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Pion-proton bremsstrahlung calculation and the "experimental" magnetic moment of 6++(1232)
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A bremsstrahlung amplitude in the special two-energy-two-angle (TETAS) approximation, which is
relativistic, gauge invariant, and consistent with the soft-photon theorem, is derived for the pion-proton
bremsstrahlung (m+py) process near the 6++(1232) resonance. In order to take into account brems-
strahlung emission from an internal 6++ line with both charge and the anomalous magnetic moment A,q,
we have applied a radiation decomposition identity to modify Low s standard prescription for construct-
ing a soft-photon amplitude. This modified procedure is very general; it can be used to derive the
TETAS amplitude for any bremsstrahlung process with resonance. The derived TETAS amplitude is ap-
plied to calculate all a+ay cross sections which can be compared with the experimental data. Treating
A,z as a free parameter in these calculations, we extract the "experimental" magnetic moment of the
b++, pz, from recent data. The extracted values of pz are (3.7—4.2)e/(2m~) from the University of
California, Los Angeles data and (4.6—4.9)e/(2m~) from the Paul Scherrer Institute data. Here, m~ is
the proton mass. These values are smaller than the value 5.58e/(2m~), the "bare" magnetic moment
predicted by the SU(6) model or the quark model, but they are close to the value 4.25e/(2m~ ) predicted
by the modified SU(6) model of Beg and Pais and to the value (4.41 —4.89)e/(2m~) predicted by the
corrected bag-model of Brown, Rho, and Vento. Using the extracted pz as an input for calculating
~+py cross sections, we show that the overall agreement between the theoretical predictions calculated
with the extracted p& and the experimental measurements is excellent. This agreement demonstrates
that the TETAS amplitude can be used to describe almost all the available ~+py data. Finally, we also
treat A, z as a complex quantity, A,&=A,& +i A,l, in order to estimate the contribution from the imaginary
part Al. The best fit to the data gives XI =0, independent of the choice of A,&. This fact implies that fur-
ther dynamical corrections to the TETAS amplitude from the open pion-proton channel are small.
Therefore, there is a good reason to believe that the "experimental" magnetic moment, which is very
close to the "bare" magnetic moment predicted by the modified SU(6) or the quark model with correc-
tions, should be nearly equal to the "effective" magnetic moment.

I. INTRODUCTION

The pion-proton bremsstrahlung (ir—
py ) processes

near the b, (1232) resonance have been thoroughly studied
both experimentally [I—5] and theoretically [6—29]. In
addition to the investigation of the off-shell pion-proton
interaction, interest in these processes was mainly
motivated by the hope that these processes could be used
to probe the electromagnetic properties of the 6 reso-
nance. Moreover, owing to an unexpected large
discrepancy between the experimental measurements and
most of the theoretical calculations [2,25,28], much atten-
tion has also been focused on a search for a fundamental
theory which can be used to describe the experimental
observation.

We will confine our studies to the m+py process in this
paper. Two experimental groups, the UCLA group [2]
and the SIN group [5], have systematically measured the
m+py cross sections which can be used to determine the
magnetic moment of the 6+ resonance, p&. To extract

p& from the ~+py data, one needs a valid bremsstrah-

lung amplitude which takes into account photon emission
from the internal 6++ line. Such an amplitude can be
derived, in principle, from a dynamical model or from a
fundamental theorem, known as the soft-photon theorem
or the low energy theorem for photons. The theorem was
first derived by Low [30] and was extended later by Adler
and Dothan [31]. Various soft-photon amplitudes, which
are consistent with the soft-photon theorem, have been
constructed by using Low's prescription [30]. Low's
prescription involves the following steps: (a) Obtain the
external amplitude, M„' ', from four external emission di-
agrams and expand M„' ' in powers of the photon energy
K. (b) Impose the gauge invariant condition,
M' 'KP'= —M„' 'K", to obtain the leading term (order
K ) of the internal amplitude, M„''. (c) Combine M„'
and M„'' to obtain the total bremsstrahlung amplitude,
M„. The first two terms of the expansion of M„, which
are independent of the off-shell effects, define a soft-
photon amplitude, M

The most important feature of a soft-photon amplitude
is that the amplitude can be calculated exactly in terms of
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the corresponding elastic amplitude and electromagnetic
constants of the participating particles. We emphasize
here that the soft-photon amplitude is an approximate
amplitude which depends only on the complete elastic
amplitude since the exact bremsstrahlung amplitude
without any approximation, which is almost impossible
to obtain, involves other terms which cannot be ex-
pressed in terms of the elastic amplitude. However, this
does not mean that M„can be uniquely defined. Since
the soft-phonon theorem states nothing about the energy
and the scattering angle at which the elastic amplitude
should be evaluated, an infinite number of soft-photon
amplitudes can be constructed [25]. Depending upon
how many energies and scattering angles are involved,
these amplitudes can be divided into the following classes
[25]: the one-energy-one-angle (OEOA) amplitudes, the
one-energy-two-angle (OETA) amplitudes, the two-
energy-one-angle (TEOA) amplitudes, the two-energy-
two-angle (TETA) amplitudes, and other amplitudes.

Recent studies [25,28,29,32] show that bremsstrahlung
cross sections near a scattering resonance, such as m

+—
py

cross sections near the 5 resonance or p
' Cy cross sec-

tions near either the 1.7-MeV resonance or the 0.5-MeV
resonance, can be used to di6'erentiate various soft-
photon amplitudes. Thus, the combined m.—p y and

p
' Cy data can provide a very sensitive test of the validi-

ty of various soft-photon amplitudes (and other theoreti-
cal approximations and models). In fact, it has been
found that the OEOA and OETA approximations have
failed to adequately describe the combined data in the
resonance region. The data can only be described by spe-
cial two-energy amplitudes (i.e., those amplitudes which
depend upon two special energies, the initial energy Qs;
and the final energy +sf ). Moreover, some special two-
energy-two-angle (TETAS) amplitudes are found to give
the best fit to the combined data. Here, the TETAS am-
plitudes are those soft-photon amplitudes which depend
upon two special energies, Qs; and +sf, and two special
scattering angles determined by t~ and t (Here, t is. the
four-momentum transfer squared, and s, , sf, t, and tq

will be defined in the next section. ) In other words, TE-
TAS amplitudes depend only upon the elastic T matrix,
evaluated at two special energies and two special scatter-
ing angles, but they are free of any derivative of the T
matrix with respect to energy or scattering angle (or with
respect to s or t).

The TETAS amplitudes have been investigated by
Fischer and Minkowski [13],by Heller [23], and most re-
cently by our group [28,29]. However, none of the ampli-
tudes obtained by these authors can be used to determine

pz from the ~+py data. As explained in Ref. [29],
bremsstrahlung emissions from the internal 6++ line in-
volve two sources: One contribution comes from the
charge of the b, ++ and another contribution is due to the
magnetic moment of the 6++. Low's prescription can be
applied to find an expression for the charge contribution,
i.e., the charge contribution can be obtained from the
external amplitude by imposing the gauge invariant con-
dition. (The expressions for the charge contribution ob-
tained by Fischer and Minkowski, Heller, and our group
are all identical even though the expressions are written

in different forms. ) But it is very difficult to obtain an ex-
pression for the magnetic contribution by using Low's
prescription. This is because, as pointed out in Ref. [29],
the magnetic contribution involves an important term
which depends upon the anomalous magnetic moment of
the 6, A, &, and this A,&-dependent term is separately gauge
invariant. (If Mii' is the A.&-dependent term which is sepa-
rately gauge invariant, then we have M~&K„=O. In that
case, M~& cannot be derived from the external amplitude
by imposing the gauge invariant condition. Imposing the
gauge invariant condition to determine the leading term
of the internal amplitude is the most important step of
Low's prescription. ) This explains why a soft-photon am-
plitude which takes into account photon emission from
the b, + (including both the charge contribution and the
magnetic contribution) cannot be constructed by using
Low's standard prescription. Since the amplitudes ob-
tained in Refs. [13,23,28] do not have the A, t,-dependent
term, these amplitudes cannot be used to extract A,z or pz
from the m+py data.

The main purposes of this paper are the following.
(i) To present the details of the derivation of the TE-

TAS amplitude for the ~+py process near the 5++ reso-
nance: This amplitude, which takes into account the
bremsstrahlung emission from the internal b+ line with
charge and anomalous magnetic moment k&, has been re-
ported in Ref. [29] without derivation. Since Low s origi-
nal prescription cannot be used to obtain an internal con-
tribution which is separately gauge invariant, we have ap-
plied a radiation decomposition identity (a generalized
Brodsky-Brown identity) [33] to modify Low's prescrip-
tion. The first step in this modified procedure is exactly
the same as Low s original prescription, i.e., to obtain the
external amplitude M„and to expand it in powers of
photon energy K. The second step is to obtain an inter-
nal contribution M„, which represents photon emission
from the internal 5++ line, and to split M„ into four
quasiexternal amplitudes by using the generalized
Brodsky-Brown identity. The third step is to obtain an
additional gauge invariant term M„by imposing the
gauge invariant condition, M„K"= —M„K". Here,
M =M +M . The last step is to obtain the total
amplitude M„by combining M„with M„:
M =M„+M„. The first two terms of the expansion of
M„, which can be written in terms of the complete elastic
T matrix, define the TETAS amplitude. It is this
modified procedure which has been used to derive the
TETAS amplitude for the ~+py process.

(ii) To extract the "experimental" magnetic moment of
the 6++, p&, by fitting to 85% of the available m+py
data: We present the values of p& which have been ex-
tracted from 45 sets of the UCLA data [2] and 3 sets of
the SIN data [5] by using the TETAS amplitude derived
in (i). We show that the extracted values of pt„which are
smaller than the "bare" magnetic moment predicted by
the SU(6) model [34] or by the quark model, are in good
agreement with the "bare" magnetic moment predicted
by a modified SU(6) model with mass corrections [35] or
by a corrected bag-model [36]. We have used the term
"experimental" magnetic moment to describe the result
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obtained in this work for the following reason: The mag-
netic moment of the 6++ obtained in this work is based
upon the TETAS amplitude. In deriving this amplitude,
we have ignored the emission from the internal pion-
proton loop (or the open pion-proton channel). In a re-
cent study using a nonrelativistic dynamical model, Hell-
er et al. [26] have reported that an "effective" (or
dressed) magnetic moment of the b, + can be defined if
the contribution from the loop diagrams is involved.
This effective moment, which is different from the "bare"
moment predicted by the SU(6) or the quark model, is a
complex and energy-dependent quantity. Although these
authors have found that the imaginary part of the
effective moment is not negligible, the problem of
defining and calculating the effective moment for an off-
shell unstable 6+ particle remains unsolved mainly be-
cause they were unable to demonstrate that their model
could be used to describe most of the m+py data. (Gen-
erally speaking, the model-dependent approach is more
complicated than the soft-photon approach. The MIT
model, for example, involves a set of internal emission di-
agrams and some of these diagrams are very difficult to
calculate. Since the calculated ~+py cross sections are
found to be very sensitive to the precise form of the inter-
nal amplitude [28], a successful model-dependent calcula-
tion requires not only a good model but also an accurate
method (or approximation) of calculating the whole set of
internal diagrams. ) The problem needs further study.
Now, it is obvious that the effective moment cannot be
calculated to arbitrary precision in any model-
independent calculations since it is difficult to take into
account the loop contribution in the soft-photon approxi-
mation. This is why the magnetic moment of the 6++
extracted from the m+py data by using the TETAS am-
plitude is an approximation with theoretical errors to the
effective moment. Since it is also difficult to identify our
magnetic moment with the "bare" moment, we have
therefore used the "experimental" magnetic moment to
describe the result obtained by us. However, we have
also performed another experimental test by treating A,z
as a complex quantity, Xz =A,z + i A,l, in order to estimate
the contribution from the imaginary part kl. Our best fit
to the data gives A,l =0, independent of A,~. Since a small
value of XI implies a small contribution from the loop di-
agrams, this perhaps surprising finding does provide a
good reason for us to believe that the "experimental"
magnetic moment is very close to the "effective" mo-
ment.

