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Average values of matrix elements of the efFective nucleon-nucleon interaction can be extracted from
measured binding energies and spectra using a variety of simple techniques. Such techniques are applied
to data in the mass range A =28—64 to yield information about the interaction energy of nucleons occu-
pying the 2s, /2, ld3/2 1f7/z, and 2p3/2 shell-model orbits. The resulting interaction centroids are com-
pared with values provided by other methods, such as shell-model fits to experimental energy levels, cal-
culation of the G matrix from free nucleon-nucleon potentials, and extraction of interaction matrix ele-
rnents directly from the spectra of nuclei with two nucleons relative to a closed shell. The empirical cen-
troids are shown to be surprisingly accurate.

I. INTRODUCTION
The aim of the present work is to provide information

about effective interactions, suitable for shell-model cal-
culations around mass 40. The shell-model Hamiltonian
is completely specified by a number of single-particle en-
ergies and a set of two-body matrix elements of the
effective interaction (provided three-body and higher con-
tributions are negligible). Several techniques have been
developed to construct effective interactions, each with
its advantages and disadvantages, but none has shown it-
self to be satisfactory in all respects. Since it has so far
proven impossible to produce an effective Hamiltonian
which is both sufticiently accurate for use in spectroscop-
ic calculations and also firmly based theoretically, we fol-
low here a purely empirical approach. For the most part
we are concerned with extracting from experimental data
values for centroids of the effective interaction; these act
as constraints on matrix elements of the interaction found
by other methods, as discussed below.

The interaction can, in principle, be calculated from
the free nucleon-nucleon potential; this is the approach
pioneered by Kuo [1] and Kuo and Brown [2], who pro-
duced realistic interactions based on the Hamada-
Johnson potential. The basis of this method is the calcu-
lation of the Brueckner 6 matrix, with the addition of a
limited number of model-space-dependent correction
terms. However, serious doubts have been raised con-
cerning the convergence of the perturbation expansion in
the G matrix (see, for example, Ref. [3]). In any case,
subsequent use of these interactions has shown that they
sufFer from serious defects, thus reducing their value for
nuclear spectroscopy [4—9]. These defects are caused by
incorrect centroids for the interaction between nucleons
in different single-particle subshells; agreement between
calculated spectra and data is improved significantly by
ad hoc adjustments to these centroids [7—9]. A major aim
of the present work is to allow such adjustments to be
made reliably, by providing empirical estimates of cen-
troids.

In an alternative approach to effective interactions,
matrix elements of the efFective interaction are treated as

parameters to be adjusted in a fit to experimental energy
levels. This approach is particularly successful in the sd
shell [10,11], where it is possible to perform shell-model
calculations in which all sd-shell basis states are retained.
Wildenthal [11] has produced a single interaction which
gives impressive agreement with experimental data for a
variety of phenomena through the entire shell, provided a
simple mass dependence of the interaction is assumed.
One difIiculty with this approach is that not all of the ma-
trix elements of the interaction are equally well deter-
mined by the fitting procedure. In addition, there is no
guarantee that an interaction which gives a reasonable fit
to spectra will produce an equally reliable description of
other phenomena, such as electromagnetic decay rates,
which are more sensitive to details of the nuclear wave
functions (although attempts have been made [12] to in-
corporate other observables into the fitting procedure).
Moreover, it is difIicult to extend this approach to
heavier nuclei. For example, with present computational
techniques it is impossible to perform untruncated fp
shell calculations, except near the ends of the shell —fits
must be done in a restricted mass range or in a highly
truncated model space. In any case, there are 19S in-
teraction matrix elements in the fp shell (compared with
63 for the sd shell); this alone would make the fitting pro-
cedure extremely difIicult and time consuming.

A variation of this approach utilizes schematic interac-
tions, such as the modified surface-delta interaction
(MSDI) [13]. A particular form is assumed for the
effective nucleon-nucleon force; this, together with fur-
ther assumptions, allows two-body matrix elements of the
interaction to be expressed analytically in terms of a
small number of parameters. These parameters are deter-
mined by a fit to spectra, often for nuclei in a limited
mass range, but in a large model space. Such an ap-
proach has been surprisingly successful in many in-
stances.

A third approach is illustrated in a recent review by
Daehnick [14]. Two-body matrix elements of the
effective interaction are extracted directly from the spec-
tra of nuclei with two nucleons outside a closed shell.
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Measured nucleon spectroscopic factors are used to com-
pensate, in part, for the lack of configurational purity of
the nuclear wave functions. However, since the neces-
sary experimental information is often not available, this
procedure is not usually carried out in a consistent
manner. The resulting uncertainty in the interaction ma-
trix elements is estimated by Daehnick to be 0.3 MeV or
more in most cases; moreover, significantly different
values are obtained when the same matrix elements are
extracted from two different nuclei.

In the present work, we exploit rather general relation-
ships [15—17] which connect various centroids of the
two-body interaction with the energy of an n-body system
averaged over a fixed configuration of the appropriate nu-
cleus or nuclei —values are obtained for the centroids if
these average energies are computed from experimental
binding energies and spectra. Thus reliable estimates
may be extracted for interaction centroids even if the in-
dividual matrix elements cannot be deduced with the re-
quired accuracy. We have recently demonstrated [18—22]
the usefulness of several variations of this technique in a
variety of different situations. We present here an exten-
sion of this previous work to a much larger model space
and a wider variety of situations; we also attempt to unify
the results from the different versions of the technique;
and finally we compare the interaction centroids pro-
duced by this technique with those from the other ap-
proaches discussed above.

II. EXTRACTIQN OF INTERACTION CENTROIDS

Our ultimate objective is a description of the properties
of nuclei near the top of the sd shell and bottom of the fp
shell. The full valence space necessarily spans two major
shells, and the correct positioning of many states of nu-
clei in this mass region is particularly sensitive to the ac-
curacy of cross-shell matrix elements. In order to limit
the number of centroids which must be determined and
to reduce the consequent computational difticulties, we
have truncated the valence space by omitting the 1d»2,
2p, /2, and lf~/z subshells. Such a truncation is in any
case necessary for shell-model calculations.

