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Systematic calculations of asymmetric nuclear matter have been performed in the framework of the
Brueckner-Bethe-Goldstone approach in a wide range of both density and asymmetry parameter. The
empirica1 parabolic law fulfilled by the binding energy per nucleon is confirmed by the present results in

a11 the range of the asymmetry parameter values. The predominant role of the S&- D& component of the
NX interaction is elucidated. A linear variation of the proton and neutron single-particle potentials is

found as increasing the neutron excess; a deviation from the phenomenological potentials occurs for
highly asymmetric matter as an e6'ect of the self-consistency. The present calculations of the incompres-

sibility predict a strong softening of the equation of state going from symmetric to asymmetric nuclear
matter. The proton fraction in equilibrium with neutron matter has been determined from the beta-
stability condition and its relevance to the superAuidity of neutron stars has been investigated.

I. INTRODUCTION

Supernova explosions and neutron stars provide us
with a unique laboratory where the equation of state
(EOS) of nuclear matter can be fruitfully investigated.
The prompt shock invoked to understand the explosion
mechanism of a type-II supernova requires the EOS to be
relatively soft [1]. This is in agreement with the descrip-
tion of the breathing mode in heavy nuclei from which a
incompressibility around 210+30 MeV is extracted [2].
According to the model of prompt explosion [3], an
electron-capture process drives the star, in the latest
stage of collapse, to an equilibrium state where the pro-
ton concentration is Z/A =0.31—0.33; this gives an in-
compressibility much lower than in symmetric nuclear
matter. On the other hand, systematic analysis of the ob-
served masses of neutron stars [4] favors a stiff EOS. In
addition, the sideward Aows detected in heavy-ion col-
lisions can be explained by assuming again a stiff EOS
with an incompressibility of -400 MeV [5]. However, a
momentum-dependent mean field could interpret the
same data with a soft EOS [6] as well.

Neutron stars have also attracted much interest be-
cause they offer a good chance of studying the occurrence
of superfiuidity in nuclear matter [7]. This phenomenon
is in fact a good candidate to explain the anomalously
large relaxation times of the glitches following a
neutron-star quake [8]. In particular, an important con-
tribution to the superfIuidity could come from the proton
fraction in equilibrium with neutrons and electrons in the
inner crust of a neutron star [9].

In all these topics an asymmetric nuclear matter is in-
volved and its properties play a crucial role. In fact, the
EOS of asymmetric nuclear matter exhibits a minimum
which disappears before the pure neutron matter is
reached, and thus we expect that the incompressibility
decreases and vanishes before the proton fraction van-
ishes. The equilibrium between neutrons, protons, and

electrons in the inner crust of a neutron star is reached at
the minimum of the total energy. In this state the proton
fraction is controlled by the symmetry energy corre-
sponding to a given baryon density. Thus we can deter-
mine the range of neutron density where proton
superfluidity occurs inside a neutron star. Despite the in-
terest just outlined, there are only a few calculations of
asymmetric nuclear matter based on a microscopic
theory. Besides the calculations performed in the nonre-
lativistic Brueckner [10] and variational approaches [11],
a work based on the Dirac-Brueckner approach [12] and
one based on the chiral sigma model [13]have to be quot-
ed.

Generally, the asymmetric nuclear matter properties
are extracted by interpolating the two extreme situations
of symmetric and pure neutron matter with the empirical
parabolic approximation [14,15]. This procedure is ex-
pected to work well only at low values of the asymmetry
parameter P= (X—Z ) /2, which are typical of finite nu-
clei. The validity of the empirical parabolic law can be
checked only by extending the calculations to all the
range of P and for many different baryon densities.

In this paper we present such systematic calculations
based on the self-consistent Brueckner-Hartree-Fock
(BHF) approximation [16] to the Bethe-Goldstone
theory. It is well known that this approach does not
reproduce the correct saturation point of nuclear matter
with only the inclusion of the two-body interaction. But
our attention is mainly focused on how nuclear matter
properties change in terms of the asymmetry ratio, and
some caution has to be taken whenever saturation prop-
erties are involved. Nevertheless, the BHF approach
offers the advantage of providing a clear understanding of
the effect of the different isotopic spin components of the
bare XN interaction on both the total binding energy and
single-particle spectrum. In addition, it gives a simple
microscopic justification of the empirical laws governing
asymmetric nuclear matter.
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The paper is organized as follows. In Sec. II the for-
malism of the BHF approach is sketched with particular
emphasis to the peculiarities of the asymmetry. Section
III is devoted to the presentation and discussion of the re-
sults obtained from the calculation of binding energy,
asymmetry energy, neutron and proton mean fields, and
neutron and proton effective masses. In Sec. IV we dis-
cuss incompressibility as a function of the asymmetry pa-
rameter and its connections with the models of the super-
nova explosions. In Sec. V the beta-stability condition is
investigated in terms of the proton fraction in a neutron
star. In Sec. VI some conclusions are drawn.

