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Solution of the Chandler-Gibson equations for a three-body test problem
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The Chandler-Gibson (CG) N-body equations are tested by considering the problem of three
nonrelativistic particles moving on a line and interacting through attractive delta-function potentials.
In particular, the input Born and overlap matrix-valued functions are evaluated analytically, and
the CG equations are solved using a B-spline collocation method. The computed scattering matrix
elements are within 0.5+0 of the known exact solutions, and the corresponding scattering probabilities
are within 0.001% of the exact probabilities, both below and above the 3-body breakup threshold.
These results establish that the CG method is practical, as well as theoretically correct, and may be
a valuable approach for solving certain more complicated N-body scattering problems.

I. INTRODUCTION

Over a period of several years Chandler and Gib-
son (CG) have derived a. theory of N-particle scattering
which is very general and has many desirable mathemat-
ical properties [1, 2]. The unknowns in the equations of
this theory may be either transition operators [1, 2] or
lC matrices [2, 3]. This theory has been derived with
theorem-proof rigor. However, it is still necessary to test
the theory by making calculations which can be com-
pared with known results.

It does not suKce to test the CG theory using a 2-
body problem, because in this case the CG transition
operator equations reduce to the Lippmann-Schwinger
equation [4], the CG K-operator equations reduce to the
well known 2-body K equation, and these equations have
already been thoroughly tested over the years. On the
other hand, the CG equations for a 3-body problem are
different, and have unknowns which differ off-shell, from
all previous 3-body equat, ions, including the I'addeev [5]
and Alt-Grassberger-Sandhas [6] equations. Therefore, a
numerical solution for a 3-body test problem will provide
an important test of the CG theory.

In addition, we are in the process of developing a com-

puter program which uses B-splines to solve t, he CG
equations for N-body scattering problems. In order to
test this program, it is desirable to have a simple 3-body
problem which can be solved and compared with known
results. Such tests are necessary for the further develop-
rnent of our %-body computer program.

In this paper we consider a simple 3-body system which
can be solved and compared with known results. The
test problem which we consider is the nonrelativistic one-
dimensional system consisting of three particles moving
on a line and interacting through attractive delta func-
tion potentials. The main reason for using these poten-
tials is that they lead to exactly solvable three-body sys-
tems [7—9], and these exact solutions may be used for
comparison.

In order to illustrate the general N-body solution strat-
egy developed in Refs. [2] and [3], we shall follow the
notation given there. In particular, the on-shell scatter-
ing operator is obtained from either an on-shell K-matrix
K(E) or an on-shell transition matrix M(E) K(E) is the.

on-shell value of a half-on-shell K matrix JC(A, e) whose
matrix elements Kpz, (A, e ) satisfy the following system
of K equations [2, 3]

Api, »(» &)
Kp, ;(Ae ) = Ap, , (Ae )+ ) drl

' '
lC~t, ;(rl e ),

e& —g

and M(E) is the on-shell value of a half-on-shell transition matrix M(A, e) whose matrix elements Mpz, (A, e )
satisfy the following system of M-equations [2, 3]:

Ap, ~t. (A, rl)
Mp1, , (A, e ) = Api;(A, e ) + ) drl ' '

M~I.„;(rl,e ) —ixApz ~I,(A, e~)M~k, (e~, e ) . (1.2)
e~ —g

In Eqs. (1.1) and (1.2) n, P, and 7 are channel indices
which range over the possible partition and bound states
of the N particles. The subscripts i, j, and k are indices
which label the basis functions for channels n, P, and

I

p, respectively. The threshold energy for channel n is
denoted by z~, where z~ & 0. Also, e~ = E—c~, the total
energy minus the n-channel threshold energy, is the on-
shell channel kinetic energy for any open channel o. The
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integral with a bar through it denotes a Cauchy principal-
value integral.

The kernel functions Apz, (A, p) in Eqs. (1.1) and
(1.2) are of the form

+p ,
('A &') = ~p, (A &) ~p, (A p)(e p)

(1.3)

tition o. and is given by

Vc.m. = (mlri +m2r2+msr3)/mp mp: mi +m2+m3

(2.2)

The corresponding internal momentum p, external mo-
mentum q, and total momentum q, „-, are

where Cpz, .(A, p) are overlap integrals and Ops, (A, p)
are Born-type integrals. The matrix A(A, p) with matrix
elements Ap&, .(A, p) is a real-valued symmetric matrix
for real-valued potentials. Since

p = (mp)r~ —m~)rp)/(mp + m~),
q = [(mp + m~))r —m (7rp + 7r~)]/mp,

qc. m. = 7t 1 + &2 + &3 (2.3)

Ap, , (A, e ) =Bp, , (A, e ), (1.4)

II. KINEMATICS AND COORDINATES

Let the masses of the three particles be denoted by rn~,
rn2, and rn3. The possible partitions A of the particles
are denoted by 0, 1, 2, 3, where 0 denotes the free parti-
tion 1+2+3, 1 denotes the partition 1+ (23), 2 denotes
2 + (13), and 3 denotes 3 + (12). Here (nt9) denotes a
bound state of the particles n and P. It will be shown
that each partition A = 1, 2, 3 has only one bound state
for the bound pair. Therefore, there is a one-to-one cor-
respondence between partitions A and channels o, g A,
and we will use the channel indices n, P, p to denote the
partitions 0, 1, 2, 3.

We shall use clustered 3acobi coordinates which are
defined in terms of the positions? and momenta x as
follows. Let n, P, y denote a cyclic permutation of 1, 2, 3.
Then the two-cluster channel o; has internal coordinate
z~ and external coordinate y~ defined by

the nonhomogeneous terms in Eqs. (1.1) and (1.2) are
half-on-shell Born-type integrals. One of the distinguish-
ing features of the CG equations is the inclusion of the
overlap integrals Cp~, (A, p). A second is the fact that
the projections onto the channel subspaces are included
in the unknowns of the equations. A third is the explicit
way in which the breakup channels appear.