The various techniques employed to extract interaction
centroids require the utilization of appropriate subspaces
of the full model space, often spanned by the individual
subshells 2s, /z, ld3/2 1f7/2 and 2p3/2 In addition to
8Si and Ge, therefore, the ground states of Si/S, 3 S,
S/Ca, Ca, Ca, Ni, and Ni are regarded as inert

cores corresponding to closure of these subshells. Furth-
ermore, Si is also taken to be a good closed-shell nu-
cleus, with excess neutrons filling both the s&&2 and d3/2
subshells. The possibility of Si being a doubly magic
nucleus was the subject of a recent experimental investi-
gation [23]; its use as a core permits a significant exten-
sion to the range of values of (X,Z) that can be probed.
The assumption of shell closure, as indicated by sum
rules for single-nucleon spectroscopic factors [24], is ap-
parently reasonable for "Ca and S, questionable for

Ca, S, and Ni (proton core), and invalid for Si, Si,
and, especially, Ni (neutron core). The magnitude of
the single-particle energy gap at the Fermi surface, which

can be ascertained from tabulations of nuclear binding
energies [25—27], suggests that the assumption of shell
closure may also be valid for Ni. The excitation energy
of the first excited state of Ge is small, indicating that
this is not a good closed-shell nucleus.

Since our aim is to construct centroids of the nuclear
interaction, the effects of the Coulomb force must first be
eliminated. We have therefore employed the procedures
of Refs. [28] and [29] to estimate the Coulomb contribu-
tion to the energies of nuclear states.

A. Definition of centroids

with the sums extending over all values of J and T for
which the matrix elements VJz. (pq) exist. We can also
form averages for fixed isospin:

V (pq)=g(2J+1)Vzz(pq) g(2J+1);
J J

(2)

if p =q the sums include even (odd) values of J for
T= 1(0). The average matrix element in the neutron-
proton formalism is found by including in the sums over
Jmatrix elements for both T=O and T=1:

V "~(pq) =g(2J + 1)VJ(pq) g(2J + 1) .
J J

Any two of the centroids so far defined can be regarded
as independent; the remainder are given by relationships
which can be derived by explicitly evaluating the sums in
these equations. We find

(4j +5 ) V(pq) =(j +5 ) V
=

(pq)+3j V '(pq),

(3)

(2j+&„)V"'(pq)=(j +&„)V (pq)+j V ='(pq),
(4a)

(4b)

where j is the angular momentum of a nucleon in subshell
p. Note that these relationships are independent of j if
pWq.

For a system of two nucleons occupying the same
single-particle orbit, further average matrix elements may
be defined. The seniority quantum number v possesses
two possible values, namely, 0 and 2. We can therefore
classify the two-body matrix elements with respect to
both T and v, denoting the averages for T=1, v=2, and
T =0, v=2 by

Vz(pp) =g(2J + 1)VJ, (pp) g(2J + 1),
J J

V, (pp) =g(2J + 1)VJo(pp) g(2J + 1),
J J

(5b)

Diagonal matrix elements of the effective interaction
for spin J and isospin T are denoted VJz-(pq)= (pq ~ Vpq; JT ), where p and q label the single-particle
orbits. From the set of matrix elements for fixed (p, q) we
can construct the following average values. The simple
average of all matrix elements VJr(pq) for fixed (p, q) is

g (2J + 1)(2T+ 1)VJr(pq)

V(pq) =
g (2J+1)(2T+1)
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respectively. The sums in Eq. (5a) are restricted to even
values of J )0 and those in Eq. (5b) to odd J. There is in
addition a single two-particle state ~p;01) with T=l,
v=O and the corresponding diagonal matrix element is
denoted Vo(pp). The additional interaction averages (5)
are, of course, related to those already defined. For ex-
ample, directly from Eqs. (2) and (5b) we find

V
= (pp)= Vi(pp), (6a)

so that the introduction of V, provides no extra informa-
tion. However, the separate specification of Vo and Vz
more completely describes the interaction for identical
nucleons occupying the same subshell. The T=1 cen-
troid is, in terms of these quantities, given by

j(2j+1)V '(pp)= Vo(pp)+(j +1)(2j—1)V2(pp),

(6b)

subshell p, then the roles of protons and neutrons are re-
versed so that vr and v in Eqs. (8) and (9) must be inter-
changed.

The basis of the technique is that the energies e and e
should be deduced from experimentally determined bind-
ing energies [25—27, 30—40] so that the interaction cen-
troids may be extracted using Eqs. (7)—(9). There are,
however, a number of complications in the utilization of
the technique; these are discussed fully in Refs. [21] and
[22]. A complete application of the technique to nuclei
with masses A =28—64 is also presented in Ref. [22],
where further details can be found; the results are repro-
duced in Table I together with additional information.
Extracted centroids are shown for each pair of cores
( Ao, A o) separately in order to reveal any dependence on
model space or mass and also to facilitate comparison
with interaction centroids from other calculations. Cer-

where j is the angular momentum of a nucleon in subshell

P

B. Centroids from single-particle spectra
TABLE I. Centroids (in MeV) of the interaction V(pq) from

single-particle spectra.

e~( A o) =@~(Ao)+(2N —5 ) V(pq), (7)

where e~(Ao) is the energy of the same neutron with
respect to Ao, and N =2j +1. If q refers to a subshell
below the Fermi energy of the core, then e represents a
suitably defined single-hole energy. Equation (7) is equal-
ly valid for single-proton energies E'q provided the
Coulomb energy is treated correctly [22]. In the second
possibility, the cores Ao and Ao differ through N neu-
trons occupying the subshell p, with NWZ for one of the
cores and N=Z for the other. Relative to these two
cores, a neutron in the subshell q has energies related by

e'q(
A o ) =e"( Ao)+(N —5„)V '(pq),

whereas a proton in subshell q has energies given by

Useful information about effective interactions can be
found from single-particle spectra by comparing single-
particle energies relative to different inert cores. Consid-
er a single nucleon in the f7/2 subshell; its energy relative
to S differs from its energy with respect to Ca since
the latter contains an additional contribution from the in-
teraction of the f7/2 nucleon with the fully occupied d 3/p
subshell. Comparison of the energies of the relevant —',
states of S and 'Ca therefore yields information about
the f7/2 d3/2 interaction. Details concerning the extrac-
tion of interaction centroids from single-particle spectra
are given elsewhere [21,22]; here we simply summarize
the necessary equations.