II. FORMALISM

Our calculations are based on the BHF approach ex-
tended to asymmetric nuclear matter. Considerable
simplification is achieved in the self-consistent iterative
procedure when using separable versions of the realistic
NN interaction [17]. It has been shown that they are able
to reproduce the same results as the original versions
[18]. In momentum space a separable NN interaction is

written in the form

Nv, (q, q') = g gL;(q )A;Jgl;(q'),

NG', (q, q ', P,z ) = g gL;(q )I ","(P,z )g, .(q '), (2)

where ~ and ~' are the isospin quantum numbers and I
plays the role of an effective strength defined as

where a= (JS—T) specifies the total angular momentum,
spin, and isospin of the two interacting nucleons for a
given channel; L and L' are the orbital angular momenta
of the partial-wave decomposition. The indices i and j
run over the rank 1V of the expansion for each channel
a. The functions g are the form factors, and the matrix
A; characterizes the interaction strengths. The
simplification consists in that the Bethe-Goldstone equa-
tion for the 6 matrix can be worked out in an algebraic
way in momentum space. We are left with the 6 matrix
which can be written like the interaction in a separable
form

gL;(q)g, (q)Q' (q, P)[r, (P,z)]-'=A. ,
— (3)

The quantity e =A' k /(2m)+ U, (k) is the single-particle energy of a proton (eq ) or a neutron (e„). Q" is the angle-
averaged Pauli operator. For a given density of protons and neutrons (kF" & k~ '), the Pauli operator is

1 if/, )1, g, )1,
(g, + I)/2 if g ) 1, g &1,
(g, +g, )/2 if g, &1, g &1,
0 otherwise,

(4)

where

P /4+q (k")—
Pq

and k/' and k~"' are the proton and neutron Fermi momenta. In all previous formulas q and P are relative and total
momenta, respectively, of the two interacting particles. In the standard BHF procedure the G matrix is self-
consistently evaluated with the mean field

U, (k)= g g (kor;h'o'r'~G(e, (k)+e, (h'))~kor;h'cr'r') „.
O''7' h'

The continuous choice [19] has been adopted for the
auxiliary potential according to the expectation that
higher-order correlations are included at the level two
hole-line truncation of the hole-line expansion for the
binding energy [20,21]. The present calculations have
been carried out by using a separable form of the Paris
potential [22], which includes all the following channels:
Sp Pp P ] P2-'F2, and 'D2, with T= 1, and S, - D„

'P&, and D2, with T=O. AH calculations have been
made in momentum space, and a momentum grid

k;=0.0(0. 1)5.0 fm ' has been used. Four iterations
have been enough to reach convergence in the iterative
procedure.

III. RESULTS

A. Binding energy

In Table I most of the results are collected for the bind-
ing energy per nucleon B(p,P) calculated to the lowest
order in the hole-line expansion. It is well known that a
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TABLE I. Self-consistent results for the binding energy per nucleon versus density p(fm ') and
asymmetry parameter P (first column).

0.0
0.2
0.4
0.6
1.0

0.038

—8.54
—7.75
—5.94
—3.17

5.65

0.076

—11.55
—10.69
—8.26
—4.45

8.15

0.11

—13.71
—12.68
—9.85
—5.08
10.06

0.14

—15.29
—14.12
—10.88
—5.50
11.69

0.17

—16.48
—15.18
—11.62
—5.68
13.37

0.20

—17.36
—15.97
—12.02
—5.57

15.21

0.30

—18.32
—16.66
—11.72
—3.62
22.42

0.40

—17.01
—15.03
—9.16

0.64
31.26

quadratic dependence of the binding energy upon the
asymmetry parameter p,

&(P,P) =&(p,0)+&„(p)P', (6)