The general solution procedure consists of three steps
[2, 3]: (1) Evaluate the kernel functions Apz, (A, p). (2)
Solve Eq. (1.1) for the matrix elements K'p&, (A, e ) or
Eq. (1.2) for the matrix elements Mpz „,(A, e„). (3) Use
the identities of Ref. [2] or [3) to calculate the scattering
amplitude. Steps (1)—(3) are carried out in Secs. II—IV
for our 3-body test problem.

In Sec. II we discuss kinematics and introduce our co-
ordinate systems and basis functions. In Sec. III we de-
scribe the numerical solution procedure which we use to
solve Eq. (1.1) or (1.2) and compute the scattering ma-
trix. In Sec. IV we summarize the results of our calcula-
tions and compare them with the known exact solution.
Our conclusions are contained in Sec. V. The paper ends
with an appendix containing the detailed evaluation of
the matrix elements of A(A, p).

The free partition 0 may be described by (z, y, y, )
or (p, q, q, ~ ) for any ci = 1, 2, 3. The reduced mass
p for the pair (Pp) and the reduced mass P, for n with
respect to (Pp) are

rnp myp~— )

mp + my

m (mp + m~)
?Tl p

(2 4)

respectively, where n, P, 7 denote a cyclic permutation of
1,2,3

The natural Hilbert space for three particles in one
dimension is l:2(Rs). After removing the center of mass
motion, the Hilbert space of interest, is 'R~ = l:~(R2),
which may be identified with l:2(R) l: (R). The free
Hamiltonian Ho is defined by multiplication by

2 2
PO,TP(P, q )—:

2
+

22@a 2pc
(2 5)

Hp is a self-adjoint operator on its domain 'D(Hp) & 'Hiv.
Let V denote the potential for the two-body interac-

tion of particles P and p. In order to simplify the cal-
culations and compare with known results [7], we define
these potentials to be multiplication by the distributions

V (z ):—-g b(z ), (2.6)

n = 1, 2, 3, where g are strength constants and b( ) is
the Dirac delta function. The total Hamiltonian H~,
defined on its domain in H~, is of the form

H~ = Hp + Vp = Hp + (Vi + V2 + Vs) (2.7)

The unique solution for n = 1, 2, 3 of the eigenvalue prob-
lem

H. 4

is easily computed to be

(2.9)

The operator H~ is well defined and self-adjoint as a sum
of quadratic forms. For each partition o. , a = 1, 2, 3, the
total Hamiltonian H~ decomposes as

H~ = H +H +V = + V~ i+i i+(Vp+V~) .
p' '~ (q' l

2p~ ) i 2p~d

(2.8)

z = r~ rp, y = r— (mprp+m~r~)/(m—p+m~) . 1 2
&a = pug~ )

2
(2.10)

(2.1)

The center-of-mass coordinate is independent of the par-
with normalized eigenvector P given in coordinate space
by
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y (z.) = ga. e

and in momentum space by

(2/2r)'l2(a )sly
(p-) =

2 ++CX Q'

(2.11)

0p ——0 + rp

(2.12) where rp is defined by

Lemma 1.—If o, p, 7 is any permutation of 1, 2, 3, then
the angles 0~ and 0p are related by

where a = p~g
The transformation from one set of 3acobi momenta

(p, q ) to those for a second set, (pp, qp) is given by [10]

Ijp Pa p~
pp 1 ~ + C~p g~ ) Qp C~ppQ' gA )

m~ Pp

(2.13)

where

cos rp~ =— 7m~ mp

(m + m, )(mii+ m, )
'

{2.21)

and e p is defined in Eq. (2.14).
Proof. —Substituting Eqs. (2.19)
Eqs. (2.13) gives

into the first of

l7lp mo
sin rp~ —t'~p

(m + m~)(mp + m~)
'

+1 if nP is in cyclic order,
—1 if nP is not in cyclic order. (2.14) +2pp p sin 0p —— +2p~ p sin 0

(2.15)

In other words, e~p is +1 for (crP) equal to (12), (23),
and (31), and —1 for (13), (21), and (32). The Jacobian
of the transformation is equal to one.

For each partition a = 0, 1, 2, 3 we use kinetic energy
hyperspherical (KEHS) coordinates [2]. Suppose n de-
notes one of the two-cluster partitions 1, 2, or 3. Let
k—:q /y 2P and decompose k as k = k ~k ~, where

k = k /~k [
= sgn k . Letting p = ~k [~ denote the

input kinetic energy, we have

q =k +2p p.

+e~p +2p~p cos 0~
Pp

(2.22)

Hence,

sin0p = m'gp —ppsi n0 + e pp pp'
= cos rp sin 0 + sin rp cos 0

= sin(0 + rp ),

—1
p ~ p p cos 0~

(2.23)

where the definitions in Eqs. (2.4) have been used, and
cosrp and sin rp are defined in Eqs. (2.21). Similarly,
the second of Eqs. (2.13) yields

The Jacobian v (p) of the transformation from q to the

(k, p) coordinates is (Ref. [2], Lemma 3.1)

(2.16)

——1 —1cos0p ———e p p pp s1n0 —p rn

= —sin 7p sin 0 + cos 7p cos 0:cos(0~ + Tp~)

p~ pp cos 0~

(2.24)

In this case, the surface of the unit kinetic energy hy-

persphere is zero-dimensional with k = +1. Since k
assume only the values +1 and —1, we define the "basis
functions"

This proves the lemma.