We represent two closed-shell nuclei by Ao and Ao
and consider three different possibilities. In the first, the
core Ao comprises Ao plus the subshell p completely
filled with protons and neutrons; both cores have Z =N.
Relative to A 0, the energy of a single neutron in any sub-
shell q is

ss

sd

dp

A0, A0

28,30
30,32
34,36
30,34
32,36
36,40
40,48
48,56
56,60
60,64
28,30
30,32
34,36
30,34
32,36
36,40
30,34
32,36
36,40
40,48
48,56
40,48
48,56
56,60
28,30
30,32
34,36
40,48
48,56
32,36
36,40
56,60
28,30
30,32
56,60

V "~(pq )'

—2.28
—2.23

—1.37
—1.53
—1.44
—1.07
—0.84
—1.02
—0.91
—1.47
—1.01
—1.18
—1.22
—1.01
—1.28

—1.07
—1.02
—0.98
—0.84
—0.78
—0.64
—0.59
—0.95
—1.13
—0.94
—0.62
—0.77

—0.69
—0.49
—1.15
—1.18
—0.54

V T= 1( )a

—2.14
—2.02
—1.36
—0.32
—0.42
—0.30
—0.23

0.03
—0.37
—0.24(13)

0.31
0.74
0.44

0.51
0.29
0.26
0.35
0.40
0.24
0.39
0.16
0.30
0.42
0.70
0.52

0.56
0.40
0.44

0.24
0.21

V T —
0(pq )b

—2.33
—2.30

—2.00
—2.19
—2.12
—1.72
—1.51
—1.41
—1.31(8)
—3.25
—2.76
—2.80

—2.53
—2.85

—2.49
—2.44
—2.20
—2.07
—1.72
—1.58
—1.60
—2.60
—2.78

—1.80
—1.94

—2.54
—2.57

e ( A 0 ) =e ( A o ) +N~ V "~(pq) .

If, on the other hand, protons rather than neutrons fill

'Extracted from data using Eqs. (8) and (9) with inert cores A0
d~o

Calculated from V" and V" ' using Eqs. (4).
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C. Centroids using seniority formalism

Additional information about interaction centroids for
p =q may be extracted provided the nuclear wave func-
tions can be classified according to the seniority quantum
number. In the case of n identical nucleons in a subshell
of angular momentum j —', , coupled to spin J and
seniority v, the exact ground-state energy [15] is given by

E(n, v)=nez+q~n (n —1)/2+[n l2]y (10)

where [N] represents the largest integer not exceeding N.
The model parameters q and y are related to the fixed-
seniority centroids of Eqs. (5) through

Vo(pp) =n, +y,
Vz(pp»)=n, +yp/2(JI +1) .

(1 la)

(1 lb)

Seniority is a valid quantum number for identical nu-
cleons occupying any of the active subshells included in
the present work; hence, by fitting measured ground-state
binding energies, Eq. (10) may be used to extract the in-
teraction centroids V2(pp) and Vo(pp) with p equal to
s f/2 d3/p f7/2 or p3/p The T = 1 centroids may then be
calculated from Eq. (6b).

Owing to the wealth of data available and the large
number of cores in the total space considered, the same
interaction may be extracted in several different sub-
spaces. These subspaces are labeled (Ao, Ao) where Ao
again represents the core in which the subshell p is unoc-
cupied and A o the corresponding core with p filled with
identical nucleons. Equation (10) has previously

tain centroids are evidently sensitive to the choice of
model space; see, for example, V '(ff) and V '(sd).
In addition, some mass dependence of the interaction is
also apparent; see particularly the lower part of Table I,
where there is a wide spread in the values of ( A 0, A o).

E(n, v, T)=nest+a n (n —1)/2+[n/2]y

+ {T ( T + 1)—3n l4 I P~, (12)

where

and

g~ =a~+P /2 (13)

V&(pp)=a~ —3/3 /2 —y /2(j +1), (14)

with V& (pp) defined by Eq. (Sb). Seniority is a good quan-
tum number for states constructed by placing both neu-
trons and protons simultaneously in the d3/2 or p3/2 sub-
shells, but not the f7/2 subshell.

Equation (12) has previously [15,20] has been used to

[15,20,41] been used to extract interaction centroids for
p =f7/2 with (Ao, Ao) equal to either (40,48) or (48,S6),
and also [20] for p =d3/z with (Ao, Ao) equal to either
(32,36) or (36,40). A full discussion of the difficulties that
may be encountered in the analysis is given in Ref. [20].
Interaction centroids extracted with Eq. (10) in the
present work are displayed in Table II. Also given is the
number of data used to produce each centroid; the results
may be less accurate if N is small. Some centroids will
also be less reliable due to the crudeness of the process
used to estimate Coulomb energies. The model-space
dependence of V '(ff) is clearly illustrated in Table II;
it is seen to be due to variations in all matrix elements for
the T = 1 interaction. Further data for extremely
neutron-rich nuclei would increase the reliability of esti-
mates of some centroids, permitting this model-space
dependence to be more firmly established.

In the case of n nonidentical nucleons in a subshell of
angular momentum j ~

—,', coupled to spin J, seniority v,
and in addition to isospin T, the exact ground-state [15] is
given by

TABLE II. Centroids (in MeV) of the interaction V(pq) from the seniority formalism, using Eq. (10)
for identical nucleons in the subshell p; Ao and 3 0 are the cores with p empty and filled, respectively.