has to be expected as in the Fermi-gas model and, in fact,
it is experimentally very well confirmed at least for small
P. Our results confirm the validity of such an empirical
parabolic law, but it is surprising that it is fulfilled up to
high values of p. The good quality of such a fit is illus-
trated in Fig. 1 for some values of the nucleon density p.
In order to get a deeper understanding of this feature, we
have split the total-energy potential into the contribution
due to the isospin-zero channels which are active in the
proton-neutron interaction and the contribution due to
the isospin-one channels which are also present in the
proton-proton and neutron-neutron interaction. The re-
sult for the saturation density [po(0) =0.17 fm ] is plot-

ted in Fig. 2. We recognize that the P dependence in the
binding energy has to be mostly ascribed to the T=O
components, whereas the T=1 components are almost
equal to those of symmetric nuclear matter at the same
density. Moreover, it has been found that of the three
T =0 channels included in the calculations, the 'P, and
D2 contributions cancel out each other for all P values,

so that the T=O potential energy plotted in Fig. 2 (solid
line) takes contribution mainly from the Si Di channe-l

(small circles). The slow deviation of the T = 1 contribu-
tion from the constant symmetric matter value is due to
the dispersive effect of the total mean field and to the
reduction of the Pauli principle effect on the scattering
between neutrons and protons in the T = 1 channels.

B. Symmetry energy

The symmetry energy is defined as

1 r) B(P,P)
+sym P (7a)

40

Assuming the parabolic form for the binding energy per
nucleon [Eq. (6)], E,„can be simply evaluated from the
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FIG. 1. Total binding energies per nucleon in the range
O~P ~ 1 at four densities as obtained from the self-consistent
calculation. These results are compared with the parabolic fits
(straight lines) obtained from the first three values of P
(=0.0,0.2,0.4). The slope of each line gives the corresponding
symmetry energy.

(N-z)/A

FIG. 2. Splitting of the potential energy per nucleon into the
two isospin components vs the asymmetry parameter for the
saturation density (0.17 fm '). The open circles represent the
'S

&
-'D, contribution.
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two extreme cases of both pure neutron matter and sym-
metric nuclear matter according to

&,„(p)=8(p, l) —8(p, O) . (7b)

50

In view of the results shown in Fig. 1, the estimate based
on the last equation gives the same E, as the numerical
fit required by Eq. (7a). Through Eq. (7b), it easy to see
that the predominant contribution to E, comes from
the T=0 channels (mainly the S Done-). Indeed, the
T = 1 channels give a contribution to the binding energy
nearly constant versus P, and then they cancel out in the
expression of Esym.

Equation (7b) clearly indicates the role of the Si D, -

channel contribution to the binding energy as increasing
P (see Fig. 2), which is maximum in 8(p, O) and vanishes
in 8(p, 1). For the S Dchanne-l the infiuence of the ten-
sor force is the 1argest compared to a11 other channels.
Therefore, we can conclude that the symmetry energy is
essentially ruled by the tensor component of the NÃ in-
teraction. From a systematic parabolic fit over three
values of P (P=O. O, O. 2, 0.4) in the range of densities here
considered, we have extracted the symmetry energy,
whose numerical values versus density are plotted in Fig.
3 (solid line). For comparison reported also are some re-
cent results obtained in different contexts by assuming a
prion the parabolic form for 8(p, f3). The value at the
saturation density is in good agreement with the empiri-
cal one of -28. 1 MeV taken from the mass formula [23].
The difference at low densities between our curve and the
one of Ref. [14], which uses the same Paris NN interac-
tion, is due to the discrepancy between the two calcula-
tions in the channel S, D, (Ref. [-18]). Its effect be-
comes less and less important as the asymmetry increases
up to P= 1, where it is no longer active.

The BHF results deviate mainly at high density from
the variational results obtained with either the AV14 in-
teraction (dotted curve) and UV14 (dot-dashed curve)
[15]. The difFerence between the two variational predic-
tions can be easily explained as an effect of the different
tensor components present in the two interactions. The

C. Single-particle spectrum

Neutron and proton single-particle potentials have
been simultaneously and self-consistently calculated to-
gether with their corresponding effective interactions,
i.e., G matrices. The results at two densities are reported
in Fig. 4. The effect of asymmetry can be clarified by
splitting neutron and proton mean 6elds into their com-
ponents in such a way as to single out explicitly the
dependence on the respective phase space:

U =U +U„=—,'p(1 —P)u + —,'p(1+f3)u „,
U„=U„„+U„=—,'p( 1+P)u„„+—,'p(1 13)u„~, —

(8)

where the u, are the average effective interaction in the
7.7'

phase space. In Fig. 5 the value at k=0 of the single-
particle potential is plotted versus the asymmetry param-

-40

-60

-80

disagreement between our BHF result and the variational
result with the Argonne U14 potential cannot be attribut-
ed to the two different interactions because Paris and Ar-
gonne potentials have been proven to be essentially
equivalent in many-body nuclear calculations [21,24].