Corollary 1 The co.—nstant angles rp, with P g a, are
in the interval 2r/2 & rp & 32r/2, and they are given
by

g +(k ) =b(k —1), g (k ):—b(k +1), (2.17)

where b( ) is the Dirac delta function.
Now consider the breakup partition 0. For external

coordinates we may use (p, q ) for any n = 1, 2, 3. If p
denotes the input kinetic energy, then

2 2
P~P=

2p~ 2pc

Letting

p = /2p psin0, q = +2/ pcos0

(2.18)

(2.19)

with —m ( 0 & ~, we obtain new KEHS coordinates
(0,p) for any a. = 1, 2, 3. In this case the surface of the
unit kinetic energy hypersphere is one-dimensional and
may be parameterized by 0 for any o. = 1, 2, 3. How-
ever, it is undesirable to have three different angles 0
describing the same three-cluster partition O. Therefore,
let us fix n and suppose P g n. The following well known
lemma shows that 0p —0~ is a constant. We include its
proof for completeness.

me mo
rp~ = tan

~

e~p-
m mp

The angle r is equal to zero.

(2.25)

In order to be definite, we will use {pi, qi) for the ex-
ternal coordinates in the breakup partition O. Let 0 = 01,
with —vr ( 0 & ~, and let

ko ——~ko~ko = ~p(sin 0, cos 0)

( V'2p,
' 4'2p, ) ' (2.26)

The next lemma establishes useful formulas for trans-
forming from the (p, q ) momenta to the (0, p) KEHS
coordinates.

Lemma 8.—Let 0:—01, and let r~y be defined as in Corol-
lary 1, for o. = l, 2, 3. The following identities are then
valid for ~ = 1, 2, 3;

p = +2p psin0 = +2p psin(0+ r i)
= +2p pcosr i sin 0+ +2p psin r i cos0, (2.27)
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1
l(0) = ~ sin m0, (2.30)

all d

q = /2P pcos0 = +2p pcos(0+ r i}
= —/2p psinr isin0+ /2p pcosr icos0.

(2.28)

Furthermore, the Jacobian of the transformation from

(p, q ) to the KEHS coordinates (0, p} is given by vz~(p),
for any a = 1, 2, 3, where

vo(p) =—V popo = /mim m&lmo . (2.29)

Proof Th.e—identities in Eqs. (2.27) and (2.28) follow
immediately from Eqs. (2.19), (2.20), (2.23), and (2.24).
Eqs. (2.27) and (2.28) directly yield Eq. (2.29).

As a basis set (go ), m = 0, +1,+2, . . . , on the one-
dimensional surface of the unit hypersphere (circle) we
choose the orthonormal Fourier series basis functions de-
fined by

1 1
goo(0)—: , go, , (0) = cos rn0,

for —x & 0 & x, and rn = 1, 2, . . . ,

III. NUMERICAL SOLUTION PROCEDURE

A. Computational form of the PC and M equations

(& ~) —= vp '(&)&p~, '(& S )v. '(~) (3.1)

and analogously defining Kpz, . (A, p) and Mpz, .(A, p),
the system of equations in Eq. (1.1) becomes the follow-

ing system of K equations,

The input terms Apz ~,.(A, p) in Eqs. (1.1) and (1.2)
contain the Jacobians vp(A) and v (p). These factors
may be singular, and the computational characteristics of
either of these equations may be improved by removing
these factors [3, ll]. Therefore, we multiply Eqs. (1.1)
and (1.2) on the left by vp (A) and on the right by
v i(e ), where e = F —s is the on-shell value of the
input channel kinetic energy. Letting

Ap (A, g)
/Cp~, (A, e„) = Ap~;(A, e )+ ) dil

' '
v~(g)JC~I, „,(il, e ),

e~ —g
(3.2)

and the system of equations in Eq. (1.2) becomes the following system of M equations,

&p~, ~~(& n) ~Mpz, (A, e ) = Ap~, (A, e )+ ) dry
' ' v (rl)M~k, (rl, e ) —inApz ~1(A, e~)v (e~)M~I, ;(e~, e )

e& —g

(3 3)

Specific formulas for the input terms &pi ~, (A, p) in
Eqs. (3.2) and (3.3) are given in Appendix A and in
Sec. III C.

In Eqs. (1.1), (1.2), (3.2), and (3.3) A and il are the ki-
netic energy variables of channels P and p, respectively.
We remark that we could alternatively use the momen-
tum variables k = ~e, k = y A, and k' = ~il. The re-
sulting equations are equivalent and have the same com-
putational features as the corresponding Eq. (3.2) or (3.3)
[3, ll]. The choice is a matter of personal preference. We
emphasize, however, that it is the on-shell K(F) matrix
with matrix elements Kpz ~, (ep, e~) that is related to the
scattering matrix 8(E) by Cayley transformation [3].

It follows that rno ——3, and for all o. = 1, 2, 3,

1 — 2
pa =

g pn = )
2 3

(3.6)

g
2

4
g

Q
2

(3.7)

The Jacobians are

vo(S) =, v. (I ) =1 2 1

v3p
(3.8)

for n = 1, 2, 3. The first equation in Eq. (2.21) gives

B. Constants

1
cos rp~ ———,2' (3.9)

I$ —7A 2 —I3 —1 (3 4)

In order to compare our results with a known exact
solution [7], we set the masses m of all three particles
equal to unity, =0 2x 4'

72y:, and 'T3]
3 3

(3.10)

We will need the constants (~~ defined by

for all n g P, and by Corollary 1 of Lemma 1, the con-
stant angles ~ ~ are

and we set the potential strength constants g~ equal to
a common constant value g (usually taken to be 3),

(3.5)