~0(pq)

$$ 28,30
30,34
34,36
30,34
32,36
36,40
44,48
36,44
40,48
48,56
52,60
48,52
56,60
60,64

—2.14
—2.02
—1.36(5)
—0.30
—0.41
—0.28

—0.39
—0.24

0.04
0.34
0.15

—0.36

—2.81
—2.83
—2.26
—3.67
—3.42
—3.01
—2.69
—2.73
—1.20
—2.16
—2.00

0.20
0.07
0.12

—0.28
—0.13

0.14
0.48
0.41

—0.01

'Number of data used to extract centroids, sometimes less than the maximum possible due to missing
data.
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TABLE III. Centroids (in MeV) of the interaction V(pq) from the seniority formalism using Eq. (12)
for nonidentical nucleons in the subshell p; Ao and 3 0 are the cores with p empty and filled, respective-
ly.

ff
pp

32,40
40,56
56,64

11
34

6

V I =
0(pq)

—2.07
—1.65
—1.44

Vo(pq)

—2.67
—3.69
—2.16

V&(pq)

0.12
0.04
0.00

V T=-1(

—0.35
—0.10
—0.36

'Number of data used to extract centroids.

deduce interaction centroids for p =d3/2 In our earlier
work [20] we also attempted to apply Eq. (12) to the f7&2

subshell, but ground states for which seniority is not au-
tomatically a good quantum number were not well de-
scribed by the equation. Results obtained using Eq. (12)
in the present work are shown in Table III. In the case
p =d3&2 the ground states of all odd-3 and even-even nu-
clei have been included, whereas for the p3&2 subshell nu-
clei with more than two valence protons were omitted
due to a lack of information about Coulomb energies.
The data set for the f7&2 analysis includes ground states
for which seniority may not be an exact quantum
number —in addition to even X, even Z nuclei we also in-
cluded all odd-3 nuclei, even in cases for which the
ground state did not have the expected spin-parity —',
(the energy of the lowest —,'state was used). Comparison
of centroids from Table III with averages over appropri-
ate subspaces in Table II shows that reasonably con-
sistent results are obtained for T= 1, even for the f7&2
data.

D. Centroids from the weak-coupling model

V "~(pq) =a b /4, —

V(pq) =a
(16a)

(16b)

where p and q now label the subshells in which the parti-

Interaction centroids for p Wq may be determined
through use of the weak-coupling model of Bansal and
French [42,43]. Consider a particle-hole state of the nu-
cleus ( 3, T), with n particles and m holes relative to the
closed-shell nucleus Ao; the particles are coupled to spin
J„and isospin T„and the holes to spin J and isospin
T, and these are in turn coupled to total spin J and iso-
spin T. Bansal and French assumed that the residual
particle-hole interaction is sufIiciently weak that the ener-

gy of the n particles is equal to the energy of the nuclear
state (Ao+n, J„,T„) relative to the core Ao, this may be
taken from experiment. Similarly, the energy of the m
holes is given by the energy of the nuclear state
( Ao —m, J,T ). The particle-hole interaction itself is
expanded in isoscalar and isovector parts:

V h= —a+bT„-T
where, in terms of the particle-particle centroids defined
in Sec. II A, the model parameters a and b are most use-
fully given by

cles and holes reside.
The weak-coupling model has been employed in

numerous nuclear structure studies (for example, see
Refs. [18] and [44—48]), either to extract information
about the effective interaction or to predict the approxi-
mate position of selected particle-hole states using a given
interaction. The model can be used in a variety of ways;
in the present work we follow the approach of Refs. [18]
and [44]. Consider a nucleus with n nucleons occupying
subshell p outside core ( Ao, Zo). The energy required to
remove m protons from the filled subshell q to form the
n-particle m-hole configuration of the nucleus (A, Z) is
[18]

( A, Z)=R (X)—m ( 3 +m —Ao) V "t'(pq)

—m (Z +m —Zo )b~q l2, (17)

where X is the state obtained by removing m protons
from subshell q of the core ( AO, ZO). Similarly, the bind-
ing energy of the n-particle m-hole configuration of the
nucleus ( A, N) formed by binding n neutrons in subshell p
to a nucleus with m holes in subshell q is [18]

&„(&,N) =&„„(I') +n ( & 0+ n —A ) V "~(pq )

+ n (No+ n N)b l2, —

where 7 is the state formed by adding n neutrons in sub-
shell p to the core ( A o, No). Many other equations can be
derived for different types of particle-hole state —see
Refs. [18] and [44] for several examples —but the two
presented here are the most useful. In this work, we have
determined from experimental data [25—27, 30—40] the
energies R and 8„ for a large number of n-particle,
m-hole states in the mass range 29 to 63. Equations (17)
and (18) have then been used to deduce the interaction
centroids through least-squares fits for fixed m and fixed
n, respectively. A similar approach has previously
[18,44] been employed to extract the centroids of the
d3/2 f712 1ntelact1on

Equation (17) is most accurate when the n nucleons in
subshell p are all neutrons; similarly, Eq. (18) is most ac-
curate when all m holes in subshell q are proton holes
[18]. In each case only V "~(pq) is determined, since
Z =Zo —m and X =Ão+n, respectively. We have there-
fore extracted estimates of V "~(pq) using only data for
which Z =Zo —m or X =Xo+n, averaging over all pos-
sible values of m and n. The results of this analysis are
summarized in Table IV. The uncertainties in V "~(pq)
should be small; values for different m or n vary by less
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TABLE IV. Centroids (in MeV) of the interaction V(pq) from the weak-coupling model.

pq

sd

sp

Data'

part(n)
part(1)
hole( m)
hole(1)
part(n)
part(1)
hole(m)
hole(1)
part(n)
part(1)
hole( m)
hole(1)
part(1)
hole(1)
part(1)
hole(1)
part(1)
hole(1)

11
4

10
8

32
10
27
18
24
12
28

3

14'
5
3
5
3

—1.08
—1.03
—1.11
—1.08
—0.95
—1.03
—0.93
—0.97
—0.68
—0.69
—0.63
—0.59
—1.13
—0.80
—0.69
—0.49
—1.17
—0.54

='(pq)

0.26

0.21(6)

0.35

0.36( 5)

0.16

0.70
0.45
0.42

v '='(pq)

—2.31

—2.36(6)

—2.40

—2.31

—1.54

—2.96
—2.05
—1.78

—2.57

'Centroids extracted using Eq. (18) for particle binding energies for n =1 or for all n [part(1) and
part(n), respectively], or using Eq. (17) for hole creation energies for m =1 or all m [hole(1) and
hole( m), respectively].
Number of data used to extract the centroids.