(iii) To demonstrate that the TETAS amplitude derived
in (i) can be used to describe almost all the available data
and hence it is valid in the energy region near the
b, ++

( 1232) resonance: Using the TETAS amplitude de-
rived in (i) and the values of pz extracted in (ii) from the
experimental data, we show that the overall agreement
between theory and experiment is excellent. To the best
of our knowledge, such an agreement has not been ob-
tained previously. We also present some theoretical
justification and physical meaning for the TETAS ampli-
tude obtained in Ref. [28] (i.e., the amplitude
M„(TETAS) given by Eq. (16) in Ref. [28]). Based on the
theoretical justification and the fact that the amplitude

obtained in Ref. [28] works so well for the m+py process
near the 5++ resonance, we can argue that the magnetic
moment of the b, ++ should be about 4.25e/(2m~), the
value predicted by the modified SU(6) model of Beg and
Pais [35]. Using p&=4. 25e/(2m ) as an input for the
TETAS amplitude derived in this work, we show that the
calculated ~+py cross sections are very close to those
cross sections calculated using the amplitude obtained in
Ref. [28].

The plan of this paper is as follows: In Sec. II, the
most general TETAS amplitude, MmE+As is derived for

+ p
the m py process near the b.++(1232) resonance. In
Sec. III, the "experimental" magnetic moment of the
6++ is extracted from the UCLA data and the SIN data.
A comparison between the experimental ~+py spectra
and the calculated spectra is presented in Sec. IV. Sec-
tion V is devoted to further studies and discussions. Two
important issues are studied and discussed in this section:
(a) We explain why the TETAS amplitude obtained in
Ref. [28) works so well. (b) Treating A,z as a complex
quantity, A,&=A.~+iA,~, we show that the best fit to the
UCLA data (at 298 MeV for counters Gl —G10) gives
A,1=0, independent of the choice of A,z. Our conclusion
is given in the last section. There is an Appendix where
the detailed expressions for some off-shell terms are
given.

II. BREMSSTRAHLUNG AMPLITUDE

This section is divided into three subsections. In Sec.
IIA, we discuss the m+p elastic scattering process [Fig.
1(a)]. We define the general form for the m. +p elastic T
matrix, T, which is an important input for bremsstrah-
lung calculations. In the energy region of the
resonance, a tree diagram given by Fig. 1(b),
~+p —+5++—+m+p, becomes the dominant elastic dia-
gram. We derive the explicit expression for the T matrix
corresponding to Fig. 1(b), T, which will be used to define
a TETAS amplitude M„ for the m+py process at the
tree level. In Sec. IIB, we treat Fig. 1(b) as a source
graph to generate m+p bremsstrahlung diagrams at the
tree level [Figs. 2(a)—2(e)]. By using a generalized
Brodsky-Brown identity [33] for photon emission from
the internal b, ++ line [Fig. 2(e)], we derive the expression
for M„ in terms of T and the electromagnetic con-
stants of m+, p, and 6++. The amplitude M„plays a
vital role in our derivation of a more general TETAS am-
plitude, M, for the ~+py process. In Sec. II C, we
use the modified Low procedure to derive the amplitude
M which can be written in terms of the general
form of the elastic T matrix T and the electromagnetic
constants of m+, p, and 6++. In deriving M, we
have imposed a condition that M„reduces to
M„ in the energy region of the 5++ resonance.

A. m p elastic scattering T matrix

We consider the m+py process,

~+(q/')+ P (pI') +a+(qfl')+ P (p&~)+—y(.k"),
where qf'(qg) and pf'(pfl") are the initial (fina) four-
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q~+p,~=qfI'+pfI'+ k" . (2)

In the limit when k approaches zero, the m+py process
reduces to the corresponding m+p elastic scattering pro-
cess,

m+(qt')+P(p/')~a+(qg . )+P(pg ),
where

(3)

pf = 11m pfk~O

qf"= lim qf .
k~O

momenta of the pion and proton, respectively, and k" is
the four-momentum of the emitted photon. These four-
momenta satisfy energy-momentum conservation:

=m

are satisfied. Here m and m are the masses of proton
and pion, respectively. A half-off-shell T matrix is
defined if one of the external lines is off its mass shell.
For example, if q; Am, then we have a half-off-shell T
matrix which can be written as

(7)

We can write the m+p elastic T matrix in the standard
form

T(s, t)= T(s,—t, m„,m, rn, m )

= A (s, t)+ ,'(g;+—gf)B (s, t),
where

The energy-momentum conservation becomes

q,~+p,~=qj"+pf" .
and

s =(p;+q; ) =(pf+qf)

& =(pf -p;)'=(qf —
q; )' .

A diagram which represents the m+p elastic scattering
process is shown in Fig. 1(a). In this diagram, T
represents the ~+p elastic scattering T matrix. Although
we are interested in the TETAS amplitude which depends
only on the elastic (on-shell) T matrix, the exact brems-
strahlung amplitude without the soft-photon approxima-
tion involves off-shell T matrices. Thus, we have to show
how a TETAS amplitude which is independent of the
off-shell effects can be derived. All T matrices, on-shell
or off-shell, can be written in terms of six Lorentz invari-
ants as

2 2 2 2T(s, t,p;, q, ,pf, qf ) .

Here, s is the total energy squared and t is the momentum
transfer squared. For the m+p elastic scattering process,
the elastic T matrix depends only on two independent
variables, s and r, since all four external lines (legs) are on
their mass shells; i.e., the on-mass-shell conditions,

p- =p =mf p

If s and t are given (or if the incident energy and the
scattering angle are known), the amplitudes A (s, t) and
B (s, t) can be calculated in terms of m. +p phase shifts and
inelasticities, determined by the ~+p elastic scattering ex-
periments. The experimentally determined T matrix has
been used as an input for all bremsstrahlung calculations
using soft-photon amplitudes.

In the energy region of the b, ++(1232) resonance, the
Feyman diagram given by Fig. 1(b) is the dominant con-
tribution to the m+p elastic process and the photon emis-
sion from the intermediate 5++ line becomes significant
in that region. This diagram, which will be treated as a
source graph to generate photon emission diagrams at
the tree level, is important in our derivation of the TE-
TAS amplitude. The elastic T matrix corresponding to
Fig. 1(b) has the form

T=[gq7]G,.(p)[gq; ]

where g is the vr+pA++ vertex, p"=p,~+q,",

and
id (p)6 (p)=

p —M +' (10a)

&'(qt) p(pf)
m'(q~) p(pt)

d (p)=(p'+Mg) gp
——

ypy
1

1 2
3M yPPa y&P 3M' PPPa

+ (p M&)[yg —y~—+(/+M~)yzy ],
3M~

(a)

Tr'(q;) p(p;)
(10b)

and Mz is the mass of the 6++. In terms of s, t, p, , q, ,
Jf', and qf' Tean be written as

2 2 —2 —2T= T(s, t,p;, q;,pf, qf )

FIG. 1. (a) The graphic representation of the elastic m+p pro-
cess. (b) The one-particle s-channel exchange diagram (the
dominant elastic diagram in the resonance region) for the ~+@
process.

= A (s, t,p, , q, ,pf, qf )+ ,'(g, +gf )B(s,t,p, , q, ,p—f,qf ),

where
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2 2 —2 —2A(s, t,p, ,q;,pf qf)

'(M—.+mp) t—+q,2+qf' —'
2 (s pf'—+qf'}(s p—+q )

qI(s —p,. +q, )+(s —p,. ) (s —pI+qI)+ 2 (M~+m~) (12a)

~ 2

s —M~+l~
. —(Mz+m~) t+q;—+qI — (s —pI+q&)(s p; +—q; )

E

q; (s p&+—q&)+(s —p, ) (s —p; +q; )+ (Mz+m ) (12b)

and

2 2 —2 —2B(s, t p, , q, ,p&, qI)

lg

s —M&+is
t +q—; +q — (s

1
f 3M2

2s —3M ~+ qI 2m'
3M~

2s —3M ~
(s —PI+qI)+ (Mz+m )

6M~

(PI P(~+6

(12c)

lg
2 —t+q;+qq' q' (s

s M +lE 2 3

2s 3M'+
3M~

q 2m
2s —3M ~

(s —p;+q; )+ (Mz+m~)
6M~ 3M2

(12d)

In Eqs. (12a)—(12d), p, , q, , p&, and q& satisfy the on-
mass-shell conditions given by Eq. (6). Without imposing
these on-mass-shell conditions explicitly, the expressions
for A and B can be extended to define the half-ofF-shell T
matrix later.

8. TKTAS amplitude for the m py process at the tree level

Td=(gqg~)G~ (p')(gq; ) . (13d)

Here, p"=(q;+p;)", p'"=(q;+p; k)"=(qI+p—I)", and
G (p) are defined by Eq. (10a). It is easy to show that
u(PI, vg)T, u (p;, v;) and u(pg, vI)Tqu (p;, v() can be writ-
ten in terms of A and B [given by Eqs. (12a}and (12c), re-

As we have already mentioned, Fig. 1(b) will be used as
a source graph to generate photon emission diagrams at
the tree level. Five diagrams generated by Fig. 1(b) are
shown in Fig. 2. (We shall impose the gauge invariant
condition later to take care of the remaining contribu-
tions. } The first four Feynman diagrams [2(a)—2(d)]
represent the photon emissions from external pion lines
and external proton lines and the last Feynman diagram
[2(e)] represents photon emission from the internal b, ++
line.

From four external emission diagrams [2(a)—2(d)], we
can de6ne the following half-ofF-shell T matrices for ~+@
interactions (vr+p ~b, ++~m+p):

q, , (
Qg+K l

(a}

,Q&

g++
K

(b) (c)

P g

Q)+P) K

and

T.=[g(qf+k)']G,.(p)(gq; »
T& =(gq&~)G~ (p')[g(q; —k) ],
T, =(gq&~)G (p)(gq, ),

(13a)

(13b)

(13c) FIG. 2. Feynman diagrams for the m+py process at the tree
level. These diagrams are generated from the source graph, Fig.
1(b).
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spectively] as

u T, u = u [ A [s;, t~,p;, q, ,pf, b,, ]

+—,'(g;+gf+k)B[s, , t,p;, q;,pf, 6, ]]u (14a)

However the expressions for T,u (p; v;) and u(pf vf)Td
involve extra off-shell amplitudes:

T,u =
[ A [s, , tq, p, , q, , b,„qf]

uTbu =u
I A [sf&tp&pj &kj, &pf&qf ]

2 2 2

+—,'(g, +gf —k)B[sf tp p kb pf qf]]u
aIld

+—2(jjt;+jjtf )B[s;,t,p;, q;, A„qf ]

+ &'(pf+p mz )C fs;, tq, p;, q;, f&&,„qf ] ju (15a)

where

and

bb=(q; —k) =m —2q, k .

s, =(p, +q, ) =(pf+qf+k)

sf (pf +qf )=(p;+q; —k)

t, =(Pf —P;)',
b., = (qf +k) =m +2qf k,

(14b)
uTd —u [A[sf&t 5&d q&&&pf&qf]

2(gj gf )B[sf, tq, kd&qj &Pf &qf ]

+ ,' C [sf,—tq,b,d, q, ,pf, qf ](p; —k —
m~ )], (15b)

where

t =(qf —q;)

6,= (pf +k)2= m +2pf
.k,

=(p —k) =m —2p k

and the extra off-shell amplitude C has the form

~ 2

s M&+ig

2s —3M ~
Pl ~3M

2m'