I ~2/2, for m = 0
cos mr~i, for m ) 0

, sin rn7-~q, for m g 0
(3.11)
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with 7 i defined by Eq. (3.10) for n = 1, 2, 3. We will
also need the constants b~~ defined for o. = 1, 2, 3, and
m = 0, +1,+2, . . . , by

b—:) ( p.
Pgcr, 0

(3.12)

& a
2

'~2/2, for m=0
]. , for rn) 0

,0, for m(0
(3.13)

for all n = 1,2, 3. On the other hand, for m g Is,

The constants ( and b are of two types, depend-
ing on whether or not rn is an integer multiple of 3.
Let I denote the set of all integers. Let I3 denote
the subset of the integers which are multiples of 3, i.e. ,

Is = (0, +3, +6, . . .), and let Is—:I g Xs denote the re-
maining integers. Then for m p I3,

When m ( 0 and a = 2, the sign of (~ in Eq. (3.14) is

plus for rn = 1+ 3m and minus for m = '2+ 3m, with
m Q I3 The sign of ( for m & 0 and n = 3 is always
the negative of the sign for n = 2.

C. Kernel functions

General formulas for the kernel functions Ap~, (A, p)
are derived in Appendix A. When the constants are cho-
sen as in Sec. III—B, these general formulas simplify. The
simplified formulas for the matrix elements of A(A, p) are
the following. Eqs. (Al), (A15), and (A25) yield

—3g /x3
& +, +(A, p) =& —, +(A p) =

(&A + ~p)'+ 3g'
f'1

1
2 )b—0

~Ms

for rn&0
for m)0
for m&0
for m(0
for m&0

and A'= 1
and n=2, 3
alld Cl = 1

ancl cr = 2

and Q =3.
(3.14)

(3.15)

for all Q g 0 In Eq. (3 .15) and the following, all equa-
tions written with a choice of + or —signs are to be
read with either all upper signs or all lower signs. Using
Eqs. (Al), (A8), and (A23), we obtain

App, y(A, p) = Ap ~(A, p)
—3g

4x
1 2

4A+ p 6 4+Ap+ 3g2/4 A+ p ~ 2/Ap+ 3g2
+

9gs(4ir) '(e —p)
(A+ 4p + 4/Ap+ 3g'/4)(4A+ p y 4/Ap+ 3g2/4)

'

for all n and p satisfying 0 g p g n g 0. Eqs. (Al), (A13), and (A29) give

(3.16)

5/2 b
&p, a~(A, p) =—

2~2
cos rn0

(2~A cos 0 + ~p) & + 3g 2/4

' —~3g ~ ( cos(mcos ' +gp/A)(e —p, ) for A) p+ &
2n'QA —p(A —p + g2/4)

, 0, for A ( p.(A p)+&p (3.17)

for n = 1, 2, 3, and m = 0, +I, +2, . . . , where Ap~ ~~(A, p) is the integral term and QIpI ~(A, p) is the term in braces
in Eq. (3.17). Since A(A, p) is a real-symmetric matrix, we may set

Apy p (A, p) = Ap pg(p, A), (3.18)

and use Eq. (3.17) to evaluate the right-hand side of Eq. (3.18), for p = 1, 2, 3, and m = 0, gl, ~2, . . . . Finally,
Eqs. (A37)—(A39) yield

Ap„p (A, p) = &

cos (n cos [g(p/A) cos bj]) cos m8

gA —p cos~ 0

cos (m cos i [/(A/p) cos 0]) cos ng

/p —A cos~ 0

for A ~ Ij,

for A( p

(3.19)
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where

i/3g
fYEA —

g tA& AQ'
7r

and m, n = 0, +1,+2, . . . .

D. Symmetrization simplifications

(3.20)

if an approximation either has only the rn = 0 breakup
term or no breakup term. In these cases, the + and
—basis functions may be decoupled in a manner that
is similar to the decoupling used by Dodd in the 1984
Ref. [7].

E. B-spline solution method

aIld

At„„(A,p) =—
&

~ At j „(A,p), for b = 0

, Qp i &pj,as(A, p)~ for b = 1

(3.22)

for a, b = 0 and 1. We note that, Eqs. (3.13), and (3.17)
imply that Ao ~y(A, rj) does not depend on 7 for 7 =
1, 2, 3, and, therefore, the sum over p = 1, 2, 3 in Eq. (3.2)
may be moved to the right of these terms when P = 0. It
follows that the summation of Eq. (3.2) over P = 1, 2, 3
gives

Kbj, ai(Ai ea) = +bj,ai(A~ ea)

gi j,g(A, i1)+ d77
o ec —

77

xv, (g)K, g „(il,e,), (3.23)

A consequence of setting the masses and potential
strengths of all three particles equal to the common val-
ues 1 and g, respectively, is that the particles become
indistinguishable. In this case the approximate system
of equations in Eqs. (1.1), (1.2), (3.2), and (3.3) may
have some symmetries which allow certain simplifica-
tions. In particular, if an approximation does not have
any breakup term, or has only breakup basis functions
with rn p I3, then a simplification is possible. In fact,
our numerical results show that only m g I3 give nonzero
contributions, but we do not yet have an analytical proof.
We present the symmetrization simplifications only for
Eq. (3.2), however, the analogous steps may also be ap-
plied to Eqs. (1.1), (1.2), and (3.3).