'Data for K omitted (incompatible with remaining data).

than about 0.1 MeV in general, although there is some
evidence of systematic behavior. The parameter b is
determined, less accurately, by including data for all
values of Z or N (although reliable data are available only
for m =1 or n =1). The remaining centroids listed in
Table IV were computed by combining the values of
V""(pq) and b~~ extracted from these data. These cen-
troids are significantly less reliable, partly because b is
less well determined by the fits and partly because some
values of b are sensitive to the procedure used to calcu-
late Coulomb energies. Recent data on extremely
neutron-rich nuclei, such as ' Si, ' S, ' P, and

Ar, can be used with equations presented here to pro-
duce further estimates for some interaction centroids.
The results are consistent with those presented in Table
IV.

E. Summary

Although interaction centroids for p =q may be found
using either of the methods described in Secs. IIB and
II C, the approaches differ in several respects. First, the
seniority method allows separate determination of Vo(pp)
and V, (pp), although if N is small only Vo(pp) may be ac-
curately specified. Secondly, the seniority method has
the advantage that more data are used, so that extracted
centroids are not as sensitive to inaccuracies in individual
data values. If corresponding T =1 centroids in Tables I
and II are compared, it is seen that very similar results
are obtained from the two methods. The data used to
produce the T =1 centroids listed in Table I form a sub-

set of the data used to construct Table II. If X =2 the
two data sets are identical, so this similarity is not unex-
pected; however, the agreement for larger N is encourag-
ing. T=0 centroids from the seniority method, listed in
Table III, may also be compared with values from single-
particle energies by averaging the centroids of Table I
over appropriate subspaces; the agreement is excellent.

Centroids for pWq may be determined using the
methods of Secs. IIB and IID; values listed in Table IV
can be compared to those in Table I. The approach
based on the weak-coupling model, in which larger model
spaces are implicitly assumed, washes out the sensitivity
to model space previously noted, so that all estimates of
the centroids for (pq) =(sd), (df), and (fp) are essentially
equal. The mass dependence of the centroids is, however,
still apparent. Values given in Tables I and IV for the in-
teractions (sp) and (dp) are similar because of the large
overlap in the data sets used. Provided the correct com-
parison is made, good agreement is also found for the
remaining centroids. Differences are usually less than
100 keV, although the weak-coupling estimate of
V (sf) is about 230 keV more attractive, whereas the
values of V (sd) and V '(sd) are approximately 0.5
MeV less attractive and 0.2 MeV less repulsive, respec-
tively.

The information extracted for interaction centroids us-
ing the empirical techniques of this section is summarized
in Table V; uncertainties are quoted where these are
thought to exceed about 0.2 MeV. In computing best
values for a given centroid, we have assigned increased
weighting to estimates considered more reliable. In addi-
tion, centroids extracted from data outside the quoted
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TABLE V. Summary for empirical interaction centroids (in MeV).

$$

dd
ff'
pp
sd
df
fs
sf
dp
$p

28,34
30,40
40,56
56,64
30,40
32,56
40,60
28,36
36,40
28,32

—1.15
—1.00
—0.65
—1.05
—0.70
—1.15'

p' T =0(pq)

—2.30
—2.10
—1.65
—1.40
—2.55(30)
—2.35
—1.60
—2.75
—1 ~ 80
—2.55

Z =
1(pq)

—2.05
—0.35
—0.10
—0.35

0.30
0.35
0.30
0.65
0.40
0.25

vo(pq)

—2.6(3)
—3.0(3)
—2.1(3)

0.1

0.0
0.0

'Centroids extracted using data in the mass range A to 3 '.
See Table II for conAicting value for ( 3, A ') =(44,48).

'See Table II for conAicting values for ( A, 3')=(36,44) and (52,60).
See Table II for conAicting values for ( A, A ') = (48, 52).

'See Table I for convicting values for ( 3, 3')=(28,30).
See Table I for conAicting values for ( A, A ') =(56,60).

mass regions have been excluded from the averages; some
conAicting values are listed in footnotes to the table.

III. CENTROIDS OF OTHER INTERACTIONS

In this section we compute centroids of interactions
produced using the various other techniques mentioned
in the Introduction.

A. ES'ective interactions from two-particle spectra

Two-body matrix elements of the effective interaction
can be extracted directly from the spectra of nuclei with
two particles, two holes, or a particle-hole pair relative to
an inert core, using

I'"(pq) = [«pq») Eo] [E(pj—, ) E—o]—
—[E(q;j, ) —Eo] . (19)

Eo is the energy of the core, and E(p;j~) and E(q;j~)
give the single-particle contributions to the energy
E(pq;J'1) of the two-particle nucleus. A two-particle
Coulomb energy must be subtracted from V (pq) if both
particles are protons. In the case of particle-hole states,
Eq. (19) yields particle-hole matrix elements of the
effective interaction which must be converted to particle-
particle form through use of the appropriate Pandya
transform. The configuration (pq; JT) will of course be
fragmented over several energy levels of the two-particle
nucleus, through mixing with other configurations within
the model space. The center of gravity E(pq; JQ of the
configuration must be calculated by using spectroscopic
factors for one-nucleon transfer reactions with the ap-
propriate single-particle nucleus as target. This restricts
the use of the technique to situations in which the
relevant single-particle nuclei are stable.

The use of Eq. (19) is less straightforward if the as-
sumption of shell closure is not valid. It is usually as-
sumed that the procedure for calculating the center of

gravity E(pq; JT) automatically corrects for fragmenta-
tion of the two-particle configuration caused by mixing
with core-excited configurations of the two-particle nu-
cleus. In addition, the energies E(p, j~) and E(qjq) are
usually replaced by the centers of gravity of the corre-
sponding single-particle strength, as deduced from mea-
sured spectroscopic factors with the core as target. But,
in fact, it is impossible to correct for core breaking in a
consistent way. For example, in calculating E(p;j ) one
should also include strength reached by coupling a nu-
cleon to excited states of the core nucleus; similarly,
E(pq; JT) should also include strength due to coupling a
nucleon to excited states of the single-particle nucleus.
Moreover, the energy Eo of the closed-shell configuration
is no longer adequately represented by the ground-state
energy of the core.

