respectively.
The predicted NEET probabilities would be still less than
Morita's results [1], which were based on an entirely
coherent model.

It can be seen from Table I that there is a great
discrepancy between the presently predicted and pub-
lished data. One should note that the experimental tech-
nique for NEET is very dificult. The useful signals
should be extracted from very complicated spectra, and
reliable results can be obtained only if careful corrections
are made to eliminate the effects from all other possible
nuclear excitation mechanisms. More accurate measure-
ments are highly recommended. From the view of
theoretical investigation, a complete calculation of NEET
should be performed in the formalism of relativistic quan-
tum mechanics.

IV. CONCLUSION

The results can be summarized as follows.
(1) Equation (6) is a simplified formula to calculate the

NEET probability based upon nonrelativistic quantum
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FIG. 1. NEET diagrams. The atomic levels are taken from
Ref. [15]. The nuclear levels are taken from Ref. [16] ("90s),
[17] (' Au), and [18] (

3 Np), respectively. rz is the level life-
time.

mechanics. In this equation the effect on NEET from x-
ray and Auger-electron emissions is attributed to the
Lorentzian resonance width.

(2) The transition matrix element for electric 2 -pole
NEET is given in Eq. (10). In this case the nucleus and
electron partners are of the same selection rule. The
transition matrix element of the nucleus partner is just
the reduced matrix element adopted usually in nuclear
gamma decay, which may be deduced from the well-
established database on radiative partial widths. This
formalism makes the estimation of the NEET probability
more reliable. It is indicated that the previous calcula-
tions using entirely coherent model or single-proton mod-
el would cause severe overestimations, especially for elec-
tric dipole transitions in heavy nuclei.

(3) Equation (18) gives detailed calculations of the tran-
sition matrix element for magnetic dipole NEET, which
contains three terms stemming from the nonzero proba-
bility density of s-wave electrons inside the nucleus, the
electron orbital angular momentum, and intrinsic mag-
netic moment outside the nucleus, respectively. One
feature of the electron transition operator is that it con-
tains a term with spatial tensor of rank 2. Thus the
transition-selection rule for the electron partner is no
longer a pure spin-flip. It allows a change of two units
for electron orbital angular momentum. In contrast, the
orbital angular momentum of a single nucleon remains
unchanged during the transition.

(4) The NEET probabilities in ' Os, ' Au, and Np
were calculated in terms of the present formalism. In
those calculations the experimentally identified hindrance
factors for the concerned partial radiative widths were



1914 YU-KUN HO, BAG-HUI ZHANG, AND ZHU-SHU YUAN

taken into account. A great discrepancy has been found
between the predicted and published data [19]. More ac-
curate measurements are suggested to identify the origin
of the discrepancy.
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