For high-density values (p & 4po), the symmetry energy
strongly depends on the three-body force, but its effect is
too much model dependent to draw any reliable con-
clusion, as the results of Ref. [15] show. However, this
effect on Esy is less and less important for the low densi-
ties (p (0.4 fm ) we are considering. The uncertainties
of the high-density behavior of the symmetry energy be-
come more striking when looking at the results obtained
in relativistic approaches [12,13]. In fact, their E, does
not exhibit any saturation at high density, at variance
with nonrelativistic calculations [15].
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FICx. 3. Symmetry energy versus density from the parabolic
fits {solid curve) in comparison with the results of Ref. [14]
(dashed curve) and Ref. [15] {dotted and dot-dashed curves).

FIG. 4. Self-consistent (a) neutron potential U„and (b) pro-
ton potential U~ for di8'erent asymmetry parameters.
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eter for two densities. U and U„are the mean fields
felt, respectively, by proton and neutron in the proton
background, which, as expected, vanish at P= l. U„„and
U „are the same fields generated by the neutron back-
ground. The larger variation of Uz„ is an effect of the
T =0 channels of the interaction that is, of course, miss-
ing in U„„.

The variation of proton and neutron potentials is linear
and almost symmetric with respect to their common
value at P=O for small P. This supports the validity of
the Lane potential [25], which has been applied to the nu-
clear scattering processes. A similar feature is observed
in the experimental proton and neutron Fermi energies
recently calculated [26] from the (2 +1) and A nucleon
systems in the range 0.0(P&0.24. The neutron Fermi
energy linearly increases and the proton Fermi energy,
suitably corrected by the Coulomb energy, linearly de-
creases, in nice agreement with our results. The slopes

p=0. 17 frn
I I I I

)
I I ~ I

[
I I I I

I
I I I I

I

~ I I I0

evaluated in Ref. [26] are 31.3 and —57.5 MeV for the
neutron and proton Fermi energies, respectively, while
we obtain 57.3 and —58.9 MeV for the same quantities.
However, the inclusion of the single-particle correlations
due to the rearrangement term in the mass operator ex-
pansion [17] decreases the value of the slope for the neu-
tron Fermi energy, giving a better agreement with the fit
of the experimental data reported in Ref. [26].

Symmetric variation would mean that u =u„„and
u „=u„,but we find a significant deviation, as can be
seen in Fig. 5, at higher P. For p=0. 17 fm the devia-
tion from a symmetric behavior of the neutron and pro-
ton potentials is a slowly increasing function of P, reach-
ing at P=1 a value of —17 MeV, while the difference
AU= U„—U is -47 MeV in pure neutron matter.
Thus some caution has to be taken when extending to
highly asymmetric matter the application of phenomeno-
logical interactions such as Skyrme that assume sym-
metric variation of neutron and proton mean fields.

Another quantity which characterizes the single-
particle potential is the efFective mass evaluated from the
slope of U at the Fermi momentum,

dU
1+ (10)

—40—
o~

—60~

—80

-100

0 O. P, 0.4 0.6 0.8 1

(N-z)/A

whose numerical values are reported in Fig. 6. As ex-
pected, the above-mentioned deviation occurs also in this
quantity. The linear dependence of the single-particle po-
tential on the asymmetry parameter is consistent with the
P law fulfilled by the binding energy and can be inter-
preted as a bulk effect of the gradual reduction of the
phase space of protons as P increases. On the other hand,
the shift from symmetric variation observed in either the
proton and neutron potentials and effective mass has to
be attributed to the self-consistent treatment of the G ma-
trix, which determines the effective NN interaction and
the mean fields in the BHF approach.