Daehnick [14], in a systematic study of effective in-
teractions throughout the entire Periodic Table, used Eq.
(19) to compute matrix elements of the effective interac-
tion for many different model spaces. Only a few of his
results are relevant to the present work, namely, those for
( d 3/2 ) and ( d 3 /2f 7/2) multiplets relative to the core S,
and (d3/2), (d3/2) 'f7/2, and (f7/2) multiplets rela-
tive to the core Ca. Daehnick sometimes included
corrections to the single-particle energies to account for
core breaking, but no further corrections were applied.
In order to provide a fuller comparison with the present
work, we have applied the same technique to a much wid-
er selection of two-particle spectra in the mass region of
interest here. We have included all cases for which the
relevant single-particle nucleus is stable and where
sun. cient spectroscopic information concerning the two-
particle multiplets exists to make the results meaningful.
The details of this study are presented elsewhere [24]; the
resulting interaction centroids are listed in Table VI. Un-
like Daehnick [14], we have not attempted to correct for
the effects of core breaking on the single-particle energies;
results from Refs. [14] and [24] therefore differ, although
the difference is usually insignificant.
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TABLE VI. Centroids (in MeV) of the interaction V(pq) from two-particle spectra, calculated from
Eq. (19); A denotes the nucleus with two particles (or two holes or a particle-hole pair) relative to the
core Ao.

$$

dd

$6

fp
sf

AO, A

28,30
30,28
30,30
30,32
32,30
32 34'
32,34
36,36
36,38
40,38
40,38'
40,42'
40,42
60,58
28,30
30,30
30,32
32 32
36,36
40,38
32 34a

32,34
36,38
40,40
40,40'
40,42
28,30
30,30
30,32
32,32
40,40
40,40

Vo(S q)

—2.67
—2.78
—2.13
—2.11
—2.36
—2.36
—2.32
—2.61
—2.51

V2(pq)

0.08
0.11

—0.53
0.14
0.18
0.22

—0.19
—0.22

0.60

V '(pq)

—0.78
—1.17

—1.28
—0.69
—0.38
—0.37
—0.80
—0.23
—0.25
—0.21
—0.26
—0.30
—0.48

0.29
0.33
0.70
0.77
0.46
0.07

—0.11
0.39

0.47
0.21
0.15
0.61
0.78
0.58
0.57

—2.03

—2.54

—1.87
—2.22
—2.24
—2.37

—2.14
—2.00
—1.78
—1.68

—2.26
—3.99
—2.44
—3.14

—1.76
—2.45
—1.99

—2.46
—2.62

—1.95
—3.38
—2.72
—2.93

V "~(pq)

—0.98
—1.83
—0.87
—1.18

—0.84
—1.28
—0.80
—1.00
—1.15
—1.10

—0.67
—1.30
—1.07
—1.18
—0.56
—0.15

'From Ref. [14];remainder from Ref. [24].

As can be seen from Table VI, the differences between
interaction centroids for different cores are surprisingly
small in general, indicating that the effects of core break-
ing can usually be ignored. In fact, correcting for frag-
mentation of the single-particle energies, using measured
spectroscopic factors as described above, worsens the
agreement considerably. In most cases, calculations [24]
show that the shift induced in the centroids by this
correction is actually canceled by a corresponding shift of
the opposite sign in the energy of the closed-shell
configuration Eo (as computed using appropriate data for
transfer reactions to 0+ states of the core nucleus). Evi-
dently, the contributions to these shifts due to strength
based on excited states also cancel approximately; this
cannot, of course, be checked using spectroscopic data.

B. Interactions from shell-model Ats

The most successful effective interactions are generally
those which result from shell-model fits to experimental
energy levels. A recent example is the mass-dependent

interaction of Wildenthal [11],who performed an essen-
tially unconstrained fit to data from the entire sd shell, in-
cluding all allowed sd-shell configurations in the calcula-
tions. The centroids of this interaction, scaled to A =40,
and several other fitted interactions [7, 49-56] are listed in
Table VII. The results are evidently sensitive to the mod-
el space used and to the data fitted.

As already noted in the Introduction, an unconstrained
fit is not possible for the fp-shell interaction. The most
ex~ensive investigation of this interaction is that of
Richter, van der Merwe, Julies, and Brown [55], who car-
ried out a constrained fit to nuclei with A =41 to 49, in-
cluding all possible fp-shell configurations. The cen-
troids quoted in Table VII are computed from their in-
teraction FPMI3; results for the interaction FPD6 are
similar, except that the T =1 centroids for p3/2 p3/p ma-
trix elements are about 0.5 MeV more attractive.
McGrory [53] studied the properties of nuclei with
A =42—44 in the complete fp shell, using the realistic in-
teraction of Kuo and Brown [2]. However, certain ma-
trix elements of the interaction were allowed to vary in
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TABLE VII. Centroids (in MeV) from shell-model fits to experimental spectra.

$$

dd

pp

Ref.

11
11
49
50
49

7
51
52
53
54
55
49
51
55
11
51
56
49
52
49
52
7

51
54
55
52
56
49
52

—1.09
—1.01
—1.17
—0.99
—0.97

—0.71
—0.46
—0.74
—0.76
—0.64
—0.98

='(pq)

—2.57
—1.92

—2.39

—1.67
—1.29
—1.38

—1 ~ 52
—2.16
—2.47
—2.36

—1.52
—1.08

—1.60

T =
1(pq}

—1.67
—0.33
—0.25
—0.07
—0.17
—0.20
—0.18
—0.25
—0.27

—0.19
—0.71
—0.23
—0.52
—0.02

0.45
0.02

0.09
0.15
0.21
0.07
0.10
0.16

0.08

Vo(pq)

—1.72
—2.10
—1.71
—2.55
—2.11
—2.64
—2.95
—2.22

—2.19
—1.57
—1.40
—1.26

v, (pq)

—0.05
0.12
0.26

—0.08
—0.13
—0.09
—0.15
—0.20
—0.26
—0.12
—0.54

0.0
—0.38

order to produce better agreement with data; the result-
ing centroids are listed in the table. The fitted interaction
of van Hees and Glaudemans [54] is from a study of
(f7/2 )" states of 2 =52 —55 nuclei with at most one parti-
cle allowed in the remaining fp-shell orbitals. There have
been many shell-model studies of the calcium isotopes.
Federman and Talmi [51] performed fits in a model space
comprising the f7/2 and p3/2 subshells with all the in-
teraction matrix elements allowed to vary. McGrory,
Wildenthal, and Halbert [7] enlarged the model space to
include all fp-shell orbitals plus the g9/2 subshell; most
matrix elements were held at the Kuo-Brown [2] values,
but some where allowed to vary to improve the fit of
selected energy levels; these are quoted in Table VII.

