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Time-dependent mean field description of a tvt o-level bosonic model
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A time-dependent mean field approximation is applied to a simple bosonic model that is related to the

phase transition from spherical to deformed nuclei. It is shown that this approximation is very appropri-
ate for the detection of this phase transition. A method for extracting matrix elements is developed and

applied for the two-particle transfer operator in this model.

I. INTRODUCTION

Boson expansions and models have been largely used in
the last years for the description of the bosonic branch of
interacting fermion systems. They have been usefu1 in ex-
plaining properties of vibrational, transitional, and rota-
tional nuclei. A simple two-level bosonic model has been
recently presented [1] for studying the competition be-
tween a condensate of pairs of like particles and a con-
densate of u-like clusters. The former has been tradition-
ally related to a superconductive description of nuclei as
pairs of nucleons coupled to J =0, T=1, have been used
in nuclear superfluidity [2,3] as well as in pairing vibra-
tions [4]. A condensate of a-like clusters, instead, may be
associated with deformed states [5—8].

This simple two-level bosonic model [1] presents a
phase transition between a condensate of pairs of bosons
and a condensate of bosons that strongly depends on the
relations between the number of bosons and degeneracies
of the two levels. In Ref. [9] a similar problem was stud-
ied, and it was concluded that simple bosonic models that
take into account pair condensation cannot be relevant in
the thermodynamical limit as the bosonic interaction that
is responsible for the saturation properties of the system
(i.e., that guarantees that the binding energy is propor-
tional to the number of particles) must contain a repul-
sive core that will turn unstable the condensate of pairs of
bosons. In Ref. [1] it was shown that this result depends
strongly on the degeneracy of the bosonic levels.

It has been shown [10,11] that in nuclei phase transi-
tions are smoother than the predictions of mean field
theories. The main reason [12] is that in the deformed re-
gions the matrix elements of "relevant" operators turn
out to be proportional to the degeneracies (that we will
call R), while in the normal or nondeformed regions they
are proportional to &R . In nuclei the difference between
these factors is not as noticeable as in large systems.
That is, because of the finiteness of the number of parti-
cles and degeneracies, even in the exact calculations, the
phase transition is not very sharp, and it is therefore

quite difficult to determine the critical value of the pa-
rameters.

One can therefore be sure that it is difficult to see the
interesting phase transition that appears in the referred
to model [1]. One may also say that the transition from a
boson condensate to a boson-pair condensate is smoothed
because there is no sudden onset of collectivity. Any or-
der parameter does not show discontinuities for a finite
number of bosons and finite degeneracy, but a simple way
to see clearly phase transitions is through the use of mean
field theories, as they yield results similar to the ones ob-
tained for infinite number of particles and degeneracies.

On the other hand, a study of a similar Hamiltonian
but for fermions [12] has shown that a time-dependent
mean field approximation provides the main dynamical
features of the problem. It can be applied for all values of
the coupling strength and number of particles and pro-
vides a description valid on both sides of the supercon-
ducting phase transition. And the more important prop-
erty is that the time-dependent variational approach
clearly points out the phase transitions through changes
in the phase-space trajectories. It is also possible to ex-
tract matrix elements for the relevant operators from the
variational solution.

The purpose of the present paper is to apply a time-
dependent mean field approximation to the above-
mentioned bosonic model in order to study the phase
transitions that occur in the system, not only for the
ground state, but also for higher excitation energies.
These excitation energies can be thought as a "critical
temperature" at which the phase transition occurs. We
also want to make a detailed comparison with the fer-
mionic case. An interesting question is if there is a scal-
ing property such that the time-dependent results become
exact in a certain limit, as happened in the fermionic case
[12].

In the bosonic case there are several parameters that
are candidates to be used as scaling parameters as they
may become large, such as the number of bosons and de-
generacies of both shells. In the fermionic case this free-
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dom does not exist because in order to have normal sys-
tems it is necessary that the particles fill exactly the
lowest shell (if not, the system is always superconductive).
In this paper we have studied this problem in detail.