—
2j(t;

2s —3M ~ 1
(mal+Ma)+ (s —m +m„)

3M~ 6M~

2s —3M~ j.
(mal+Ma)+ (s —m +m )

3M~ 6M~
(16)

The expressions for A and B in Eq. (15b) are given by
Eqs. (12a) and (12c), respectively, but the expressions for
A and B in Eq. (15a) are given by Eqs. (12b) and (12d), re-
spectively. Again, p;, q, , pf, and qf in Eqs. (14), (15),
and (16) satisfy the on-mass-shell conditions given by Eq.
(6). Since we are interested in the soft-photon approxi-
mation, the extra off-shell amplitude involving C will be
completely ignored later in our derivation of the TETAS
amplitude. (Justification for neglecting the extra off-shell
amplitude will be discussed again in the next section. )

From the expressions for T, (x =a, b, c,d) given by
Eqs. (14) and (15), we can see that T„depends on the
square of the invariant mass b,„(x=a, b, c,d) of the off-
mass-shell leg on which the photon emission occurs. As
k approaches zero, b, reduces to (mass) and T„reduces
to on-shell (elastic) T matrix. Since the TETAS ampli-
tude which we wish to derive depends only on the on-
shell T matrix [evaluated at four difFerent sets: (s;, t~),
(sf tj& ), (s;, tq ), and (sf, tq ) ], we must expand T„ in
powers of k. Keeping only terms to order k, we obtain

Ta
uT, u =u T(s, , t )+2qf.k

a

+''' u 7 (17a)

uTbu =u
d Tb

T(sf, t )
—2q, k + . u, (17b)

Tu=

aIld

8TyuT„=u T(sf, t ) —2p; k +Td, (sf, t )+aa„

(17d)

where

BT
T(s;, t )+2pf k +T„(s,, t )+ . . u,

C

(17c)
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T(s, , t )=A(s, , t, m, m, m, m )

+ —,
' (g; +ff +k)B'(s;, t, m, m, m, m ),

(18a)

the following relations:

u (pf, vf )[ i—Q, I'„][i/(gff +k m—
~ )]

= u (pf, vf ) [Q, (pf +Rf )„/pf .k], (21)

T(sf, t ) = A (sf, t, mz, m, m, m „)
+ —,

' (g; +gf —i|!)B(sf, t, m~, m, m~, m ),
(18b)

which describes photon emission by an outgoing proton
line with charge Q„anomalous magnetic moment A, ,
and momentum pg [Fig. 3(a)], and

[i/(P; —I' —m~ )]( i—QdI „)u (p;, v;)

(18c)

+ 2(g;+gf )B(sf, tq, mz, m, m, m ), (18d)

+—,
' (g, + fflf )B(s;, tq, m~, m, m, m ),

T(sf, t )= A(sf, tq, mz, m, mz, m )

= [—Qd(p;+R; )„/p;.k]u (p;, v; ), (22)

which describes photon emission by an incoming proton
line with charge Qd, anomalous inagnetic moment A~,
and momentum pf' [Fig. 3(b)]. Here, I „is the (on-shell)
electromagnetic vertex,

T„(s;,tq ) =—,
' (Pf + it —

m~ )C(s;, t,m, m, m ~m )

+ (pf .k )(graf +k' —m )
ac

C

(18 )
wltll

o p
= ' [rp 'r ]/2 .

I &=r„ik—ok, /(2m ), (23)

Td, (sf, tq ) =—,
' C (sf, t,m, m, m, m )(P,. —k' —m )

—(p;.k) (gf,
—k' —m ),BC

d
(18f)

and T,
'

and Td are defined by Eqs. (15a) and (15b), respec-
tively, but without those terms involving C.

The external scattering amplitude corresponding to the
four external diagrams [2(a)—2(d)] at the tree level can be
written in terms of the half-off-shell T matrices T„Tb,
T„and Td as

MfEf =u( v )
Q'qfI' T TMp —Q pf ~Vf
qf q;.

Q, (pf +Rf )„
pf .k

X Gfi (p)[gq; ]u (p;, v; ), (25)

where p&=q/'+pf', p'"=p" k&=qg+p—P, Gz (p') is the
propagator for the b.++ given by Eq. (10a), and I „~e" is
the electromagnetic vertex for the 5++ (in the Rarita-
Schwinger formalism but neglecting the contribution
from the electric quadrupole and magnetic octupole mo-
ment of the b, + ),

It is easy to show that R;„and Rf„are separately gauge
invariant, i.e., they satisfy

R;.k =Rf-k =0 . (24)

The internal amplitude (at the tree level) M„' ' corre-
sponding to Fig. 2(e) has the form

e M u (pf f )[gqJ]G (p')[ —'(Qb+Qd )I „e"]

Qd(p;+R; )„
Td u(p;, v;),p;.k (19) r %f'= f.+ gg g f'

ft.'1 r—f — (r &—t' -rt'E )
—.

2M 3 3

e"R;„=—,'[d, k']+ I[8,k],P;],8m
(20a)

and

where Q, =
Qb represents the charge of pion, Q, =Qd

represents the charge of proton, and R;„and Rf„have
the form

(26)

In Eq. (26), A,z is the anomalous magnetic moment of the
The amplitude M„' ' can be decomposed into four

quasiexternal amplitudes by using a generalized
Brodsky-Brown decomposition identity [33]. To do this,
we introduce an operator A ~(p),

e"Rf„=,'[tt', k]+ [[g,—k],pf] . (20b)

In Eqs. (20a) and (20b), s~ is the photon polarization, A,

is the anomalous magnetic moment of proton, and we
have used [X, Y]—=XY —YX and [X, Y]—:XY+ YX
(Note that R, , Rf„, and R„[Eq. (43)] defined in this pa-
per are slightly difFerent from those defined in Ref. [29].
There is a sign difference between the two definitions
since [g,k']= —[k,ft] )The factors . [Q,(pf+Rf )„/pf k]
and [—Qd(p;+R;)„/p, k] in Eq. (19) are obtained from

proton pf

proton pl K

proton p,+K

O pt'otoA li p;

(b)

K

Q++ pt+K

(c)

g++ P-K K

FI&. 3. photon emission by an incoming proton (b++) or
outgoing proton (6++ ).
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A ~(p)=(P —m~)g ~ ,
'—(y—p~+y~p )

+ —,
' y (P +Ma )y~,

which satisfies the condition

(27)

d (p)A ~(p)=(p —Mz)g~, (28)

where d (p) is defined by Eq. (10b). It is easy to prove
the following useful relations:

~p dc~(p )
r„%"d& (p)= [I „~e"d& (p)+A ~(p')r„& Ep'] g~—r„& c", , (29)

d&(p) d&( )
(30)

and

d~ (p') d& (p) d (p') d (p)
(p) d—( ')I PE" =2( ' k) I

p c"rfg p IYf g
(31)

Combining Eqs. (29), (30), and (31), we find

d (p') d& (p) 1 d~ (p')
; ', [r„-~;d,.(p)+A-&(p )r„,:]

dp (p)
[d .(p )r %~+r„,.E~A ~(p)] (32)

which gives the following decomposition identity:

OO

G,.(p )(Q, r„%~)G,.(p) =iG,.(p ) ', +-
2p'. k

where

o..=r„.%~d,.(p)+A P(p )r„,.e,
o,'~=d,.(p )r„.%~+r„,.eA i'(p),

and

Qg =Qb+ Qd =Q. +Q, .

Qqo'~
iGp (p),

2p -k
(33)

(34)

(35)

It should be pointed out that the factor [Q&o /(2p' k)] in Eq. (33) can also be obtained from the following expres-
sion,

id& (p) qou'"(, X)[—iQ (r %~)] ~ =u"'(
lT P ~ 5 P 2 M2 + P ~ 2 t'k

p p '
(37)

which describes photon emission by an outgoing b, line with charge Qz, anomalous magnetic moment A, z, and momen-

tum p"=(p'+ k)". [See Fig. 3(c).] Here the vector-spinors u ' ' satisfy the following conditions:

and

u ' '(p', k)(gf' —M~ ) =0,
u' '(p', X)(p' —M~)=0,
u'."(p,X)y =0,
u' '(p', A, )p' =0,

u' '(p', A, lA ~(p')=0 .

(38)

The proof is very simple. The left-hand side of Eq. (37) can be rewritten in the form
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u' )(p', A, )Q [r„~EI'd& (p)+A ~(p')r„& e" A— ~(p')r„p~E" ]
p —M

=u' )(p', A, )Q&[0 —A ~(p')I „p E"]
p —M

Since p =(p'+k) =Mz+2p'. @and u' 'A ~=0, we obtain Eq. (37). Similarly, we can also show that

(39)

id' (p')
, [ —iQ, r„.%~]u,")(p„~)=-

p

ip

u~~~)(p, ,X),
2p -k (40)

which describes photon emission by an incoming b, line with charge Qz, anomalous magnetic moment A.z, and momen-
tum p". [See Fig. 3(d).]

If we substitute the expression for r„~E"given by Eq. (26) into Eqs. (34) and (35), we find

and

0 =(2p' e+2R e)g +E (41)

0'~=(2p. E+2R e)g ~+E'~,

where the expressions for E and E'~ are given in Appendix A and

(42)

R.E= —,'[g, l]+ I[K,k'],p] .
8M~

In Eq. (43), p"=(p;+q; )" and we have used [X,Y]—:XY —YX and IX, Y]—:XY+ YX. Again, it is easy to verify that
R" is separately gauge invariant, R k =0. If we compare Eq. (43) with Eqs. (20a) and (20b), we find that R; e, Rf e,
and R c, can be written in the same form. Inserting Eq. (33) [with the expressions for 0 and 0' given by Eqs. (41)
and (42), respectively] into Eq. (25) and remembering that charge is conserved [Eq. (36)], we obtain

pM(h) —
( ) Q

p 'e+R 'E,
T Q T p 'E+R 'e

p' e+R e —
Q

— p e+R.e
c ~ k c d u (p, , v; )+u (pf, vf )[E D]u (p;, v.; ), (44)

where

e D=Q, , (gki')G (p)(gq; )+Qb(gqf~)G~ (p')(gk )p E+R 'E, p.c+R -c
p'. k p.k

G (p')E Ep~Gp (p)
+(Qb+Qd)(gqf') ', — '

(gq; ) . (45)

Since Q, =Qb and Q, = Qd, it is easy to show that the leading term in Eq. (44) (i.e., the amplitude M„' ' without those
terms involving E R and E D ) is of order k and is independent of k" when k~0. Thus M„' ' has no kinematic singu-
lanty at k =0.

Now let us add the internal amplitude M„' ' given by Eq. (44) to the external amplitude M„' ' given by Eq. (19). We
find

e~'"'=+~' '+&~~"'
P P P

= c,"M„+u (pf, vf ) [E" D„)u (p;, v; ),
where

(46)

MTETA —
( ) Q

fP—Q pf ~Vf gf'
(pf +qf +R)„q;„ (p;+q;+R)„

(p;+q;) k

(pf +Rf )„
+Q,

pf -k
(pf +qf +R)„(p;+R; )„

T, —QdTd
(pf+qf ) k p; k

(p;+q;+R)„
(p;+q;).k

u (p, ,v;),

which is defined in terms of four half-o6'-shell T matrices, T„T&,T„and Td. Although M is gauge invariant,
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M TETAk p Op

the amplitude M' ' does not satisfy the gauge invariant condition sincep

(48)

D„k"%0 .