Warburton and co-workers are currently studying vari-
ous properties of nuclei around mass 40 in shell-model
calculations in a space that spans both the sd and fp
shell, with restrictions on subshell occupancies. Warbur-
ton, Becker, Millener, and Brown have constructed a hy-
brid interaction [56] in which critical cross-shell matrix
elements are fitted to appropriate energy levels in mass-40
nuclei. Centroids computed from these matrix elements
are given in Table VII. The remaining centroids in the
table are from shell-model calculations in which a few
particles are excited from the sd shell to the fp shell, with
all matrix elements of the interaction treated as free pa-

rameters. Gloeckner, Lawson, and Serduke [49] concen-
trated on the properties of Ar in shell-model calcula-
tions with neutrons in the f7/2 and p3/p subshells and
two proton holes restricted to the d3/2 orbital. The mod-
el space of Johnstone [52] was spanned by the f7/2 sub-
shell with either a hole in the d3/p or s&/2 orbital or one
particle in the p3/2 orbital and one hole in the d3/2 orbit-
al; the fp part of the interaction is the result of a fit to
calcium isotopes whereas the cross-shell matrix elements
are from a fit to K. Erne [50] carried out a shell-
model study of nuclei near the top of the sd shell, in a
space containing only the d3/2 subshell with at most one
particle excited to the f7/z orbital.

C. The modified surface-delta interaction

The original surface-delta interaction required the
specification of two parameters, Ao and A&, essentially
the strengths of the T =0 and T = 1 interactions, respec-
tively. Values for these parameters can be determined
from fits to the spectra of nuclei. In order to improve the
accuracy of predicted ground-state binding energies, two
further parameters, Bo and 8 &, are needed; these are add-
ed to the expressions for diagonal T=O and T=1 in-
teraction matrix elements, respectively [57]. However,
since the MSDI is frequently fitted to data for a rather
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limited mass range, these additional parameters cannot
be reliably determined (they are at least partially ab-
sorbed by the single-particle energies).

Using properties of angular momentum recoupling
coefficients, formulas for interaction centroids can be de-
rived from the usual expressions [57] for two-body matrix
elements of the MSDI. For pWq we find

V (pq)=BO ——', Ao,

V '(pq) =B,——,
' 3, ,

(20a)

independent ofp and q. Similarly, for p =q

V (pp)=BO ——', Ao(2j+1)/2(j+1),
V' '(m»)=Bi —

—,'~i(2J'+1)~2j

(21a)

(21b)

where j is the angular momentum of the nucleon in sub-
shell p. The seniority averages are

Vo(pp) =B,——,
' A, (2j+1),

V2(pp) =B,——,
' A, (2j + 1)12(j + 1) .

(22a)

(22b)

The latter relationship is meaningful only for j )—,.
There have been numerous shell-model studies of nu-

clei in the mass region of interest in which the modified
surface-delta interaction has been fitted to energy levels.
Centroids from some of these studies are listed in Table
VIII. In the first group of calculations [13,58], active
particles were restricted to sd-shell configurations. In the
second set of calculations [59,60] the properties of nuclei
near mass 40 were calculated, assuming a Si core and
allowing partial occupation of the f7/2 alld p3/2 orbitals.
Similarly, in the third study [61, 62], the properties of
negative-parity states of nuclei with 3 =35 to 39 were

calculated assuming a S core and allowing a single exci-
tation to the f7/p and p3/2 orbitals. The fit was per-
formed separately for each mass, producing interactions
which differed greatly, the centroids quoted in Table VIII
are average values, with consequent uncertainties of
about 0.8 MeV in all T =0 centroids and Vo(dd) and of
about 1.8 MeV in Vo(ff). Finally, the fourth set of cal-
culations [63], for isotopes of nickel and copper, assumed
a Ca core with the p3/2 f5/g and pi/2 orbitals active.

Because of the mass dependence of the interaction,
centroids from the final set of calculations differ
significantly from the others. In any case, there are large
differences in the results from the remaining calculations,
particularly for the matrix elements Vo. These are two
further points of interest. First, MSDI centroids for pAq
are independent of p and q —see Eqs. (20); the approxi-
mate validity of this is evident from Tables V —VII.
Second, MSDI estimates of the matrix elements Vo are in
general considerably smaller than estimates presented in
Tables V —VII; this is also true of V '(ss)= Vo(ss).
Note that values of Vo from realistic interactions are
similarly small —see Secs. III D and IV.

Closed-form expressions have been derived for cen-
troids of the modified surface-delta interaction; see Eqs.
(20)—(22). It is therefore possible, at least in principle, to
produce an MSDI fit to the empirical centroids summa-
rized in Table V. In this way we could construct all ma-
trix elements of an interaction with reliable centroids; in
particular, we would obtain empirical estimates for the
otherwise elusive off-diagonal matrix elements. But in
practice there are many difficulties. With only four pa-
rameters, the MSDI simply does not have sufficient free-
dom to describe accurately the empirical centroids, espe-
cially those with T=1. The results of an attempted fit

TABLE VIII. Centroids (in MeV) of the modified surface-delta interaction.

SS

Ref.

13,58
59,60
61,62
13,58
59,60
61,62
59,60
61,62

63
63

13,58
59,60
61,62

63

b
b

b

v (qq)

—2.20
—2.11
—2.5
—2.28
—2.23
—2.6
—2.32
—2.6
—1.43
—1.40
—2.40
—2.42
—2.7
—1.48
—2.18
—2.30
—1.59
—1.47
—2.47
—1.73

v '(pq)

—0.50
—0.13
—0.3
—0.14

0.10
0.09
0.16
0.19
0.15
0.10
0.04
0.21
0.28
0.18

—1.06
—0.44
—0.14
—0.23
—0.13
—0.08

—1.58
—0.8
—1.4
—2.2
—3.7
—1.67
—0.61

—2.92
—3.28
—1.45

0.15
0.28
0.39
0.25
0.34
0.21
0.24

0.1

0.0
0.0

'MSDI fit to empirical centroids for 3 ~ 40 (see text).
MSDI fit to empirical centroids for 2 ~ 40 (see text).
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are shown in the lower part of Table VIII; mass depen-
dence of the interaction has been included by fitting two
sets of centroids separately. Comparison with values in
Table V confirms that, although the fit to T =0 centroids
is adequate, it is impossible to fit the matrix elements
Vo(ss) and Vo(pp). In addition, it is impossible to fit
simultaneously Vz for p =q and V =' for pWq.