A second problem that we want to study is how to ex-
tend to the bosonic case the procedure used in Ref. [12]
for evaluating the two-particle transfer-matrix elements.
In the bosonic case the time-dependent mean value of the
transfer operator is not any longer a periodic function;
therefore, it is not possible to use its Fourier series as in
the fermionic case. Instead, we use the information con-
tained in the peaks of the Fourier transform, being the
area of these peaks proportional to the corresponding
transfer matrix elements. This problem is discussed in
detail in Sec. IV.

In Sec. II we review the model studied and the results
obtained in Ref. [1]. In Sec. III we describe the time-
dependent mean field approximation applied to the sim-
ple model. The results obtained are shown and discussed
in Sec. IV.

sate of single bosons in the lower shell. As the interac-
tion strength increases, one expects a ground-state phase
transition to a condensate of a coherent combination of
pairs of conjugate bosons. This phase transition has been
found [1], but only for negative values of the interaction
parameter g, at g= —1, and in the limit R, ~ co, M ~ oo,
M/R

&
&& 1. For positive values of g, the ground state is

always a condensate of pairs of bosons, no matter how
large g (i.e., how small the interaction) may be.

This result was obtained through a variational treat-
ment of the Holstein-Primakoff image of the Hamiltoni-
an.

The most striking result obtained in Ref. [1] is that the
number of a-like clusters is very high. Even for values of
g as large as 2, one obtains a few percentage of a-like
clustering in the approximate wave function. As the
model Hamiltonian has similarities with the effective one
obtained for the Pb region [7], this may help to under-
stand the high values of the preformation factor for a
particles in this region [13,14].

II. MODEL III. TIME-DEPENDENT
HARTREE-BOSE-BOGOLIUBOV TREATMENT

For implementing the time-dependent variational ap-
proach, we first introduce the boson-pair creation opera-
tors

Ri

m)0
(3.1)

Ro

& r r
m')0

r'=
0

and the number operators

Rl
+r'-r—

(3.2)
Ro

&o= g r' r' +r' r'-
m'=1

With these definitions the Hamiltonian (2.1) is written as

(3.3)H =—(x, —N, ) —G(r, r,+r,r, ),

The model used consists of two nondegenerate shells of
degeneracies 2 and 2R and single-boson energies D/2—
and D/2. The two lower levels simulate the proton and
neutron pairing "bosons" that are used in the usual
description of pairing vibrations. A condensate of this
type of boson can be described as a superconductive sys-
tern. The 2R upper levels simulate two-particle excita-
tions formed by a proton and a neutron. If these proton-
neutron excitations interact via a pairinglike residual
Hamiltonian, one obtains collective pairs of proton-
neutron pairs that may have the same quantum numbers
as a particles. It has been shown [7] that this type of re-
sidual Hamiltonian has some resemblance with the
effective interaction for the ' Po nucleus.

In this work we will study a generalized version of this
model in which the level degeneracies are 2R0 and 2R &,

respectively. The Hamiltonian is therefore

R)

Z (r'.r.+r'.r.)--2

Ro—g (r' r' +r' r-
m'=1

—G g y y y', y' .+H. c. ,
m, m') 0

(2.1)

where y (y' . ) are boson creation operators in the level
1 (0) and G is the interaction strength.

The exact solution may be found by diagonalization
[1]. An important point when studying a simple model
like this is the selection of appropriate scaling parame-
ters. In Ref. [1], where Ro was equal to 1, it has been
shown that it is convenient to scale the energies with the
parameter GMQMR„where M is half the number of
bosons, whereas the appropriate dimensionless interac-
tion parameter is g=D/(GQMR

&
).

When the interaction is negligible the ground state of
the system will be approximately described by a conden-

~(i) I f
+ i (3.4)

and the total number of bosons is N =Np+N& =2M.
Studying the commutator algebra for the operators

(3.1) and (3.2), one immediately sees that the group that is
relevant for the two-level model described in the previous
section is SU(1,1)X SU(1,1). In Ref. [15] the phase transi-
tions that occur in a simple SU(l, l) model were exten-
sively studied, but the sort of phase transitions displayed
in that model does not correspond to the physical situa-
tion that we are studying in the present paper. The cor-
responding SU(1,1) generators for each level are

N;+R;
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They have the commutation relations, of SU(l, l),

[K" K" ]= —2K"

[It (i) It (i) ]
—It (i)

[It ( i) ~ ( i)
]
— It- ( i)

(3.5)

l 6) i
Gal.