That M' ' is not gauge invariant is not surprising because there are other Feynman diagrams for m py process whichp
are not shown in Fig. 2. To obtain the total bremsstrahlung amplitude M„which is completely gauge invariant, we
have to impose the gauge invariant condition:

M =M' "+M'"
p p p 7

M k~=(M'E" +M'")k~=0
p p p

(49)

(50)

(51)

where

The additional gauge term M„' ', which is required to make the total amplitude M„gauge invariant, can be determined
from the gauge invariant condition, Eq. (50). Such calculations are very lengthy and the final expression for M„can be
written as

pM —pM TETA + pMp=C p

(pf+qf)t'(E k~ s~k —)+R sk~
E"M„"=u(pf,vf ) Q, g

pf +qf k 6& (p;+q;)q;

(k e —k e )(p, +q, ) +k R e
+Qbg qf Gt, (Pf+qf )

p, +q; k

+ (Qb+ Qa )g 'qf'
6 (pf+qf)C „s" Ei'C'~G& (p, +q, )

q, u(p, , v, ),
2(pf +qf ).k 2(p;+ q; ) k

(52)

and the expressions for C „and C'~ are given in Appendix A.
It is clear that the amplitude M„ is gauge invariant but it cannot be written in terms of the ~+p elastic T matrix.

This amplitude will be ignored in the soft-photon approximation mainly because it cannot be calculated if the m p elas-
tic T matrix and the electromagnetic constants ofp, m+ and 6++ are the only input for the ~+py calculation. In order
to estimate the contribution from M„, we have used two amplitudes, M„and Mp, to calculate the ~+py cross sec-
tions. The average cross sections over G1—G19 at 298 MeV have been calculated. When two results are compared, the
difference between the two calculations is within 11%. If M„ is ignored, then the total amplitude M„reduces toM„.As we have already mentioned, the amplitude M„ involves the half-off-shell T matrices. It can be calculat-
ed if we have a dynamical model from which the half-off-shell T matrix elements can be determined. However, since we
are interested in the on-shell soft-photon approximation in this work, the possibility of developing a new approximation
based on the off-shell amplitude M„will not be discussed here.

With the help of the expansions given by Eqs. (17a)—(17d), M„can be expanded as follows:

M TETA M TETAS +Moff
p p p (53)

where

(p;+q, +R)„
(p;+q; ) k

—rEr&s — qf~ (pf+qf+R)~M„=u (pf y vf ) Q, — T(s;, t„) Qb T(sf & tp)—
qf k pf+qf k q('k

(pf+Rf )„(pf+qf+R)„
pf k pf +qf 'k

(p;+q, +R)„
(,, +q, )

k"
(p;+R;)„

QaT(sf, t )—
p,'k (54)

and
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aT,'
+2Qd

(pf+Rf )„(pf+qf+R)„
k ( ) kPf ' Pf +qf

(Pf+qf )„+2Q pf~ pf+qf k

(p;+R; )„(p;+q;+R)„
p; k p, +q, .k

(Pf+qf )~M„' =u(pf vf) 2Q, qf„(—qf k)p pf+qf .k

aTd

ahd

(p;+q; )„
q;„—(q; k)

(p;+q, )„
pi/l (p/ )

(

(55)

M„defined by Eq. (54) is the special (on-shell) TETA amplitude for the m py at the tree level. It is gauge invari-
ant,

M+E+wsk" =0P (56)

and it depends only upon the elastic T matrix, evaluated at (s;, t~), (sf, t~ ), (s;, t~ ), and (sf, t~ ). Moreover, it is easy to
show that M, has no kinematic singularity at k =0. The amplitude M„' given by Eq. (55), on the other hand, is an
off-shell amplitude. It depends upon the off-shell derivatives and also upon the extra off-shell amplitudes involving C.
Thus, if we ignore those terms which cannot be expressed in terms of the elastic T matrix (i.e., the amplitude M ) and
those terms which involve off-shell effects (i.e., the amplitude M„' ), then we obtain the TETAS amplitude M„

~TETAS
P (57)

which can be evaluated exactly in terms of the m+p elastic T matrix and the electromagnetic constants of p, ~+ and
Q++

For the purpose of comparison between the modified procedure and Low's standard (original) procedure for deriving
a soft-photon amplitude, let us derive a different version of the TETAS amplitude by using the standard procedure. We
first expand M„' ' in powers of k. Substituting Eqs. (17a)—(17d) into Eq. (19), we obtain

—(s) qfy, — — qip (pf +Rf )p — (pi + Ri )pM„= u (pf, vf ) Q, T(s;, t~ ) —T(sf, t~ )Q& +Q, T(s;, tq ) —T(sf y tq )Qd

aT. 'a Tb aT+2Q~ qfi &&
+2Qbqii,

&&
+2Qcpfi

a b C

aTd
+2Qdpi„

d

+(terms involving C)+ . u(p;, v;) . (58)

Since those terms involving C will be completely ignored later, we shall neglect them in the rest of our derivation. The
second step is to obtain the leading term of the internal amplitude M„' ' by imposing the gauge invariant condition:

k~M(" = —k~M(E)
P P

(EE) aTb
u (pf vf ) T +2Q, qf k +2Qbq, k

a b

a T,
' aT„'

+2Qp k +2Qdp, k + ''' u(p;, v ), (59)

where

T =Q, T(s;, tp) —QbT(sfytz)+Q, T(s;, tq) —
Qd T(sf, tq) (60)

and we have Q, =Qb and Q, =Qd for the n.+py process. The amplitude T' ' has been studied by Fischer and Min-
kowski [13]and also by Heller [23]. For example, Heller has used the mean value theorem for derivatives,

AT(so, t ) aT(s„t, )
T(s(, tp) T(sfyt ) (s; Sf ) =2(q;+p;)'k, sf so s;as ' ' as

(61a)
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BT(s(), t ) BT(s(), tq )
T(s, , t ) —T(sfit )=(s, —sf) =2(q, +p, )k, sf so si

Bs Bs

to obtain

(6lb)

BT(so, t„) B T( s(), t )
T =2Q, (q;+p;).k " +2Q, (q, +p,. ).k (62)

Inserting Eq. (62) into Eq. (59), we find

M„'' =u (pf, vf )
—2Q, (q, +p, )„

BT(so, tq ) —2Q, (q;+p; )„a

B T( s(), t )

Bs

Tb
2Qb—q;„

b

If we apply Eqs. (6la) and (61b) again, we can rewrite M' ' in the form

8Td—2Qdp;„+ u(p, , v, ) . (63)

(Pf +qf)„(P;+q,)„(Pf+qf)„

(p;+ q;)„BT, 8Tb
+QdT(sf tq )

( + ) k 2Q. qfp gg 2Qbq'p
pI, Vg. a b

aT,'
QcPfp

C

(64)

Here, we have used the fact that (q;+p;) k =(qf+pf). k, (q,. +p;).e=(qf+pf) s, Q, =Qb, and Q, =Qd. Finally, we
add M„' ' [Eq. (58)] and M„' ' [Eq. (64)] to obtain the total amplitude M„':

M„'=u(pf, vf) Q, qf. k

T

(Pf+qf )~
T(s;, t ) —Qb T(sf, tp )

pf +qf 'k q; 'k
(p, +q, )„
(p;+q;) k

+Q,
(pf +Rf )„

pf .k
(pf +qf)„(p;+R;)„

+ k
T(s,q) QdT(sf q) kpf+qf .k p, k

(p;+q;)„
(p, +q, ) k

u (p;, v;),

(65)

which is to be compared with the amplitude M„obtained by using the modified procedure,

MTETAS +Mo8' (66)P P p 7

where M„and M„' are given by Eqs. (54) and (55), respectively. [But we neglect those terms involving T„and Td,
in Eq. (55) in this comparison. ] Two substantial differences can be observed: (i) Equation (65) shows that the first two
terms in the series expansion of the amplitude M„' in powers of k are independent of off-shell derivatives. Equation (66),
on the other hand, shows that the amplitude M„does depend upon off-shell derivatives of order k . (ii) The amplitude
M„has extra terms involving R„. These terms represent photon emission from the internal 6++ line with spin- —', and
the anomalous magnetic moment A.&. The amplitude M„' does not include any R„ term which is separately gauge in-
variant, R„ki'=0. This is because the standard procedure [or the gauge invariant condition, Eq. (59)] cannot be used to
determine an internal term which is separately gauge invariant. [Note that both M„and M„' include internal terms
which are proportional to either (q;+p;)„or (qf+pf)„. These internal terms represent photon emission from the
charge of the interval b, ++ line. ]

C. General TKTAS amplitude and modiSed Low procedure

The result obtained in the preceding section will be used as an important guide to develop a modified procedure for
constructing a more general TETA amplitude for the m py process. The first step in the modified procedure is exactly
the same as the one used in Low's standard procedure. We obtain the external amplitude M„' ' from four external emis-
sion diagrams, Figs. 4(a)—4(d), which are generated from the source diagram shown in Fig. 1(a). We find

M(g) — 6qfp T T Qbqip Qc Pf f p Qd Pi i iM,

/1 ( +R ) w ( +R )

ic Pf' f .k & b k k c d k
u Pisvi

Pf Pi'
(67)

where R;„and Rf„are defined by Eqs. (20a) and (20b), respectively, and T„(x=a, b, c,d), which are the half-off-shell T
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matrices, can be written in the form

uT, u =uT—[q;, t~,p; =mz, q; =m, pf =m~, h, =(qf+k) ]u

=u [A (s;, t~, mz, m, m, b, )+—,'(g;+gf+g)B(s;, t, m, m, m, h, )ju,
uTt, u =uT[—sf, t~,p; =m, bI, =(q; k—),pf =m, qf =m ]u

=u j A (sf rp mp k$ m, m )+—,'(g;+gf —k)8(sf, t, m~, h&, m, m )ju,

(68a)

(68b)

T,u =—T[s;,t,p, =m~, q; =m, b,, =(pf+k), qf =m ]u

=
j A (s;, t, m, m, h„m )+ —,'(g,. +$f )8(s;,t, m, m, b,„m )+ ,'(Pf+—k—m )C(s;,t, mz, m, h„m ) ju,

(68c)
and

uT„=uT [sf, tq, h~=(p, k), q;
—=m, pf =m~, qf =m ]

= u [ A (sf, tq, b &, m ~, m~, m ~ ) +—,
' (g; +gf )8 (sf, tq, 5&, m ~, m~, m ) + ,' C'(sf—,tq, 6&,m ~, mz, m ~ )(P; —k —

m~ ) j .

(68d)

A (s, t&) = A (s, t&, m~, m, m~, m ),
8(s, t&)=B(s,t&, m~, m—,m, m ),

(69a)

(69b)

(69c)

In Eqs. (69c) and (69d), the expressions for T, and T&
have extra off-shell terms involving amplitude C or C'.
These extra off-shell terms vanish on the mass-shell. The
expressions for off-shell amplitudes A, B, C, and C' are
much more complicated than those for off-shell ampli-
tudes A, 8, and C at the tree level. [See Eqs. (12) and
(16).] However, since the Feynman diagrams given by
Figs. 2(a)—2(e) are the doniinant contribution to the m. +py
process in the energy region of the b, ++(1232) resonance,
we expect that A reduces to A, B reduces to B, and C
and C' reduce to C when Figs. 4(a)-4(e) reduced to Figs.
2(a)—2(e), respectively. The on-shell values of the ampli-
tudes A, B, C, and C' are de6ned by

and

C'(sfytq)=C'(sfytq, m', m, m', m ), (69d)

e"M„=u (pf, vf )( Y, T~ + Tb Y& + Y, T,

with a=i or f and P=p or q. The on-shell amplitudes
A (s, t&) and 8 (s, r&), which determine the on-shell
(elastic) qr+p T matrix T(s, t&), can be calculated in
terms of m+p phase shifts and inelasticities, determined
by the m+p elastic scattering experiments. Since the ex-
pressions for C(s;, t ) and C'(sf, t } are not known, all ex-
tra terms involving C and C' have been completely ig-
nored in the on-shell soft-photon approximation.