0
p=0.30 frn IV. INCOMPRESSIBILITY

The basic physical inputs for describing the iron-core
collapse of a presupernova, using hydrodynamical mod-
els, are the initial mass of the iron core and nuclear equa-
tion of state (EOS). The role of the nuclear EOS for the
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FIG. 5. Proton and neutron potentials at k =0 versus asym-
metry parameter for (a) p=0. 17 fm and (bj p=0. 3 fm . The
curve indicated by U~ is the sum of Upp and U~„; the curve indi-
cated by U„ is the sum of U„„and U„~.

s s i I i I i s I ~ s I s I s i i s I i s i aO.
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FIG. 6. Proton and neutron effective masses [Eq. (10)] versus

P for density equal to 0.17 fm
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success of the prompt explosion mechanism has been re-
cently investigated by Baron, Cooperstein, and Kahana
(BCK) [1,3]. To solve the hydrodynamic equations, BCK
used the following phenomenological EOS:

Ko(P)
po(p) 1 7 (11)

9y
&(p) =

po(p)

Ko(P) =Ko(0)(1—aP ),
po(P) =po(0)(1 —&P ),

(12)

(13)

with a =2.0 and b=0.75. The above-quoted values of
the parameters a and b are a fit of the results obtained in
Ref. [27] using the Skyrme SkM" force, for, which
Ko(0)=216.6 MeV.

The dependence upon the asymmetry parameter p of
the nuclear matter incompressibility Ko(p) has been
inadequately investigated.

So far, one of the most sophisticated investigation of
the p dependence of Ko and po remains that of Koleh-
mainen et al. [27] using Skyrme-type interactions in the
framework of an extended Thomas-Fermi approach. The

where Po(P) and Ko(P)=Ko(Po(P)) are the saturation
density and the incompressibility modulus at saturation
with an asymmetry parameter p. They used the com-
monly accepted value [2]

Ko(0) =210+30 MeV,

for symmetrical nuclear matter, taking the high-density
adiabatic index y in the range 2 —3.

Because of the neutrino trapping, neutron-rich asym-
metric matter is formed during the collapse of the iron
core, and the asymmetry parameter p stays almost con-
stant (P- —,

'
) for all the collapsing time (up to the core re-

bound and shock wave formation). Therefore the proper-
ties of asymmetric nuclear matter with P- —,

' affect the
EOS [Eq. (11)]by producing a decrease in the incompres-
sibility,

d2
Ko(P) =9po(P) ~(p») l (p)

dp

and in the saturation point density po(p) with respect to
the symmetrical case. The authors of Ref. [1] found that
this softening of the EOS plays a crucial role in generat-
ing prompt explosion for stars in the mass range
(12—15)Mco (where Mo = 10 g is the mass of the Sun).

In their calculations the dependence upon the asym-
metry parameter was described by the relations

TABLE II. Incompressibility of asymmetric nuclear matter,
saturation density, and biding energy per nucleon correspond-
ing to three different values of the asymmetry parameter.

0.0
0.2
04

182+9
1?4+6
124+9

po {fm )

0.288+0.004
0.277+0.003
0.237+0.002

So (Mev)

—18.35
—16.74
—12.19

authors of Ref. [27] found that Ko(p) and po(p) strongly
change when difFerent Skyrme-type interactions are used
in the calculations. Nevertheless the parabolic approxi-
mations Eqs. (12) and (13) for low-p values (p50.4) are
valid for all cases considered in Ref. [27].

In view of what we said earlier, one can realize that a
microscopic evaluation of the p dependence of Ko and po
is very important.

Using the BHF values for the binding energy 8(p,p)
(see Table I, keeping P constant, we have fitted 8(p) by
means of a least-squares polynomial fit, from which the
Eo and po values listed in Table II have been extracted.
The method is quite sensitive to the degree of the polyno-
mial used for the fit. This is reQected in the uncertainty
AEo for the incompressibility modulus, which is in all
cases no more than 4—7 %.

Using Eq. (12), our calculated values of Ko(P), for low
P ( =0.0,0.2,0.4), can be fitted very well, giving
a =2.027, Ko(0)=185 MeV, and Ko( —,')=143 MeV. A

comparison is made in Table III between our results and
those of Ref. [27]. Our results resemble mainly those rel-
ative to the SkM' force of Ref. [27].