(3.13)

The new variables cu; are canonical in the sense that
the generalized Poisson brackets [16] have the standard
form and that the variational equations look like the ordi-
nary Hamilton equations

The vacuum state ~0) is characterized by

rC") ~0) =0,
(3.6)

R;
rC,")~0) = ' ~0),

which identifies
~

0 ) as the minimum weight state of the
representation of SU(1,1)XSU(1,1) with weights R;/2.
The coherent state in this representation is

(3.7)

and it is a BCS-like state (not normalized). The equations
of motion obtained through the time-dependent varia-
tional principle with this state are equivalent to the
so-called time-dependent Hartree-Bose-Bogoliubov
(TDHBB) equations. To obtain them one has to use the
variational principle appropriate for non-normalized
states [16]with an action defined as

(3.8)

COpCOp+ CO
~

CO
~

m =
M

V =-,'(Vo+m(»

Cg )QP ) COp6)p

M

0'o)

(3.14)

where ()o,. =arg((o, ). Noting that o);co; is the mean num-
ber of pairs in level i, one gets that m is conserved, m = 1,
and that the range of n is —1 ~ n & 1.

The energy function (3.11) becomes

and its Hermitian conjugate.
The dynamical problem has two degrees of freedom,

the complex variables cop and co, . Therefore, the ex-
istence of two constants of motion, the energy and num-
ber of particles, makes the system integrable. The most
adequate variables for the integration are

(z,z, z,z, )=(I—z,z, ) '(1 —z, z, ) (3.9)

and the mean values of the operators defined in (3.1) and
(3.2) are

and use
~ g) = ~zoz, ).

The calculation of the overlap and mean value of the
Hamiltonian is a well-known calculation using group
theory [16]. The overlap is given by

&=DMn —GM R, + (m+n)M
2

X Ro+ (m n)—M

X (m n)' c—os(2a),

and the equations of motion are (gj*=&/DM)

(3.15)

( $)
1 —ZZ

m-
Bcp

=0,

1 —ZZ
(3.10) am

(3.16)

ZZ
(X; ) =2R;

1 ZlZl

Consequently, the mean value of the Hamiltonian (3.3) is

A=D R,
ZJZi

1 ZJZj

ZpZQ
Rp

1 ZpZQ

ZpZ] +ZpZ&—GRpR )
(1—Z()Z() )(1—Z(z) )

(3.1 1)

R;
1 —ZZ

1/2

Z ~ (3.12)

Although all calculations could be performed in terms
of the variables Z;, Z;, it is more convenient to introduce
new variables which are canonical [12,17]. This is done
with the transformation

A-
Bn

IV. RKSUI.TS AND DISCUSSION

The TDHBB results are obtained solving Eqs. (3.16).
However, the trajectories are best represented implicitly
in the phase plane (n, a) as constant-energy curves
&=const. It is clear from expression (3.15) that the ap-
propriate scaling to be used depends on the relation be-
tween the number of pairs of bosons M and the degenera-
cies Ro and R(. In the case considered in Ref. [1]
(Ro = 1, M (R ( ), it is convenient, as already mentioned,
to scale the energies with the parameter GMQMR(,
whereas the corresponding interaction parameter is
g=D/(GQMR, ).
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The energy function (3.1S) becomes (fixing m = 1)

GM +MR i

=gn — 1+ (1+n)M
2R1

aX +—(1—n)
M 2

1/2

1/2

X(1 n—)'i cos(2a) . (4.1)

It is also interesting to consider a symmetric model, as
the fermionic one studied in Ref. [12], in which
Ro =R, =R. The appropriate energy scaling for M & R
is GMR with an interaction parameter defined as
E=D/GR. Equation (3.1S) becomes

2 2 i1/2

X(1—n )' cos(2a) . (4.2)