The second step is to 6nd an internal amplitude M„'
which represents photon emission from the intermediate
6++ line. The idea is to write M„' ' as a linear combina-
tion of T„(x=a, b, c,d) and D:

Pf
«

Pf
K

I

pg+ K

+ T~ Fg+e.D)u (p;,v;), (70)

Iq;

(a)

P«

Iqg
I

K
«q«-K

P'

(b)

Pg

(c)

where Y„(x=a, b, c,d) are the coefficients to be deter-
mined and c..a represents the remainder of other terms
which cannot be written in terms of T„. To determine Y„
(x =a, b, c,d), we demand that M„' ' reduce to M&

' given
by Eq. (44) when Fig. 4(e) reduces to Fig. 2(e}. Since T„
(x =a, b, c,d) reduce to T„and D reduces to D, we find

e.(pf+'qf )+e.R
(pf+qf ) k

I

I

I

Iq) e (p;+q;)+E.R
(p;+q;).k (71)

FIG. 4. Feynman diagrams for bremsstrahlung: (a)—(d) the
external scattering diagrams; (e) the internal scattering diagram.

Y =—
C

e (pf +qf ) +e.R
(pf+qf) k
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and

s (p, +q;)+c, R

(,, +,, ) k

Combining M„' ' with M„' ', we obtain

sl'M„'~~' =e"M„+u (pf, vf )(e"D„)u (p;, v; ),
where

(71a)

M'rETA ——
( ) Q

q (pf +qf +R)„q;~ (p;+q;+R)„
(p, +q;) k

+Q,
(pf +Rf )„

pf. k
(pf+qf+R)„(p;+R;)„ (p;+q;+R)q

(p;+q;).k
u(p, , v;) . (71b)

Since D„cannot be expressed in terms of T, it has been
ignored in the soft-photon approximation.

The third step is to impose the gauge invariant condi-
tion,

k"(M' ~'+M' ')=0 (72a)
P p

in order to obtain an additional gauge term M„' ' so that
the total amplitude, M„=M„' '+M„' ', will be com-

pletely gauge invariant. Since

k PM TETA
Op

the condition (72a) gives

M TETA
P P (73)

if D„and M„' ' are neglected. Equation (73) shows that
the off-shell TETA amplitude M„ is an approximate
amplitude which can be rigorously derived for the ~+py
process.

Finally, to obtain a special on-shell TETAS amplitudeM„,we have to expand T (x =a, b, c,d). We obtain

ignored in the soft-photon approximation, M„' ' will
also be ignored in our derivation. Thus, the total ampli-
tude has the form

k~M„'" = —k~D„, (72b)

which shows that M„' ' can be determined if the detailed
expression for D„ is known. However, since D„has been

MTETA MTETAs +Moff
P P p

where

(74)

m~As q')I
=u(pf vf ) Q, — T(s;, t~) —Q&T(sfytp)

qf k pf+qf k q, k

(pf +Rf )„(pf+qf +R )„
Q .k ( + ).k

T(' tq)
Pf Pf

(p;+R;)„(p,+q;+R)„
p; k (p+q) k

(p;+q, +R)„
(p;+q;) k

of the T matrix (i.e., s D) and ignore all off-shell terms
(i.e., s.M ), then we obtain the amplitude M„which
can be calculated exactly in terms of the m+p elastic T
matrix and the electromagnetic constants of p, ~+, and
g++

III. THE "EXPERIMENTAL" MAGNETIC
MOMENT OF h, (1232) EXTRACTED

FROM EXPERIMENTAL DATA

We have used the special two-energy-two-angle ampli-
tude, M„given by Eq. (75), to calculate m. +py cross
sections as a function of photon energy k,

and M„' represents the rest of the other terms which in-

clude off-shell derivatives of the amplitudes A and S and
extra off-shell terms involving amplitudes C and C'. The
amplitude M„,Eq. (75), is identical to the one given

by Eq. (1) in Ref. [29]. Because of different definitions for

R;„, Rf„, and R„used in this work, there is a sign
difference for those terms involving R,„,Rf„, and R„ in

the expression for M„. In Eq. (75), T(s;, tz ),
T(sf, t~), T(s, , t ), and T(sf, tq) are the elastic m+p T.
matrices, evaluated at (s;, t ), (sf, t ), (s, , t ), and (sf, t ),
respectively. (See Ref. [28] for a discussion on the calcu-
lation of these T matrices. ) We have shown that if we
neglect those terms which cannot be expressed in terms
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der J
(p +q p q k) g (~TETAs&@)t(MTETAS&v) de1

dQQA dk (21r)5 ' ' I f 2
(76)

where

J=em /[(p;q) —m m ]'

d I' =[qfdqf/(2E )][d pz/(2E )][k /(2k)],
E =(m +qz)'

and

E =(m +p )'

In these calculations, the anomalous magnetic moment of
the 6++, A, &, has been treated as a free parameter and it
is to be determined from the UCLA data [2] at three
bombarding energies, 269, 298, and 324 MeV, and the
SIN data [5] at 299 MeV.

The UCLA group has used 19 photon counters, G;
(i =1—19), to measure n.+py differential cross sections.
As a result, 18 sets of cross sections have been obtained
for each bombarding energy. (Cross sections for the pho-
ton counter 616 have not been determined. ) In each set,
the UCLA data are given at the following photon ener-
gies: k, =22.5 MeV, k2 =40 MeV, k3 =60 MeV, k~ =80
MeV, k5=100 MeV, k6=120 MeV, and k7=140 MeV.
We shall use the "spectrum 6;" to label the set of cross
sections obtained from the photon counter G;. Thus, if
we define E1 =269 MeV, E2 =298 MeV, and E3 =324
MeV, then the UCLA data can be denoted by
o (E;,G. , k&), which represents cross section at the
bombarding energy E; (i =1,2, 3) and the photon energy
k1 (i=1, . . . , 7) for the spectrum G (j=1, . . . , 19).
The corresponding theoretical cross section, calculated
using Eq. (76), will be denoted by cr'"(E;,G, k1 ).

Using the experimental cross sections cr (E;,G, k& )

and the theoretical cross sections cr'"(E;,G, k&), we first
calculated the following average cross sections:

15

a',",5(E;,k1 ) = g o'"(E;,Gi, k1 )/15,
j=1

(77f)

for all photon energies k~ ( i = 1, . . . , 7 } at three bom-
barding energies, E; (i =1,2, 3). The values of
g UcLA(E k ) g UcLA(E k ) and g UcLA(E k ) without
including the experimental errors, are shown in Table I.
We then use these cross sections to define the following
average deviations:

Dl-lp(Ei ~A)
I cr1 1p (E &k1)

(78a)

lcr11 "15(
D1 1 —15(Ei i~A) g UCLA r

1 11 15( ii I }

(78b)

and

UCLA( E k )
th

D1,5(E;,A, q)= g
I o1,5 (E;,k1)

(78c)

Since there are three bombarding energies, we obtain nine
deviation functions, which are all functions of A,&. Vary-
ing the value of A,&, we find nine deviation curves. As
shown in Figs. 5(a)—5(c), each of these nine deviation
curves clearly exhibits a minimum point. The values of

at these minimum points are as follows:
' (E, )=1.53, A,~

' (E2)=1.47, A,~
' (E5)=1.20,

' (E, )=1.90, A, ~' ' (E2)=2.00, A, A' ' (E3)=1.44,
A z

'
(E, ) = 1.86, A z

'
( Ez ) = 1.58, and A ~

'
( E3 ) = 1.36.

Taking an average, we have

10
",a, (pEk, )= g o" ""(E G k )/1o

j=1
(77a)

3

A,~= g A~
' (E;)/3=1.4 (79a)

10
o',",p(E, , k, )= g a'"(E, , GJ. , k, )/10,

j=1

15
aUcLA(E k )

—y aUcLA(E G k )/5
j=11

15

o 1"1,5(E;,k1 )= g o'"(E;,G, k1 )/5,
j=11

(77b}

(77c}

(77d)

for spectra G1—G10,

3
' (E, ) /3 = 1.8

for spectra G11—G15, and

3

A,~= g A, g
' (E, )/3=1. 6

(79b)

(79c)

15
aUcLA(E k ) g aUcLA(E G k )/15

j=1
and

(77e) for spectra G1—G15. Using these results for A, &, the value
of the "experimental" magnetic moment of the
b++(1232), 1uz, can be calculated. We find
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p~=2(1+A~)

=2(1+A.g)
M~ 2m

3.7 '
2m~

for spectra G1 —G10,

4.0
2m

for spectra G1 —G15, (80)

4.2—
2m'

for spectra G11—G15 .

—.—324MeV, X~=1.36-- 269MeV, k&=1.86
298MeV, X&=1.58 &-

/
./'71 pv

Gt-l5

I

—.—324MeV, X,&=1.20
——269MeV, X,&= l.53

2

4.0- 4.0-

CI—2.0-
C:

0
C)

2.0-

( )
. . . Gl 10

t Ila t

——324MeV, kg= 1.44
——269MeV, X,q= l.90—298MeV, kg= 2.00./

/

r

Tl py
Gl I-l5

I

(c)
0.5 1.0 1.5 2.0 2.5 3.0

(b)
—55 e
——55

3.0- —.—75

(95,g~= 2.1

o 60

20- "P4.0-
—~ ~.

.0- 299MeV
I I I

(d) I
I (

0 I I I i I

0 0.5 1.0 1.5 2.0 2.5 3.0
0
0

This gives us a range of the value of p& which can be ex-

I~siN(k') —~'"(k, ) I

Di(~~)= X siNcr, (kj )
(81a)

I

o."N(k ') —o'h(k ')
I

2(~h) X SINcr, (kJ)
(81b)

tracted from the UCLA data.
Of course, the UCLA data sets can be analyzed togeth-

er to yield a single value of pz. This has been done and
the value is 3.8e/(2m„). It should be pointed out that if
the g as a function of A,z were used to determine the
value of X&, then we would also obtain about the same re-
sult as that obtained by using the deviation function
defined by Eq. (78). For spectra Gl —G10 at 298 MeV, for
example, the y fit gives k&=1.4 while the method based
on Eq. (78) gives Az —=Az

' (Ez!=1.47. In Fig. 5(e), we
show the g curve with a clear minimum point at
A,&=1.4. This curve is to be compared with the solid
curve exhibited in Fig. 5(a).

We have also extracted the value of p& from the SIN
data. The SIN group has measured the ~+py cross sec-
tions at 299 MeV. Depending upon the angular regions
for the outgoing pions, the group has obtained three sets
of cross sections. We shall call the set for 55'&0 &95'
as the first set, the set for 55'& 0 &?5' as the second set,
and the set for 75' & 0 & 95' as the third set. In each set,
the SIN data are given at the following photon energies:
k

&
27 5 MeV kz 42-5 MeV, k3 =57.5 MeV,

k4=72. 5 MeV, k5=87. 5 MeV, k6=102.5 MeV, and
k7 =117.5 MeV. Thus, the SIN data will be denoted by
o, ' (k') and the corresponding theoretical cross section
by cr', "(k ). Here, k'(j =1, . . . , 7) are photon energies
and the subscript i indicates the set number (i =1,2, 3).
The values of o; (k. ), without including the experimen-
tal errors, are shown in Table I. Using o, (k') and
o,'"(k'), we define three deviation functions:

30—
~ 298 MeV, Xg =&.4

G1-10
and

sIN(k~) th(k~)I

X siNo3 (kJ)
(81c)

20—

10—

which are all functions of A,z. Varying the value of k&,
we obtain three deviation curves. As shown in Fig. S(d),
each curve has a minimum point. The values of k& at
these minimum points are

I I ! I ) I

0.0 0.5 1.0 1.5 2.0 2.5 3.0

k~=2. 1

for the first set, 55' & 0 & 95',

FIG. 5. Average deviation as a function of A,z. The deviation
curves shown in (a), (b), and (c) are obtained from the UCLA
data while the curves shown in (d) are from the SIN data. The
minimum point on each curve determines an extracted value of
A,z. (e) The g as a function of A,z. The UCLA data at 298 MeV
are used to calculate the y curve, which shows a clear
minimum point at A,q=1.4.