Suppose an approximation is made using only breakup
basis functions Ao (8) with rn C Is. The symmetrization
procedure of Refs. [12] and [13] may t, hen be applied to
combine the P=l, 2, and 3 channels. In particular, let a
or b = 0 denote channel 0. Let b = 1 denote the equiva-
lence class (I, 2, 3), and let a = 1 denote the particular
choice n = 1 from the equivalence class (1, 2, 3). Define

(' Ktj .;(A, e,), for b = 0
Kt j „(At e, ) —=

Pp —i Kpj, ai(A~ ea)~ for b = 1

(3.21)

In our numerical solution of Eq. (3.2), Eq. (3.3), or
one of the symmetrized equations in Sec. III D, we have
used the cubic B-spline collocation method described in
Ref. [3]. The 8-spline knots and collocation points were
chosen on the interval [—1, 1] and then mapped to [0, oo)
by the mapping

(3.24)

In particular, n knots zz, j = 1, 2, . . . , n, together with
the extended knots z 2, z q, zo, and z„-+I,z„-+2, z„-+~,
were chosen in [—1, 1] in the following manner. n —4
interior knots were chosen to be the Chebyshev points

(2j —1)s.
2(n —4)

(3.25)

F. Regularization of singularities

The B-spline collocation method [3] requires the nu-

merical evaluation of the integrals in Eq. (3.2) or (3.3).
We write these integrals as a sum from 8 = —2 to 8 = n+2
of the integrals

"i+~ Ap q(A- rj (3.26)

for j = 1, 2, . . . , n —4. The four knots z 2, z I, zo, z~
were all chosen at —1, and two extra knots, z~ and z3,
were chosen to be evenly spaced between zI and zq. The
remaining knots were chosen to be z„&, —z

& 2 +
(1 —z„+& &)/2", for k = I, 2, 3, and z„-+s = 1. The
n + 2 collocation points zz were taken to be zz = zz,

2~3)~n+ 1~zi I+(z2+ 1)/2, and zo
—1+ (zi + 1)/2. Using the mapping of Eq. (3.24), we

then defined Aj = A(zj), for j = —2, —1, 0, . . . , n+3, and
Aj = A(zj), for j = 0, 1, . . . , n + 1. By choosing an even
number n of knots we enforced that Aj g e . In order
to also assure that Aj g e& for y g n, we slightly moved
any Aj that equals e~ for some y g n.

Letting bz(A), j = 0, 1, . . . , n + 1, denote the resulting
n + 2 cubic B splines on [0, oo), we expanded the un-

known K- or M-matrix elements by a sum of the form
P„"-+0 cpj&b& (A). The -collocation method then yielded a
system of algebraic equations which were solved for the
coefIIclents cp&&.

where the channel indices a, b, and c now range over only
the values 0 and 1. We remark that Eq. (3.23) is also
valid if an approximation has no breakup term so that
a = b = c = 1 is the only channel.

An additional simplification of Eq. (3.23) is possible

In addition, if both Aj and e~ belong to [A&, A& i], then

we further subdivide [A&, A&, ] into two subintervals by

choosing a point A'- halfway between Az and e~. Each
subinterval then contains at most one singular point. The
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integrals that do not contain a singular point in the in-
terval of integration were evaluated by Gauss-Legendre
quadrature using 32 quadrature points.

The integrals in Eq. (3.26) containing singular inte-
grands were evaluated using singularity subtraction [14].
In particular, when A& ( e~ ( A&+, , there is a Cauchy

singularity at rl = e&, and the integral I&" &(A&) was

evaluated using the singularity subtraction Eq. (4.19) of
Ref. [3]. The singularity in Eq. (3.26) at rl = 0 arising
from the Jacobean v (p) in Eq. (3.8), and the singularity
at i1 = A~ arising from the input terms in Eqs. (3.17)—
(3.19) were also regularized by singularity subtraction.

I

The regularized integrals were then approximated by
a Gauss-Legendre quadrature rule using 32 quadrature
points.

As one example of the singularity subtraction method,
consider the integral I"+ p (Az). When Az g [A&. , A& i]
(but ep —— E does not lie in [A&, A&+, ]), the term
A' + p (Az, g) defined in Eqs. (3.17) and (3.18) is reg-

ular at i1 = Az, but the term A"+ p (AI, rl) is singular at

g = Az- due to the factor (il —Az) I . Therefore, we have
evaluated the integral using the singularity subtraction
formula

~3I "~ (A;) =
"+ A' ~ o (A;, il)b„-(g)

d77
ep —

77

" + A'"~
p (A~-, il)(ep —g) ib&(g) —A"'+

p (Az, A~)(ep —A~) ib&(A) )
dg

J 77
—A-

2

+2 AI, —AIg'"~ o (AI, Ay)(ep —AI) b„-(AI), (3.27)

where

&'."+,o (AI &) =— A;A ~o (A;, il) (3.28) Ap„p (A, p) (3.30)

As a second examPle, consider the integral Io„"ro„,(A&),
which requires some special consideration. This integral
has a logarithmic singularity at 77 = A&. Division by
ln ~A&-

—
rj~ would remove this singularity, but niay intro-

duce new singularities when [A~
—g( = 1. Therefore,

we chose a fixed constant 6 p (0, 1) (we mainly used
6 = 0.75, but our results were insensitive to the partic-
ular choice of b), and let h(rl) = (1 —rl/b)~(1 + 2'/b),
the unique cubic polynomial satisfying h(0) = 1, h'(0) =
0, h(b) = 0, and 6'(b) = 0. We then defined

&o,o (p p) = l'm ~o o (p+ ~ p)

1+ (-1)"'-
2~@

(3.31)

where Ap„p (A, p) is defined by Eq. (3.19) with c „de-
fined in Eq. (3.20). We then analytically computed the
limit

1 —h(g) ln rl, 0 ( g ( 8
L) = (3.29) Using singularity subtraction, we wrote

y 3Io„"o (A;) =
' + — &o. , o (Ag n) b~ (i1)

dgI. ([A; —g[)
ep —

77

Ao„p (A;, A;)b„-(A;)

ep —
A~

Ao„p (A;, Ay-)b~(A;)
+

ep —
A~

~a+ I

dgI. ([A; —
ref) . (3.32)

The first integral in Eq. (3.32) was numerically evalu-
ated using a 32-point Gauss-Legendre quadrature, and
the second integral was evaluated analytically.