Since we are working with bosons, the number of pairs
M may be greater than the degeneracies Ro and R1. For
studying the limit M ))Ro, M ))R1, the appropriate en-

ergy scaling is GM with an interaction parameter
g=D/GM and an energy function

1/2 1/2
R1 1+n
M 2

Ro 1 —n+
M 2

X(1 n)' co—s(2a) . (4.3)

Comparing the exact ground-state results obtained by
diagonalizing the Hamiltonian (2.1) with the TDHBB en-
ergies, one concludes that the latter tend to the exact en-
ergies for large number of bosons and large degeneracies.
In the fermionic case it has been shown [12] that there
exists a scaling property such that the time-dependent re-
sults provide a universal (i.e., degeneracy-independent)
curve to which the exact energies converge for large de-
generacies. For the bosonic model studied in the present
work, this is not the case, as the limits provided by
TDHBB for diferent relations between the number of bo-
sons and degeneracies of the levels correspond to
diA'erent energy scalings. This is clearly seen from Eqs.
(4.1)- (4.3).

Analyzing the minimum value of the scaled energy 8
as a function of the interaction parameter (g, E, or g, de-
pending on the case considered), one may determine if
there exists a ground-state phase transition from a con-
densate of single bosons in the lower level (normal state)
to a condensate of a coherent combination of pairs of
conjugate bosons (superconductive state). The normal-
state energy is @„=—~g~ (or 8„=—

~E~ or @„=—I(I).
If the minimum value of 6 is smaller than 6'„only for in-
teraction parameters up to a certain value g„one says
that a ground-state phase transition occurs for that criti-
cal interaction parameter g, . For a fixed value of the in-
teraction parameter, the energies below D„correspond to
superconductive systems. Similarly, energies above —8„

also correspond to superconductive systems. Conse-
quently, normal systems are only found in the energy re-
gion 8„&8 & —6'„.

In the case considered in Ref. [1], when the energy
function is given by (4.1), a ground-state phase transition
is found at g, = —+1+M/R, for M~ co, R, ~ce,
M &R1. For positive values of the interaction parame-
ter, no ground-state phase transition occurs. These re-
sults coincide with the ones obtained in Ref. [1]. In the
symmetric case in which Ro=R1=R, no ground-state
phase transition is found for M & R. On the other hand,
when the number of bosons is greater than the degenera-
cies of the levels, analyzing Eq. (4.3), one finds two
ground-state phase transitions, one for positive values of
the interaction parameter g and the other for negative
values. The positive critical strength is

g, =Q 1 +R o /M, and it is obtained in the limit
R 1 /M ~0, whereas for negative values one gets
g, = —Ql+R, /M in the limit Ro/M~O. Therefore,
in the symmetric model Ro=R1=R, the ground-state
phase transition only occurs if M))R. Performing a
similar analysis in the symmetric fermionic model (cf.
Ref. [12]), the result obtained is quite different. In this
case the ground-state phase transition only occurs in the
middle of the shell, i.e., for M =R.

The phase-space trajectories n (a) obtained for fixed
values of the energy 6 given by (4.1) are shown in Fig. 1

for R 0
= 1 R 1

=500, M =50, and interaction parameter
/=0. 3. Two different kinds of trajectories are observed.
The closed ones correspond to superconductive systems
[12], and they may be interpreted as vibrations around a
well-deformed minimum. The open trajectories, instead,
may be associated with normal systems. As in the fer-
mionic case [12], the superconductive system becomes
normal when the excitation energy increases. This phase
transition and also the ground-state one are clearly point-
ed out in the TDHBB description by a change in the tra-
jectories behavior. Similar results are obtained for other

1.0

0.5

0.0

-0.5

0

FICx. 1. Phase-space trajectories for M =50, Ro = 1, and

R, =500 for equally spaced energies with (=0.3.
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values of the parameters and also in the other cases con-
sidered in the present work in which the energies are
given by (4.2) and (4.3).