2e 2

for the second set, 55 & 0„&75', and

kg=2. 0

for the third set, 75'& 8 & 95'. The values of pz calculat-
ed from X& are as follows
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TABLE I. The UCLA data and the SIN data: the values of o.»0 (E;,kI ), o.» &5(E;,k&), o.»5 (E;,kI ), and o. (k,').

Photon
energy (MeV) 22.5 40.0 60.0 80.0 100.0 120.0 140.0

269
(UCLA)

298
(UCLA)

324
(UCLA)

average
G1—10
average
G11—15
average
G1—15
average
G1—10
average
611—15
average
G1—15
average
G1—10
average
G11—15
average
G1—15

2.53
+0.41
31.8

12.3

1.78
+0.28
25.0

9.50

1.05
+0.31
22.6

8.24

1.65
+0.27
15.1

6.11

1.03
+0.17
14.1

5.41

1.04
+0.22
8.30

3.45

1.25
+0.21
8.8

3.77

1.03
+0.15
7.62

3.21

0.66
+0.17
4.80

2.05

0.79
+0. 15
5.8

2.44

0.74
+0.13
5.68

2.39

0.77
+0. 18
2.22

1.25

0.28
+0.08
2.5

1.03

0.44
+0.09
3.38

1.44

0.30
+0.11
1.64

0.74

1.2

0.55

0.44
+0. 12
1.14

0.61

0.10
+0.06
0.58

0.43

0.38

299
(SIN)

Photon
energy (MeV)

average
55'-95'
average
55'-75
average

75'-95'

27.5

1.57
+0.23
1.23
+0.28
1.91

+0.30

42.5

1.24
+0.18
1.31
+0.21
1.17

+0.24

57.5

1.40
+0. 16
1.40
+0.18
1.40

+0.20

72.5

1.21
+0.14
1.20
+0.16
1.22

+0.18

87.5

1.12
+0.13
1.27
+0.17
0.90
+0.16

102.5

0.85
+0. 10
0.83
+0. 13
0.90
+0.13

117.5

0.71
+0.09
0.82
+0.11

Alppa=2(1+A, a)
M~ 2m

are in much better agreement with the value predicted by
the modified SU(6) model or the quark model with
corrections. The values of pz previously obtained by oth-
er authors were 3.6+2.0 by Musakhanov [15], 5.6+2. 1

4.7
2t7lp

4.9
2m'

for 55'&0 &95,

for 55'&0 &75, (82)

TABLE II. Compilation of pz/p~ results obtained by
different groups using various approximations and methods.

p~ =2.79e/(2m~ ).

4.6
2m'

for 75'&0 &95 .

The range of p& determined by the SIN data is there-
fore 4.6e/(2m& ) ~ pa ~ 4.9e/(2m~ ). If, on the other
hand, all the SIN data sets are analyzed together to yield
a single value of Iu, a, we find ILta=4. 6e/(2m ).

It is clear that the values of pz extracted from either
the UCLA data or the SIN data are smaller than the
"bare" magnetic moment, IMP=5. 58e/(2m ), predicted
by the SU(6) model [34] and the quark model. However,
as pointed out by the UCLA group, a modified SU(6)
model (with mass corrections) suggested by Beg and Pais
[35] predicts pa=(m /Mz)X5. 58e/(2m )=4.25e/
(2m~). Moreover, Meyer et al. have also pointed out
that bag-model corrections to the quark model [36] give
pa=(4. 41—4.89)e/(2m ). Thus the values of IMa extract-
ed from the data [the average value of p& determined
from both the UCLA and the SIN data is 4. 35e/(2m )]

Present
(UCLA data)

Present
(SIN data)

Bosshard et al.

Wittman-

Heller - Kumano-
Martinez — Moniz

Pascual — Tarrach -------- '

I
I
I
I
I
I
t

H

I
I
I
I
l

I
I
I
I
I
I
I
I
I
I
I
I
I
I

Musakhanov ------- ',

I ~ a ~

I

Brown - Rho — Vento

Beg - Pais, Modified SU(6)

SU(6)

I
I

1.0 2.0 3.0 4.0
I I ~ I I ~ I t l t I I I ~ I I I

I ~ I I Vg/Pp
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by Pascual and Tarrach [24], 7.0—9.8 by Heller et al.
[26], and 5.58—7.53 by Wittman [27] in units of e/(2m& ).
All of these results were extracted from the UCLA data
using quite different approximations and methods. Most
recently, by fitting the asymmetry data to predictions cal-
culated in the MIT model, Bosshard et al. have found
@&=4.58+0.33e/(2m~ ) [37]. A comparison of these re-
sults is shown in Table II. For other theoretical predic-
tions, we refer to an article published recently by
Krivoruchenko et al. [38].

2-
CD

m

0
CI

C

o 2-b

3 py
524 MeV
G5

Tt py
298 MeV
G6

(p)

(b)

0 I I I 0
0 30 60 90 120 150

K(MeV)

Tl py
324 MeV
G7

(c)

1 py
298 MeV
G8

(d)

30 60 90 120 150

IV. THEORETICAL m+py CROSS SECTIONS
AND COMPARISON TO EXPERIMENTAL DATA

FIG. 7. Same as Fig. 6, but for G5, G6, G7, and G8.

Using the values of p& extracted from the experimental
data [Eqs. (80) and (82)] as input, we have applied the am-
plitude M„ to calculate all ~+py cross sections
which can be compared with the experimental data at the
five bombarding energies, 165, 269, 298, 299, and 324
MeV. Some of these calculations are shown in Figs.
6—12. In these figures, the calculated cross sections at
269, 298, and 324 MeV are compared with the UCLA
data of Nefkens et aI. and the calculated cross sections at
165 and 299 MeV are compared with the UCLA data of
Smith et al. [3] and the SIN data, respectively.

For G11—G17, the calculated cross sections are insensi-
tive to the variation of pa between 3.7e/(2m ) and
4.2e/(2m ). As shown in Figs. 8, 9, and 10, the calcula-
tions using p&=3.7, 4.0, and 4.2e/(2m~) give almost
identical spectra. Although different values of p&
[3.7e/(2m~) ~pa~4. 2e/(2m~)] predict spectra which
are slightly different at k )70 MeV for G1—G10, Figs. 6,
7, and 8 show that the difference is smaller than the ex-
perimental errors. The overall agreement between theory
and the UCLA data is excellent. This fact can also be
seen from the following y values. We have calculated
the y values for those UCLA cross sections shown in
Figs. 6—9 using Itt& =4.Oe /(2m ) as an input for all

P
theoretical predictions. The y values are 1.6(0.9), 0.4,
4. 1, 5.3(2.1), 0.8(0.3), 0.5, 0.6(0.5), 0.5, 1.0, 0.6, 2.8,
8.1(1.8), 3.6(1.6), 0.7, and 1.0 for Gl at 298 MeV [Fig.

6(a)], G2 at 298 MeV [Fig. 6(b)], G3 at 269 MeV [Fig.
6(c)), G4 at 269 MeV [Fig. 6(d)], GS at 324 MeV [Fig.
7(a)], G6 at 298 MeV [Fig. 7(b)], G7 at 324 MeV [Fig.
7(c)], G8 at 298 MeV [Fig. 7(d)], G9 at 298 MeV [Fig.
8(a)], G10 at 269 MeV [Fig. 8(b)], Gl 1 at 298 MeV [Fig.
8(c)], G12 at 269 MeV [Fig. 8(d)], G13 at 269 MeV [Fig.
9(a)], G14 at 269 MeV [Fig. 9(b)], and G15 at 269 MeV
[Fig. 9(c)], respectively. The y values in parentheses are
obtained from the calculation which does not include the
last datum with zero cross section. Thus, the TETAS
amplitude with values of pz in the range from
3.7e/(2m~) to 4.2e/(2m~) can be used to describe all
m+py data obtained by the UCLA group except for the
measurements obtained for G18. Here, we must point
out that our predicted cross sections for G18 at 269, 298,
and 324 MeV are quite different from the UCLA data.
[These three spectra for G18 are the only exceptions.
The rest of other spectra at 165, 269, 298, and 324 MeV
for G, (i =1, . . . , 19 but i%18) are in excellent agree-
ment with the UCLA data. ] However, the agreement is
much better for G18 at 165 MeV. This comparison is
shown in Fig. 10(b).

In Fig. 11, we present the results of our calculation us-
ing pa =4.6e /(2m ), 4.7e /(2m ), and 4. 9e /(2m ) at
299 MeV. These results are compared with the SIN data.
Using p&=(4. 6,4.9)e/(2m~ ) as input for theoretical pre-
dictions, we have calculated the g values for the three
sets of cross sections shown in Fig. 11. The y values
[corresponding to pa=(4. 6, 4.9)e/(2m~)] are (4.3,3.4),

3-)
CU

I-

a" 0
3—

0
0

Tf py
298 MeV
Gl

(p)

Tl'py
298 MeV
G2

0

(b)

30 60 90 120 150 0 30
K (MeV)

py
9MeV

(c)

3'py
269 MeV

~i I
60 90 120 150

2-
4)

cn
Cl

0
C 8
D
C

4

1t py
269MeV
GIO

) 9-

0 I

|bi

. 15-

eV

H py
269MeV
GI2

(c)

FIG. 6. The m py cross sections as a function of photon en-

ergy k for G1, G2, G3, and G4. The dashed, solid, and dot-
dashed curves are calculated with pz=(4. 2,4.0, 3.7)e/(2m~),
respectively. The UCLA data are from Ref. [2].

0
0

I I I I 0
30 60 90 120 150 0

K(MeV)

I

30 60 90 120 l50

FIG. 8. Same as Fig. 6, but for G9, G10, G11, and G12.
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an (2.2,2.1) for the second set [Fig.Fi . 11(a), the
and the first set [Fig ll(c)] respec-

h SINdt before conclude that t etively. We therefore
ith the value of p&described y ed b th TETAS amplitude wit e
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with the data. (iii) The spectra calculated using an ap-
proximate TETAS amplitude obtained in Ref. [28] are
very close to those calculated using the amplitude
M„given by Eq. (75) with the value of pz between
3.7e/(2m ) and 4.2e/(2m~).