The softening of the nuclear matter EOS has been also
investigated by Wiringa, Fiks, and Fabrocini [15] for
different interactions. They use a variational method
with correlation operators, but their results for the asym-
metric nuclear rnatter are not fully microscopic in the
sense that they are an interpolation to an arbitrary asym-
metry p obtained for the two extreme cases p=0 (sym-
metric nuclear matter) and p=l (pure neutron matter).
Using the values of Ko( —,') computed by Wiringa, Fiks,
and Fabrocini [15], we can extract the coefficient a for
the parabolic fit of Ko(p). This is shown in Table III for
the AV14 +UVII and UV14 + UVII X-X interactions.
As we can see, our results for the coefFicient a are in a
very good agreement with those of Ref. [15]. It is, how-
ever, worthy of note that the coefficient a in Eq. (12) is
very sensitive to the small uncertainty ALO we have in
the incompressibility modulus. In fact, using the values
Ko(P)+b Ko (P=0.0,0.2, 0.4), we obtain values of a

TABLE III. Parameters of Eq. (12) extracted from a parabohc best 6t of the incompressibility of nu-
clear matter. The result of the present work is compared with the values obtained in different contexts
(see text for references).

Ko(0)
Q

o(-,' )

Paris

185
2.027

143.3

SkM*

216.6
1.988

168.7

SI'

370.3
1.272

318.0

SIII

355.3
1.275

305.0

AV14+UVII

209
2.196

158

UV14 + UVII

202
2.049

156
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which can vary in the range 1.481 —2.519. Therefore, a
can be evaluated with an uncertainty of about 50%. We
believe that a similar uncertainty occurs when the
coefficient a is evaluated with the preceding quoted
methods [15,27].

Using the values listed in Table II, we have also calcu-
lated the parameters po(0) and b of Eq. (13), which define
the low-density change in the saturation density with the
asymmetry parameter P. We found po(0)=0. 289 and
b = 1.115+0.083.

V. BETA-STABLE MATTER IN NEUTRON STARS

The neutron Quid region of a neutron star
[0.8po(0)(p(2po(0)] is expected to consist mainly of
superfluid ( P2) neutrons with a small concentration of
superconducting ('So) protons and normal electrons [8].
These different particles are in beta equilibrium. The
proton fraction Y=Z/A can be evaluated minimizing
the total energy per nucleon of nucleons and electrons,

B„,(p, Y)=B(p, Y)+ m c + m„c + (14)

with respect to Y. In Eq. (14), m and m„are the proton
and neutron rest masses and B(p, Y) is the binding ener-

gy per nucleon for asymmetric nuclear matter. As we
said in Sec II, it can be approximated, with a very good
accuracy, by a quadratic dependence upon I3=(1—2Y)
up to very high values of the asymmetry parameter. We
assume that the electron energy E, can be approximated
by its relativistic free-gas expression. So we write

B(p, Y)+ =Bo(p)+f3'E,„(p),
E,

y ( 2+ 2 2)1/2

(15)

where m is the electron mass and p its momentum. Elec-
tric charge neutrality implies that Z=Z, (i.e., Y= Y, ),
and as a consequence, the proton Fermi momentum k/''
equals the electron Fermi momentum kF'. Using the ul-
trarelativistic limit of E„which is justified in the density
range here considered, the proton fraction Y(p) is the
solution of the equation.

d~ tot 4E,„(p)(1—2—Y)+(m„—m„)c
dY

+Ac(3m p)' Y'

TABLE IV. Proton concentration of nuclear matter in beta
equilibrium versus the total baryon density. The values of the
third column are obtained from Eq. (17) using the symmetry en-

ergy reported in Ref. [14]. The values of the fourth column
have been given by A. Fabrocini (private communication).
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one since, as we saw in Sec. II, the proton mean field is

much deeper for very asymmetric nuclear matter as an

effect of the dominance of the p-n interaction. This
feature, illustrated in Fig. 7, has an important implication
in superAuidity. In fact, a smaller effective mass reduces

the proton gap in the channel 'So in comparison with the

neutron gap in the same channel. Nevertheless, the pro-

ton component of superAuidity in a neutron star is still

relevant.
It has been assumed that the presence of electrons in a

beta-equilibrium state of a neutron star could slightly
modify the EOS [29]. A simple estimate of the correction
can be given using an approximate solution of the equilib-
rium condition [Eq. (17)],which is

3

y.,=-' (18)
2 AckF

This is a quite good approximation at high density where
the effect we are studying is expected to be appreciable.