The excitation energies in which the phase transition
between both types of orbits occurs are shown in Fig. 2 as
functions of the interaction parameter. Figure 2(a) corre-
sponds to the same case shown in Fig. 1, whereas Figs.
2(b) and 2(c) correspond to the cases in which the ener-
gies are given by (4.2) and (4.3), respectively. It is to be
noted that the appearance of a second phase transition in
a higher excitation energy in which the system turns to
be superconductive once again is due to the fact that the
residual Hamiltonian considered has only off-diagonal
terms. The upper curve corresponds to the maximum ex-
citation energy in the system. These results agree with
the above discussion in which we concluded that the nor-
mal systems are only found in the energy region

The ground-state phase transitions analyzed before are
clearly observed. In Fig. 2(a) only one ground-state phase
transition appears at g= —1, in Fig. 2(b) there is none,
and in Fig. 2(c) there are two. One may summarize the
results obtained relating the existence or not of a super-
conductive ground state with the ratio I/R;. When this
ratio is small, the system has always a superconductive
ground state, while when it is large, the system has a nor-
mal ground state for small interaction.

Finally, we have calculated the two-particle transfer-
matrix elements, both exactly and within the TDHBB ap-
proach. Assuming that both levels have a similar radial
dependence, the two-particle transfer operator may be
defined by I o++I t+ [see Eq. (3.1)]. Its exact matrix ele-
ments are evaluated using

~ ~
~ ~ ~ ~ ~ ~ '~

M+2—

n
n-1

0 0.5
SCALED ENERGY

FIG. 2. "Phase diagrams" for the different cases studied. In
(a) M =50 Rp= 1 and R

&
=500 (b) 1V =Rp=R

&
=50; and (c)

M = 5000, Rp =R
&
=50. In each case the appropriate scaled in-

teraction parameter is displayed.

FIG. 3. Matrix elements of the two-particle transfer operator
for I=50, Ro = 1, R, =500, and g= —0.5 as functions of the
scaled energy D. The dots represent the exact results, and the
values obtained with the Fourier analysis are shown as solid
lines. The labels to the lines are explained in the inset.
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&X;+2ll,+ le; &
= R;+X;

2

R;+X,
2

+1

R, R; —1
2 2

1/2

(4.4)

f (t) 1 . . 2Rp= —e'~ e ' (m —n) +m n—
M 2 M

T

2R)+e' (m +n) +m +n
M

1/2

(4.5)

The time dependence of n, a, and cp is obtained in-
tegrating the equations of motion (3.16) for a given ener-

gy e. Iff (t) is periodic, of period T(6 ), its Fourier com-
ponents

f ( g) e Ik(2vr/T)tf (t)dt
1 T

T 0
(4.6)

may be compared with the exact two-particle transfer-
matrix elements. This procedure is the one that was used
in the fermionic case.

and the eigenfunctions obtained from the exact diagonali-
zation of the Hamiltonian.

The TDHBB matrix elements are evaluated, as pro-
posed in Ref. [12], from the time-dependent mean value
in the state which is a solution of the variational equa-
tions at a certain energy 8. Using (3.10), (3.12), and
(3.14), this mean value is written as

Unfortunately, in the present case, the period of y is
not equal to the one corresponding to the trajectory
n (ct). As the function f (t) is not any longer periodic, we
propose, as a procedure for obtaining the approximate
matrix elements in this case, to perform the Fourier
transform off (t) that has been evaluated at the energy 6
corresponding to the TDHBB solution. This Fourier
transform has only few peaks (in general, we find at most
three peaks that are noticeable over the background), and
those peaks appear at energies that are related to the ex-
citation energies at energy C. The matrix elements can
be obtained from the areas of the peaks. We have
checked that in the fermionic case, where the function
f (t) is periodic, this procedure yields the same results as
the ones obtained in Ref. [12].

In Fig. 3 we display the matrix elements of the two-
particle transfer operator for M=50 RO=1 R) =500,
and g= —0.5 as functions of the scaled energy 6'. The
dots represent the exact results, and the values obtained
with the Fourier analysis are shown as solid lines. The
labels of the lines are explained in the inset.

The nice agreement between the exact and approxi-
mate results supports the recipe that we have developed
for the evaluation of matrix elements when using time-
dependent variational solutions. It must be noted that
this recipe can be used for any time-dependent variation-
al problem and provides therefore a solution to a long-
standing problem [18].
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