D. Realistic interactions

Since the early work of Kuo [I] and of Kuo and Brown
[2], there have been many attempts to construct effective
interactions based on free nucleon-nucleon potentials; see
Refs. [64—69] for a selection of recent examples. The im-
mediate aim of most of these attempts was not to produce
an interaction suitable for shell-model calculations, but
rather to investigate some particular aspect of the
method, such as the use of potentials generally regarded
as more accurate, inclusion of further correction terms,
and improved computational techniques for the (G matrix
and core-polarization terms. Centroids from several real-
istic interactions are presented in Table IX, which also
lists the model space and nucleon-nucleon potential used
in each case.

IV. DISCUSSION AND CQNCLUSIQN

In this section we compare the empirical centroids dis-
cussed in Sec. II with the centroids of interactions dis-
cussed in Sec. III. Of course, all interactions should ulti-

mately be compared with the results of Unconstrained
shell-model fits to a wide range of data in a configuration
space which is as large as possible, since such calculations
produce the best description of the experimental data. In
making comparisons between different interactions it is
important to take proper account of differing model
spaces. It should be noted that the summary Table V
omits empirical centroids determined in more exotic
model spaces; these can be found in the separate Tables
I—IV.

The computational techniques employed in construct-
ing realistic effective interactions have undoubtedly im-
proved substantially since the original work of Kuo [I]
and Kuo and Brown [2] and, in addition, a variety of reli-
able bare nucleon-nucleon potentials is now available.
However, it is evident from a comparison of centroids in
Table IX with empirical estimates in Tables V —VII that
none of the realistic interactions is sufficiently accurate
for use in large-scale shell-model calculations. One par-
ticular difficulty is that the magnitude of the pairing ma-
trix element Vo is consistently underestimated, by more
than 1 MeV in some instances. Moreover, several other
centroids differ from empirical estimates by as much as
500 keV; errors of this magnitude lead to shell-model
spectra in considerable disagreement with observation
and nuclear wave functions which are essentially useless
for the calculation of other nuclear properties.

The modified surface-delta interaction, with only four
adjustable parameters, lacks the Aexibility needed to con-

TABLE IX. Centroids (in MeV) of realistic interactions.

pq

SS

dd

pp

sd

Ref. v "~(pq)

—0.81
—0.76
—1.18
—1.28
—0.79

—0.54
—0.53

V T —
0(pq)

—2.20
—2.53
—3.18
—2.96
—1.36
—1.72
—1.95
—2.06

—1.15

—1.47
—1.85
—1.83
—2.24
—2.30
—1.54

—0.97
—1.20

P T =
1(pq)

—0.97
—1.32
—1.95
—1.54

0.23
0.25

—0.07
—0.44
—0.28
—0.13
—0.82
—0.52

0.24
0.30

—0.12
—0.26
—0.04
—0.29
—0.10

0.14

~o(pq)

—0.38
—0.70
—0.81
—1.19
—2.26
—1.81
—1.65
—1.21

0.36
0.44
0.08

—0.29
—0.21
—0.07
—0.65
—0.38

'Sommermann, Muther, Tam, Kuo, and Faessler [64], Reid potential, sd space.
Sommermann et al. [64], Bonn potential, sd space.

'Kuo [1],Hamada-Johnston potential, sd space.
Skouras and Varvitsiotis [65], Sussex potential, sd space.

'Waroquier, Heyde, Van Isacker, and Vincx [66], extended Skyrme potential, fp +g9&2 space.
'Kuo and Brown [2], Hamada-Johnston potential, fp space.
sKuo and Brown [2], Hamada-Johnston potential, fp space with one hole in the sd shell.
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sistently provide a good description of experimental data
(although it has certainly been more than adequate in cal-
culations for very light nuclei). As with realistic interac-
tions, the prediction of the pairing interaction is a major
difficulty. Nonetheless, the MSDI is useful in providing
estimates for off-diagonal matrix elements, which are
often difficult to determine using other empirical
methods.

The technique of Sec. III A in which interaction matrix
elements are extracted directly from two-nucleon spectra,
is the closest in spirit to the methods of Sec. II. The cen-
troids listed in Table VII, averaged over different cores,
can be compared with the results of Sec. II, summarized
in Table V. The largest discrepancy is for the centroid
V ='(ss); the agreement is otherwise surprisingly good.
We note that the methods of Sec. II are significantly
easier to implement, although the technique discussed in
Sec. IIIA has the considerable advantage of yielding
values for individual matrix elements.

Finally, the agreement between the centroids of the
summary Table V and results for fitted interactions in
Table VIII is equally impressive in most cases. There are
two exceptions. First, estimates of Vo from the present
work are too attractive by about 0.5 MeV, and second,
empirical estimates of V ' for pWq are consistently too
repulsive by a small amount.

In summary, interaction centroids from the various
empirical techniques presented in Sec. II are surprisingly
accurate. A major problem is encountered in the accu-
rate extraction of the single matrix element Vo(pp) for all
p. In fact, the large spread in values for Vo found in all
the tables indicates that this problem is apparently corn-
mon to almost all methods of constructing effective in-
teractions. The preferred method for extracting cen-
troids for p =q is based on the seniority formalism de-
scribed in Sec. II C, whereas centroids for pAq are most
accurately determined with the weak-coupling model of
Sec. II D. Nonetheless, the method discussed in Sec. II B,
using measured single-particle energies, is easier to imple-
ment and produces reasonable estimates of centroids for
both p =q and pXq. Empirical methods are particularly
useful in providing input to large-scale fits to experimen-
tal spectra. This is especially important as the size of the
model space and database both increase; the number of
iterations required for convergence to the final interac-
tion can be decreased considerably through careful
choice of starting values, thereby rendering such calcula-
tions more attractive.
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