V. DISCUSSIGN

It has been reported in Ref. [28] that almost all of the
m

—+p y cross sections obtained by the UCLA group can be
described by a TETAS amplitude of the form

qf (qf+pf+Rf)„q;„
M„(TETAS)= u (pf p vf ) Qp T (s, , t„)—Qt, T(sf, t~ )

qf-k (qf+pf) k

pf„+RE (qf+pf+Rf )p

(q, +p;+R;)„
(q;+p;).k

p,.„+R,.„(q;+p;+R;)~

k ( + )k u (p;, v;), (83)

where R. and Rf„are defined by Eqs. (20a) and (20b), re-
spectively. This amplitude, which cannot be rigorously
derived, is slightly different from the amplitude M„
given by Eq. (75). In Sec. IV, as shown in Fig. 12, we
have found that the m+py cross sections calculated with

the amplitude M„(TETAS) are very close to the cross
sections predicted by the amplitude M„ if the value
of pa used in M„ is about 4e/(2m ). To understand
why the amplitude M (TETAS) works so well and why
the two amplitudes, M„(TETAS) and M„, can give

FIG. 12. The ~+py cross sections as a function of k for G7 (a), G14 (b), G15 (c), and Gl —G10 average (d). The dot-dashed, solid,

dotted, and dash-double-dotted curves are calculated with pz=(3. 7,4.0,4.2, 5.58)e/(2m~), respectively. The dashed curve is calcu-

lated using an approximate TETAS amplitude given by Eq. (83) (which is identical to the amplitude M„(TETAS) given by Eq. (16) in

Ref. [28]).
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similar results, let us compare these two amplitudes care-
fully. From Eqs. (75) and (83), we can see that both am-
plitudes have the same form for the external contribution
but they differ from one another in the expression for the
internal contribution. They can predict about the same
cross sections only under the following condition:

Rlp~Rp ~ Rfp (84)

To study this condition without any approximation is
very difFicult. Fortunately, a good approximation can be
found. If we replace P;, Pf, and p' in the expressions for
R,.„,Rf„, and R„[Eqs. (20a), (20b), and (43)] by m~, m~,
and M&, respectively, then we find

R,„=Rf„=R„
provided that

(85)

(86)

=2(1+1, )
M~ 2m

=2(1+ l. 79)
1232 2m

=4.25e/(2m ),
which is exactly the value predicted by the modified
SU(6) model of Beg and Pais [35]. This value also agrees
very well with the average value of p, z, 4. 35e/(2m~ ), ex-
tracted from both the UCLA data and the SIN data.
Thus, the fact that the UCLA data can be described by
the amplitude M„(TETAS) suggests that the value of p&
is about 4e/(2m~).

It is obvious that the modified Low procedure can be
applied to obtain TETAS amplitudes for other brems-
strahlung processes near a scattering resonance. For ex-
ample, the TETAS amplitude for the p' Cy process has
the same expression as the amplitude M„given by
Eq. (75) but without those terms involving R;„,Rf„, and
R„[28]. This is because the contribution from R;„,Rf„,
and R„ terms is negligible for the low energy p' Cy pro-
cess near either the 1.7-MeV resonance [39-41] or the
0.5-MeV resonance [42]. As shown in Ref. [28], those
gauge terms involving (p, +q;)& or (pf+qf )„represent
photon emissions from the charge of the intermediate
' N* resonance.

As we have already mentioned, the effective moment
which is a complex quantity has been studied by Belier
et al. [26]. We cannot calculate this moment to arbitrary
precision in this work since it is dificult to take into ac-
count the loop contribution in the soft-photon approxi-
mation. Nevertheless, we have done a numerical study
by treating A,z in Eq. (75) as a complex quantity,
A,&

=A,& + ik,l, in order to estimate the contribution from
the imaginary part A,l. We have chosen A,z to be

This implies that the two amplitudes can produce about
the same result if the magnetic moment of the 6++
(treated as a parameter in the amplitude M„)is

p~=2(1+Aq)e/(2M' )

70—

6.0—
O 50—
0I

4.0—
CD
CO

8 3.0—
0)0~ 2.0—

=2.4+ il, l

~——1.6+ k.i

=1.47 + iX,(

1.0—

-1.0 -0.5 0 0 0 5 1 0
) r (imaginary part of kz)

FIG. 13. Average deviation as a function of kl (the imagi-
nary part of A,z). Using the amplitude M„but treating A,z
as a complex quantity, A,&=K& +i A.l, the average deviations are
calculated as a function of A,l for A,z =1.47, 1.6, and 2.4. The
experimental cross sections used in these calculations are the
UCLA data at 298 MeV for the photon counters Cxl —G10.
Each deviation curve shows a clear minimum point at A,l =0.

1.47+i A.I, 1.6+iX,I, and 2.4+ii,l. By varying kl from—1.0 to 1.0 in each case, we have used the UCLA data
(at 298 MeV for counters Gl —G10) to calculate average
deviations as a function of A,l. As shown in Fig. 13, we
have obtained three deviation curves which have the
same interesting feature. The value of the average devia-
tion decreases rapidly as A,l increases from —1.0 to zero
and then it increases rapidly as A,l increases from zero to
1.0. Thus, the minimum points for all three average devi-
ation curves are around A,l =0, independent of the choice
of A,z, indicating that the best fit to the UCLA data (at
298 MeV for counters Gl —G10) can be obtained by
choosing A,z to be a real quantity, as we have done in this
work. This result implies that the dynamical contribu-
tion (photon emission from the rt+p loop) to the imagi-
nary part A,l is very small. If there is no dynamical con-
tribution to A.t, we also expect very little dynamical con-
tribution to the real part A,z. %'e may therefore conclude
that the whole dynamical contribution would be small
and hence the "experimental" magnetic moment should
be very close to the effective moment.

To understand why the best fit to the UCLA data can
be obtained only if A, & is chosen to be a real quantity, we
have performed another study. Our numerical investiga-
tion of the amplitude M„reveals that the best agree-
ment between theory and experiment is obtained when
the contribution from the R„-dependent terms cancels
the total contribution from those terms involving R,- andEP

Rf„ in Eq. (75). This cancellation occurs when rM& is
around 4e/(2m ). However, no cancellation is possible if
A,& is chosen to be a complex quantity with a large imagi-
nary part since the anomalous magnetic moment of pro-
ton A, is a real quantity (Az =1.79). This explains why
the minimum point is always found around A,I=O, in-
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dependent of the choice of A,z, if the average deviation is
plotted as a function of A,l. As we have already pointed
out, our numerical study also indicates that the spectra
calculated by using Eq. (75) agree very well with those
spectra predicted by Eq. (83) (which is identical to Eq.
(16) of Ref. [28]) if pz used in Eq. (75) is about 4e/(2m ).
Both results are in excellent agreement with the experi-
mental data.

Now let us discuss what would happen if those terms
involving R;„, Rf„, and R„are cancelled out precisely.
We would obtain an amplitude MTETAS with
R p Rfp R p 0. Such an amplitude was first proposed
by Heller [23] and it was discussed in great details in Ref.
[28] (Heller's amplitude is identical to Eq. (3) of Ref.
[28]). It is a well known fact that Heller's amplitude can
be successfully applied to describe both the m.—py data
and the p

' Cy data. This fact may have two possible im-
plications that are consistent with our findings. (i) The
cancellation between the contribution from the magnetic
moment of the 5++ (including all possible loop correc-
tions) and the contribution from the magnetic moment of
proton exists. (ii) The imaginary part of the efFective
magnetic moment of the 6++ is small and the real part is
(3.7—4.9)e/(2m~ ). In short, the data seem to suggest that
dynamical corrections from the loop diagrams are small.
In other words, our best fit implies that the effective mag-
netic moment of the 6++ should be nearly equal to not
only the "experimental" moment obtained in this work
but also the bare moment given by the modified SU(6)
model or the quark model with corrections. The problem
requires further careful studies.

VI. CONCLUSION

We conclude the following.
(i) We have derived a radiation decomposition identity

for bremsstrahlung emission from an internal 6++ line
with an anomalous magnetic moment A,&. We show how
this identity can be applied to modify Low's standard
prescription for constructing soft-photon amplitudes for
bremsstrahlung processes.

(ii) Using the modified Low procedure, we have derived
a TETAS amplitude, M given by Eq. (75), for the
~+py process near the b, ++(1232) resonance. This TE-
TAS amplitude has many interesting features: (1) It is
relativistic, gauge invariant, and consistent with the soft-
photon theorem. (2) It depends only on the elastic T ma-
trix, evaluated at four difFerent sets of (s, t): (s;, tz ),
(s;, t ), (sf tp ), and (sf, t ), but it is free of any derivative
of T with respect to s or t. (3) It takes into account
bremsstrahlung emissions from (a) the incoming pion and
the outgoing pion (with charge +e), (b) the incoming
proton and the outgoing proton (with charge +e and the
anomalous magnetic moment A, ), (c) the internal b, ++
line (with charge +2e and the anomalous magnetic mo-
ment A,z), and (d) other sources by imposing the gauge in-
variant condition.

(iii) We have used the amplitude M to calculate
m+py cross sections as a function of photon energy K,
d o /dQQQ dIC, at five bombarding energies, 165, 269,

298, 299, and 324 MeV. Treating A, & as a free parameter
in these calculations, the "experimental" magnetic mo-
ment of the 6++, p&, has been extracted from 45 sets of
the UCLA data and 3 sets of the SIN data. The extract-
ed values of p& are

3.7e/(2m„) for photon counters Gl —G10,
pz= 4.0e/(2m ) for photon counters Gl —G15,

4.2e/(2m ) for photon counters Gll —G15,

from the UCLA data and

4.6e/(2m ) for 75'&6 &95',

p,q= 4.7e/(2m„) for 55'&8 &95',
4.9e /(2m ) for 55 & 8 & 75',

from the SIN data. These extracted values of pz [the
average is 4.35e /(2m~ ) ] are smaller than the value
5.58e/(2m„), the "bare" magnetic moment predicted by
the SU(6) model or the quark model, but they are close to
the value 4.25e/(2m ) predicted by the modified SU(6)
model of Beg and Pais and also in accord with the value
(4.41—4. 89)e/(2m ) obtained by Brown, Rho, and Ven-
to.

(iv) Using the amplitude M„and the values of p&
extracted from the experimental data, we have calculated
all m+py cross sections which can be compared with the
UCLA data and the SIN data. In general, the agreement
between the theoretical predictions and the experimental
measurements is excellent. This agreement demonstrates
that the amplitude MmE+As is valid and it can be used to
describe almost all the available ~+py data near the
b, (1232) resonance.

(v) We have also treated A,z as a complex quantity,
A,z= A,z +i A,l, in order to estimate the contribution from
the imaginary part A,l. The best fit to the data gives
A.l =0, independent of the choice of A,~. This finding sug-
gests that further dynamical corrections to the amplitude
M+ETAs from the open pion-proton channel are small and
hence the "effective" moment, the "experimental" mo-
ment, and the "bare" moment predicted by the modified
SU(6) model of Beg and Pais should have about the same
value.

(vi) We have shown that the approximate amplitude
given by Eq. (83), an amplitude used in Ref. [28], is
justified. This explains why the amplitude (used in Ref.
[28]) works remarkably well for the vr+py process. We
have also explained why the amplitude M„given by
Eq. (75) can be used to describe p

' Cy cross sections near
either the 1.7-MeV resonance or the 0.5-MeV resonance.
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APPENDIX A

The expression for E Ep C p and Cpp are as follows:

E =y y [ —ZIP'/9 —4p' c/9 —Zgk/3+p' c(gf'+k)/(9M )

—(p'~+Zp'. k)g/(9M& )+2(p' +2p' k )( p—' c+. dP'+N)/(9M& ) ]

+c y [ —P' —4k/3 —ZM~/3+(p' +2p' k)/(3M')+2(p' t2p' k)(P'+k)/(3M')]

+y c [7gf'/9+/+2M~/9+2(p' +Zp'. k)/(9M~) —4(p' +2p' k)(gf'+g)/(9M~)]

+c (p'+k) [~3+2(P'+k)/(3M~) —2(p' +2p' k)/(3M~)]+Zc k /3

+ (p '+ k ) c [ ——", —2(gf '+ g ) /( 3M& ) +4(p' +2p
' k ) /( 3M z ) ]—4k c /9

+y (p'+k) [ —d/9 —4d(P'+k)/(9M&)+Zp' c/(9M&) +2(p'. cP'+p' cg+p' g+Zp' k/)/(9M&)] —Sy k g'/9

+(p'+k) y 8[—,'+(P'+k)/(3M~) —2(p' +2p' k)/(3M~)]+2k y g/3

—(p'+k) (p'+k) Zd(P'+k'+M~)/(3M2~)

+A~/(ZM~)[y y [ (dkgf'+P'g'k—)/3+28@(gf'+Mq)(p' Mq) /(3—Mq)]