For n g 0, the nonhomogeneous terms Apz ~, (A, e~)
in Eq. (3.2) are nonsingular for all A p R,+, and for all

P including P = 0 [since the second term in Eq. (3.17)
vanishes at p = e ]. However, the n = 0 terms given

in Eqs. (3.18) and (3.19) have integrable singularities at
A = ep. Consequently, it would not be practical to use
the collocation method to solve Eq. (3.2) with n = 0.
Instead, the Galerkin method [3] should be used in this
case. Since the published analytical solutions in Ref. [7]
do not include any formulas with the input channel o.
set equal to the breakup channel, we have nothing to
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compare with in this case anyway, and we have not at-
tempted to compute solutions with n = 0. We do in-
clude the p = 0 terms in the kernels of Eqs. (3.2) and
(3.3). We note that since S(E) and IC(E) are block di-
agonal, the matrix elements jCo„o (A, eo), which we did
not compute, do not contribute to Sp~ 1+(E) S.ince it
is known analytically that our on-shell K matrix K(E)
is symmetric, we have used this symmetry to obtain the
full computed on-shell IC matrix K(E).

We remark that the (A —p) '~2 singularities in
Eqs. (3.18) and (3.19) arise from the Jacobians v2(p) in

Eq. (3.8) for this problem in a space dimension of n = 1.
If n = 3, t, he analogous terms will be (A —p)1~2. Conse-
quently, the o. = 0 terms should not be a problem for the
collocation method when the space dimension is n = 3.

where

rr(E) = 2g s(E+ g~/4), (3.40)

ICt+, ~+(E) = &t-,~-(E) =—o(E) (3.41)

with all other matrix elements equal to zero. Iu our work
we have used Eqs. (3.39)—(3.41) to compare our numeri-
cally computed values with the exact quantities.

IV. NUMERICAL RESULTS

and all other matrix elements of S(E) are zero. Using
the inverse transform to Eq. (3.34), we also learn that
the exact on-shell K-matrix K(E) has matrix elements

G. Computation of the scattering operator

Since our oA-shell iC and ~ operators are diA'erent

from previous operators, it is possible to compare only
our on-shell values. At total energy E the kernel of the
on-shell approximate scattering matrix S(E) has matrix
elements given by the equation [2, 3]

kernel of Sp„(E)= v& '(e~)v '(e )Pp(pp)P* (p )

x ) gpss(kp)Sp~, (E)y' (k )
iQn
i CP

(3.33)

The matrix S(E) with matrix elements Sp~ „,(E) is re-
lated to our IC matrix K(E) by the Cayley-type transform

S(E) = [X(E) —i~iC(E)][X(E)+ i~K(E)] ', (3.34)

and our approximate on-shell transition matrix M(E) is

related to S(E) by the formula

S(E) = Z(E) —2~iJH(E) . (3.35)

12~1
&(pi, pt) =

g (pt —ig)(3pt —ig)
'

and Dodd shows that

The exact values of the matrix S(E) follow from the
work of Dodd [7]. In particular, the limit p&~pq in

Eq. (14) of the 1971 Ref. [7] yields

We have solved Eqs. (3.2) and (3.3) using the breakup
basis functions in Eq. ('2. 30) for several integer values
of rn. Although we do not have a complete analytical
proof, our numerical results show that only the values of
m which are nonnegative mult, iples of 3 have nonzero con-
tributions. In this case, the syst, em in Eq. (3.2) may be
symmetrized as shown in Eq. (3.23). Since computations
using the symmetrized equations are considerably faster,
all of our subsequent K-equation calculations were per-
formed using Eq. (3.'23), and our transition operator cal-

culations were performed using the M equations which
are analogous to Eq. (3.'23).

The breakup threshold total energy is E = 0.0, but as
is well known [7], there is no actual physical breakup for
this identical particle problem. Figure 1 is a graph of our
computed half-on-shell K-matrix elements Ko„, ~+(A, e ~),
using 28 B-spline basis functions and the four breakup
Fourier cosine terms in Eq. (2.30) with m=0, 3, 6, and
9. The above-breakup total energy is E = 0,75, which
corresponds to the input kinetic energy e l ——3.0. The
on-shell value of A is A = eo ——0.75, and we note that all

X, „(P,3},for m = 0,3,6,9.

LEGEND
~ =m 0
o~ m~3
~ = m~6
U~ m~9

St+ i+(E(p, )) = S, , (E(p, ))
2l g= I+ X(p, p ),
3Pl

(3.37)

and all other matrix elements are zero. Removing the
complex quantities from the denominator in Eq. (3.36),
and expressing Eq. (3.37) as a funct, ion of the total energy

E = E(pt) —=
4 ) (3.38)

I

0.0 0.5
I

$.0
I

1.5
I I I

2.0 2.5 3.0
I

3.5 4.0

gives

St+, i+(E) = St —,t —(E)
E~ —rr2(E) . 2Ecr(E)+iE2+ a.2(E) E2+ cr~(E) ' (3.39)

FIG. 1. Plot of Ko q+ (A, 3) vs A, for m = 0, 3, 6, 9, com-
puted using 28 B-spline basis functions. The on-shell value
of A is A = 075.
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four of the curves vanish there, explaining why there is
no physical breakup in this problem.

The Faddeev equations [5] have been solved analyti-
cally for this problem by Dodd [7]. Since our half-on-shell
operators are different from those arising in the I"addeev
equations, it is only possible to compare our on-shell so-
lutions with those of Dodd. I"ig. 2 contains a graph of the
real and imaginary parts of the exact on-shell matrix ele-
ment Sq+ q+ (E). The exact matrix element St t (E) is

identical. All other matrix elements of the exact on-shell
scattering matrix S(E) are equal to zero.