=0. (17) 0.8

The results are reported in Table IV. In Ref. [28],
where the superfiuidity in a neutron star is extensively
studied, it is shown that just in this range of Y values the
peak of the gap of a proton superAuid occurs. In that
reference a comparison with other calculations of the
proton fraction is made. In Fig. 7 the effective mass of
protons and neutrons in beta equilibrium are reported.
They have been computed from the BHF self-consistent
procedure for each Y previously determined according
the Eq. (17). It is worth noting that the proton effective
mass is much more suppressed compared to the neutron

0.7

0 6 I I

0
I I I I I I I I I I I I I I I I I I I I I I

0.2 0.3 0.4 0.5
(fm )

FIG. 7. Proton and neutron etfective masses [Eq. (10)] versus
total density for nuclear matter at beta equilibrium.
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+(m„—m )(1—Y,q) . (19)

For the higher value of density obtained (p =0.4
fm ), the symmetry energy is 48.72 MeV and the elec-
tron (or proton) fraction is Y, =0.058. We find then a
correction to the EOS of 2.9 MeV, which amounts to
—10% of the pure neutron matter binding energy.

VI. CONCLUSIONS

The study of the EOS of asymmetric nuclear matter
has been, in the last few years, a subject of renewed in-
terest, particularly, in connection with astrophysical
problems such as the understanding of the iron-core col-
lapse of massive stars which produces type-II supernovae
and the structure of the neutron-star remnants. The
equation of state of neutron stars samples a range of den-
sities and isospin asymmetry which is different from su-
pernovae. Thus these two physical systems give the pos-
sibility of obtaining related but not identical information
about the EOS.

The controversy over whether the EOS is "stiff" or
"soft" is still unresolved. An aspect of this controversy is
to understand whether or not the strongly asymmetric
matter involved in a collapsing star could reduce the in-
compressibility or the energy of the electrons, in equilib-
rium with protons and neutrons, which could
significantly affect the EOS. High-energy heavy-ion reac-
tions indicated that the fiow angle [30] and transverse
momentum distribution [30,31] could be interpreted by
assuming a stiff EOS. However, the observed data can be
reproduced in microscopic Boltzmann-Uehling-
Uhlenbeck calculations [32] using a softer EOS, when the
momentum dependence of the mean field is properly tak-
en into account [32,6]. Indeed, with a proper prescrip-
tion on the momentum dependence, the mean field be-
comes less attractive at higher momenta and then it can
simulate a stiff EOS.

A second question is whether the relaxation of the
glitches observed in radio pulsars can be explained in
terms of a viscous process of normal matter or whether it
is evidence of superAuid matter inside neutron stars. Even

In this case the total energy per baryon can be written at
the minimum,

B(p Y ) B(p 0) Y'q(1 2Y )E
y

in this case asymmetric matter properties are invoked to
investigate the setting of proton superAuidity on the neu-
tron background.

Quantitative estimates of the asymmetry in nuclear
matter are based on the well-known phenomenological
laws or, in the microscopic models, extrapolating the
data taken from the two extreme situations of symmetric
matter and pure neutron matter.

In this paper we have presented fully microscopic cal-
culations. These enabled us to check the validity of phe-
nomenological laws on the binding energy and neutron
and proton mean fields. The BHF approximation to the
Brueckner-Bethe-Goldstone theory is particularly suit-
able for obtaining greater physical insight into the prob-
lem. We found that the asymmetric matter binding ener-

gy as microscopically determined is in good agreement
with the mass formula prediction. Its variation with neu-
tron excess is mainly controlled by the tensor component
of the NN interaction. The proton and neutron potentials
exhibit a linear variation as a function of the asymmetry
parameter, in agreement with recent investigations on the
experimental proton and neutron Fermi energy in finite
nuclei [26]. An appreciable deviation from symmetric
change is observed as far as highly asymmetric matter is
concerned.

The incompressibility strongly changes with the asym-
metry parameter and exhibits a 30% of reduction when
the supernova asymmetry ratio reaches a value of about
0.33 before collapsing. But the absolute magnitude of
Ko(0. 33) depends on its value at the saturation point,
which even in BHF approximation is not reliable.

The inhuence of the beta equilibrium becomes more
and more important with increasing barion density, with
the effect of softening the EOS. Moreover, for a density
corresponding to the inner crust of a neutron star, we
found a proton phase whose values of density and
effective mass give a contribution to the So superAuidity
comparable to the neutron one.
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