+p' y dk(Zp' —M~/' —4M' ) /(3 M~) yp' g—g(2p' M+' ——4M' )/(3M' )

+(4k c —4c k +Zc y k' —2y c g+Zy k g' —2k y g)(P'+M&)(Zp' —3M&)/(3M&)

+[2k(c p' —p' c )+Zd(p' k —k p' )](Zgf' —3M')(p"'+M~)/(3M')

—2p' p' gg(P'+M& )/(3M & )],
E'~=[—Zp'g/9 —4p c/9 —Zdk/3+p c(gl —k)/(9M') —(p —2p k)g/(9M')

+2(p —2p k)( —p c+Pd —k/)/(9M~)]y y~

+[—gf+4g/3 —ZMq/3+(p —2p k)/(3M')+2(p —2p k)(P —g)/(3M )]y c~

+[7gf/9 /+2 M~/—9 +2(p —2p k)j(9M~) —4(p —2p k)(gf —k')/(9M~)]c y~

+[—', +2(P —g)/(3M&) —2(p —Zp. k)/(3M&)](p k) 2 Zkzc~—/3—
+[——", —2(P —k')/(3M&)+4(p —2p k)/(3M )]c (p k)~+4c. k~/9—

+ [ —d/9 —4(P —k )g/(9M& )+2p c/(9M& )

+2(p cgf —p cp+p p —Zp. kp)/(9M& )](p —k) y +5&k y /9

+ [—,'+(P —g)/(3M& )
—2(p —Zp. k)/(3M& ) ]gy (p k)~ Zgy k~/3 —2(gf——@+M—z )g(p —k) (p —k)~l(3M& )

+Aqj(ZM~) [ [ —(ggP+Pgg)/3+2(gf+M~)g'g(p —M~ )/(3M' )]ypy~

+ (2p MgP —4M' )ggygf /(3—M ~ ) —(2p ~ M~@4M g )g—gp y~' /(3M—~ )

+(Zp' —3M', )(p+M, )(4k,d' —4~,kf'+2@~,yf' —Zgy, P+Zgy, kf' —Zf.k, yf')/(3M', )

+(2$ —3M&)(P+Mz)[2k'(cg~ pc~)+2/(p k~ k—p~)]j(3M& )—
2(gf +Mz—)/gp p ~/( 3M & )],



1842 DAHANG LIN, M. K. LIOU, AND Z. M. DING

C „(p',k)=y y [2(p' —3Ma)y„k/(9M&)+(p„'k' y—~' k)/(9M&)]

+y (g„g —k y„)(—7M~a —Map'+4p' )/(6M&)

+y (g „g—k„y„)(15Ma+4MaP' —6p' )/(ISMq)

+y (p„'k —p' kg „)2(Ma+/')/(9M')+p' (g„k' —k y„)(2Mq+g/')/(3M')

+(g„k —k g „)(5M&+2M&/' —3p' )/(3M&)+p' (g „k' —k y„)p"/(3M&)+p' y y„k'/(3M&)

+y p' [ 4M—&yP'+2(p„'g y~—' k)]/(9M& ) 2p' —p' y„I{!/(3M& )

+La/(2M')Iy y [ —(P'y g+y„kP')/3+2(P' —Mt, )y„k'(P'+Ma)/(3M')]
+p' y y„lt', (2p' MaIf—' —4M& )/(3M& ) y—p' y„g(2p' M—agf' —4M& )/(3M& )

+(2p' —3Mt, )[4(k g „—g„k )+2y (g„g—k y„) —2y (g „k—k y„)](jf'+Ma)l(3M~a)

+[2(g„k ky„—)p' 2p' (g—„lt! ky —)](2p' 3M~ )—(Jf'+M~)/(3M~ )

2p' p—' y„k'(Jf'+Ma )/(3M' )],
C „(p k)=[2(p' —

3M' )y„&/(9M' ) (p„k—
' pk—y„)/(9M )]y y~+(7M'+M gf 4p'—)(It'gp„y„k—p)y /(6M' )

+ ( —I ~Ma —4M p+ 6p ')( kg „—y„k )yp l(18M' )+2( —M gf )(—p„k —p kg „)y~/(9M' )

+( 2M' —gf)(kg—~ yak~)p —/(3Mt, )+( —5M' —2MaJf+3p )(k gf —g kt )/(3M&~)

P(kgp„—key„)p~—/(3Mt, )+y„Rye~/(3M')
+[—4Mayp' —2(p g —y~ k)]p y~/(9M't, ) —2y gp pt/(3M' )

+A&/(2M&) I [ —(If y&k'+y&gp)/3+2(p Ma)(Jf+—M&)yp'/(3M' )]y yt

+(2p' MaIf' 4M—
& )y„k—yg~/(3M ) (2p Ma—IJ 4M—

& )y„le—yt'/(3M' )

+(2p —3M' )(g/+Ma)[4(keg~„—gp„k~)+2(k'g „—y k )y~+2(y kf ggt )y ]/—(3M' )

+(2Jf —3 Mz)( fJ+M)&[2(k g„—y„k )p~+2(y„k~ gg~„)p ]/(—3M&)
—2(gf+M~)y 1/p p~/(3Mt, )] .

[1]J. Deahl et al. , Phys. Rev. 124, 1987 (1961);V. E. Barnes
et al. , CERN Report No. 63-27, 1963 (unpublished); J.
Debaisieux et al. , Nucl. Phys. 63, 273 (1965);R. T. Van de
Vr'alle et al. , Nuovo Cimento 53A, 745 (1968); T. D. Blo-
khintseva et al. , Yad. Fiz. 8, 928 (1968) [Sov. J. Nucl.
Phys. 8, 539 (1969)].

[2] B. M. K. Nefkens et al. , Phys. Rev. D 18, 3911 (1978); K.
C. Leung et al. , ibid. 14, 698 (1976); D. I. Sober et al. ,
ibid. 11, 1017 (1975); M. Arman et al. , Phys. Rev. Lett.
29, 962 (1972).

[3] D. E. A. Smith, P. F. Glodis, R. P. Haddock, K. C. Leung,
and M. A. Tamor, Phys. Rev. D 21, 1715 (1980).

[4] S. M. Playfer et al. , J. Phys. G 13, 297 (1987).
[5] C. A. Meyer et al. , Phys. Rev. D 38, 754 (1988).
[6] R. E. Cutkosky, Phys. Rev. 109, 209 (1958); 113, 727

(1959).
[7] P. Carruthers and H. W. Huang, Phys. Lett. 24B, 467

(1967).
[8] S. C. Bhargava, Nuovo Cimento 58A, 815 {1968).
[9] L. A. Kondratyuk and L. A. Ponomarev, Yad. Fiz. 7, 111

(1968) [Sov. J. Nucl. Phys. 7, 82 {1968)];Nucl. Phys. B36,
519 (1972).

[10]V. I. Zakharov, L. A. Kondratyuk, and L. A. Ponomarev,
Yad. Fiz S, 783 (19.68) [Sov. J. Nucl. Phys. S, 456 (1969)].

[11]C. Picciotto, Phys. Rev. 185, 1761 (1969); Phys. Rev. C 31,
1036 (1985).

[12] R. Baier, L. Pittner, and P. Uran, Nucl. Phys. B27, 589
(1971).

[13]W. E. Fischer and P. Minkowski, Nucl. Phys. B36, 519
(1972).

[14] R. H. Thompson, Nuovo Cimento A16, 290 (1973).
[15]N. M. Musakhanov, Yad. Fiz. 19, 630 {1974)[Sov. J. Nucl.

Phys. 19, 319 {1974)].
[16]R. P. Haddock and K. C. Leung, Phys. Rev. D 9, 2151

(1974).
[17] B. Bosco, A. Conti, G. Landi, and F. Matera, Phys. Lett.

608, 47 (1975).
[18]D. S. Beder, Nucl. Phys. B84, 362 (1975).
[19]Q. Ho-Kim and J. P. Lavine, Phys. Lett. 60B, 269 (1976);

Nucl. Phys. A285, 407 (1977).
[20] B. M. Nefkens and D. I. Sober, Phys. Rev. D 14, 2434

(1976).
[21] M. K. Liou and W. T. Nutt, Phys. Rev. D 16, 2176 (1977);

Nuovo Cimento 46A, 365 (1978); M. K. Liou and C. K.



PION-PROTON BREMSSTRAHLUNG CALCULATION AND THE. . . 1843

Liu, Phys. Rev. D 26, 1635 (1982).
[22] G. Grammer, Jr., Phys. Rev. D 15, 917 (1977).
[23) L. Heller, in Few Body Systems and Nuclear Forces II, Vol.

87 of Lecture Notes in Physics, edited by H. Zingl, M. Haf-
tel, and H. Zankel (Springer-Verlag, Berlin, 1978), p. 68.

[24] P. Pascual and R. Tarrach, Nucl. Phys. B134, 133 (1978).
[25) M. K. Liou and Z. M. Ding, Phys. Rev. C 35, 651 (1987).
[26] L. Heller, S. Kumano, J. C. Martinez, and E. J. Moniz,

Phys. Rev. C 35, 718 (1987).
[27] R. Wittman, Phys. Rev. C 37, 2075 (1988).
[28] Z. M. Ding, Dahang Lin, and M. K. Liou, Phys. Rev. C

40, 1291 (1989); Z. M. Ding and M. K. Liou, Mod. Phys.
Lett. A 3, 1065 (1988).

[29) Dahang Lin and M. K. Liou, Phys. Rev. C 43, R930
(1991).

[30] F. E. Low, Phys. Rev. 110, 974 (1958).
[31]S. L. Adler and Y. Dothan, Phys. Rev. 151, 1267 (1966);T.

H. Burnett and N. M. Kroll, Phys. Rev. Lett. 20, 86
(1968); J. S. Bell and R. Van Royen, Nuovo Cimento 60A,
62 (1969).

[32] D. Yan, P. M. S. Lesser, M. K. Liou, and C. C. Trail (un-
published).

[33] Radiation decomposition identities have been derived for
particles with spin & 1 by Brodsky and Brown [S.J. Brod-
sky and R. W. Brown, Phys. Rev. Lett. 49, 966 (1982); R.
W. Brown, K. L. Kowa1ski, and S. J. Brodsky, Phys. Rev.

D 28, 624 (1983)]. We have obtained a general method to
derive these identities for particles with arbitrary spin.
The identity used here is the one for the 6+ with spin —.
The general method for deriving the Brodsky-Brown iden-
tities and the application of these identities to modify
Low's prescription for constructing soft-photon ampli-
tudes will be discussed in future papers.

[34) M. A. B. Beg, B. W. Lee, and A. Pais, Phys. Rev. Lett. 13,
514 (1964).

[35] M. A. Beg and A. Pais, Phys. Rev. 137, B1514(1965).
[36] G. E. Brown, M. Rho, and V. Vento, Phys. Lett. 97B, 423

(1980).
[37] A. Bosshard et al. , Phys. Rev. Lett. 64, 2619 (1990).
[38] M. Krivoruchenko, B. Martemyanov, and M. Schepkin,

Phys. Rev. D 41„997(1990).
[39] C. Maroni, I. Massa, and G. Vannini, Nucl. Phys. A273,

429 (1976).
[40] C. C. Trail, P. M. S. Lesser, A. H. Bond, Jr. , M. K. Liou,

and C. K. Liu, Phys. Rev. C 2j., 2131 (1980); M. K. Liou,
C. K. Liu, P. M. S. Lesser, and C. C. Trail, ibid. 21, 518
(1980).

[41] H. Taketani, M. Adachi, N. Endo, and T. Suzuki, Phys.
Lett. 1138, 11 (1982).

[42] P. M. S. Lesser, C. C. Trail, C. C. Perng, and M. K. Liou,
Phys. Rev. Lett. 48, 308 (1982).