In I"ig. 3 we show a logarithmic scale graph of the
absolute value of the difference between our computed
Sq~ q+(E) matrix element and the exact Sq+ t+(E) ma-
trix element for all energies from the 2-cluster threshold
E = —2.25 to E = 1.75, using Eq. (3.23) and 28 B-spline
basis functions. The top curve is the solution using no
Eq. (2.30) breakup terms, the middle curve is the solu-
tion using only the rn = 0 breakup term, and the bottom
curve is the solution using the three breakup terms with
m = 0, 3, 6. We note that the solutions are converging
for all energies E, both below and above breakup, as the
number of breakup basis functions increases.

Tables I—III show the results of our calculations us-
ing Eq. (3.23). In particular, our computed values of
the real and imaginary parts of Sq+ q~(E) for the below-
breakup energy E = —1.25 are shown in Table I and
compared with the known exact values. Table II shows
a corresponding comparison for the above breakup en-
ergy E = 0.75. The columns labeled m in 0 give the
index values m of the included Eq. (2.30) breakup basis
functions. Prob~+ q+ is the probability of elastic scatter-
ing in the forward direction. Table III shows our com-
puted values of the additional scattering operator matrix
elements Sp& t+(E), and the corresponding probabilities
Probpz q+(E), at the above breakup energy E = 0.75 us-

ing m = 0, 3, 6, and 9. Tables IV and V show the corre-
sponding results of our E = 0.75 above-breakup calcula-
tions using the transition operator Eq. (3.3) symmetrized
as in Eq. (3.23).

Absolute Error of Computed 8„„(E).

LEGEND
no breakup

o~ m~0
~ ~ m~0, S,S

-2.25 -1.75 -1.25 -0.75 -0.25 0.25 0.75 1.25 1.75

1 IG. 3. Absolute error of computed Sq+ q+(E) using no
breakup term, only the m = 0 breakup term, and the three
breakup terms with m = 0, 3, and 6.

Tables I, II, and IV show the effect on the elastic (1+)
channel of increasing the number of I'ourier cosine series
breakup basis functions in Eq. (2.30) from zero to the four
values m=0, 3, 6, and 9. Our computer program also has
good numerical stability with respect to increasing the
number of B-spline basis functions bz(A).

We note that the computed probabilities in Table III
sum to 1.000 000000, reflecting the fact that our use of a
symmetrized lC(E) matrix automatically yields a unitary
approximate scattering matrix S(E). On the other hand,
the computed probabilities in Table V sum to near 1, but
not exactly 1, showing that the scattering matrix S(E)
computed using the CG transition operator equations is
approximately, but not exactly, unitary.

The calculations shown in the tables were done on a
SUN 3 workstation. The more time-consuming calcu-
lations required to make I"ig. 3 were done on an IBM
6000-320 workstation.

~I
~D s

Graph of exact S„„(E).

I I I I I I I

-2.25 -%75 -1.25 . T5 -0.25 0.25 0.75 'l.25 1.75

E

FtC. 2. Gra.ph of the real and imaginary parts of the exact
elastic S-matrix element S~~ q+ (E).

V. CONCLUSIONS

In order to test the Chandler-Gibson X-body quan-
tum scattering theory [1, 2], and to test, our computer
programs under development, we have solved the 3-body
problem consisting of three particles moving on a line and
interacting through attractive delt, a-function potentials.
This problem has been used previously as a test problem
[7—9], and the analytically known on-shell solution [7] is
available for comparison.

The CG equations differ from previous N-particle
equations in that the projections onto the channel sub-
spaces are included in the unknowns of the equations,
and the equations contain an overlap term which cor-
rectly couples these channel subspaces. These N-body
equations may be written in either a /C-matrix [Eq. (1.1)
or (3.2)] or a transition matrix [Eq. (1.2) or (3.3)] form.

Our computed scattering matrix elements using the
CG K equations (see Fig. 3 and Tables I—III) and the
CG M equations (see Tables IV and V) are generally
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TABLE I. Elastic channel solution of the 3-body test problem at the below-breakup total energy
E = —1.25, computed using the K-equations with 20 B-spline basis functions.

min 0

None
0

0,3
0,3,6

0,3,6,9
Exact

Re Sg+ g+

—0.82531284
—0.78083425
—0.77962675
—0.76774937
—0.76757214
—0,76958525

Im Sg+, y+

—0.55679530
—0.62456428
—0.62602347
—0.64074621
—0.64095944
—0.63854408

Probe+ i+
0.99116229
0.99978267
0.99972324
0.99999480
0.99999599
1.00000000

TABLE II. Elastic channel solution of the 3-body test problem at the above-breakup total
energy E = 0.75, computed using the K-equations with 28 B-spline basis functions.

min0
None

0
0,3

0,3,6
0,3,6,9
Exact

Re Sg+ g+

—0.93636329
—0.96568304
—0.96762656
—0.96999486
—0.96999538
—0.96923077

Im Sy+, y+

0 ~ 34060714
0.25959080
0.25216256
0.24311060
0.24310856
0.24615385

Probe+, y+

0.99278944
0.99993112
0.99988712
0.99999280
0.99999280
1.000QOOOO

TABLE III. Above breakup solution of the 3-body test problem at the total energy E = 0.75,
computed using the K-equations with 28 B-spline basis functions, and using the m, =0, 3, 6, and 9
breakup basis functions.

pj, ni

1 + $ 1+
1 —,1+
00, 1+
03,1+
06, 1+
09,1+

Re Sp~

—0.96999538
—0.00064432
0.00005706
0.00008786
0.00039685

—0.00002458

Im Sp,

0.24310856
—0.00257113
—0.00000697
—0.00001096
—0.00004844
0.00000307

Probp, a,

0.9999928026
0.0000070258
0.0000000033
0.0000000078
0.0000001598
0.0000000006

Exact Prob p~

1.0000000000
0.0000000000
0.0000000000
0.0000000000
0.0000000000
0.0000000000

TABLE IV. Elastic channel solution of the 3-body test problem at the above breakup total
energy E = 0.75, computed using the W-equations with 28 B-spline basis functions.

min0
None

0

0,3
0,3,6

0,3,6,9
Exact

Re Sg+ i+
—0.93632327
—0.96611137
—0.96800600
—0.97003585
—0.96996391
—0.96923077

Im Sy+, y+

0.34Q63767
0.25780599
0.25043252
0.24314682
0.24303049
0.24615385

Probe+ g+

0.99273528
0.99983511
0.99975206
1.00008994
0.99989381
1.00000000

TABLE V. Above breakup solution of the 3-body test problem at the total energy E = 0.75,
computed using the M equations with 28 B-spline basis functions, and using the m=0, 3, 6, and 9
breakup basis functions.

pj, ni

1+,1+
1—,1+
00,1+
03,1+
06,1+
09,1+

Re Spj a,
—0.96996391
—0.00085556
0.00003203

—0.00002711
0.00035433
O.QG007226

Im Sp~, ,

0.24303049
—0.00253016
0.00002322

—0.0001 1306
0.00009323

—0.00003158

Probp~ a,

0.9998938074
0.0000071337
0.0000000016
0.0000000135
0.0000001342
0.0000000062

Exact Prob p~,

1.0000000000
0.0000000000
0.0000000000
0.0000000000
0.0000000000
0.0000000000
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within 0.5% of the exact 8-matrix solutions, and the cor-
responding probabilities are within 0.001%%uo of the exact
probabilities, at all tested energies both below and above
the 3-body breakup threshold. These results are particu-
larly impressive in light of the singular delta distribution
potentials and the singular Jacobians which arise from a
space dimension of n = 1.

We conclude that the CG t,heory works very well for.
the 3-body test problem. Either the k.-matrix approach
or transition operator approach may be used, the results
being comparable, The )C-matrix method has t, he advan-
tage that the unknowns are real valued for real-valued
potentials. The transition operator method has the ad-
vantage that the calculations need to be performed only
for the input channels of interest.

We believe that our test problem results verify that the
CG equations are attractive from a practical, as well as
theoretical, point of view. The CG equations appear to
provide an attractive alternative to other N-body equa-
tions, especially for scattering problems with (a) nonsep-
arable potentials, (b) energies above the breakup thresh-
old, and/or (c) more than three particles. The major
remaining obstacle for more complicated problems is the
analytical/numerical evaluation of the input, Born and
overlap functions. A further study of these integrals is in
progress.

and on the right by v~ (p, ) yields

Apj, (A»i) = Bpi, (A'»i) —Cpj, (A, »i)(e —y, ),
(Al)

where Ap~, (A, »i) is defined in Eq. (3.1), and Op&, (A, »i)
and Cpz, (A, »i) are similarly defined wit, h A replaced by
8 and C, respectively. General formulas for evaluating

Cp~;(A, p) and Bpz. , (A, »i) are given in Ref. [2]. In this
appendix we use these general formulas to obtain specific
formulas for our three-body test problem. The formulas
derived in this appendix are general enough to permit
the masses rn and the potential strength constants g
to be difFerent for difFerent values of n, o, = 1, '2, 3.

1. Evaluation of C(A, »i)

In this subsection we evaluate the entries in the overlap
matrix C(A, p).

Let P denote the orthogonal projection operator of
Q~ onto Q, where & is the closed subspace of &~
spanned by vectors of the form P (p )g(q ) with g p
l; (R.), and n = 1, 2, 3. For @ g Vt'iv, the vector P g g
'8 is thus given by
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APPENDIX: EVALUATION OF A(A, p)

The input terms in Eqs. (1.1) and (1.2) are of the form
of Eq. (1.3). Multiplying Eq. (1.3) on the left by v& (A)

I

(P Q)(p', q' ) = d» dq 0 (p')0" (» )

xb(q'„—q . )@(p,q ) . (A2)

Hence, P„ is an integral operator on 'H~ with kernel
given by the distribution

(»'.q'. IP I» q-) =—& (p'. )~(q'. —q-)4 *.(p-) (A3)

In Eqs. (A2) and (A3) P*(p ) denotes t, he complex con-

jugate of P (p ). Since the P (p ) in Eq. (2.12) is a
real-valued function these quantities are equal, however,
we will include the asterisk in order to illustrate the more
general case [2]. Using Eq. ('2. 13), the momenta (p', q' )
in Eq. (A3) may be transformed to t, hose for (p&, q&) to
obtain

I I Pn i Pp Ii i I Pp
(ppqplP lp q ) = 0 —

pp
—e.p qp I

~
I e.ppp

—
qp

—q-14.(p-)
v.

(A4)

Combining Eqs. (A3) and (A4) gives the kernel for PpP,

(p'pqplPpP I» q ) = dpdq(ppqplPplpq)(pqlP lp-q-)

/ p, p Pa= ~p(pp)~p e p qy+ q 4 —e p qadi
+ q 4.(p ),

m~ 1m~
(A5)

valid for all n and P satisfying 0 g P g n g 0. In obtaining Eq. (A5) we have made use of the identity»i »imam +
PpP~

——1

The next step is to express the kernel in Eq. (A5) in I&EHS coordinates. Let p = lk l2 denote the input kinetic
energy, and let A—:lk&1 denote the output kinetic energy. Substituting q from Eq. (2.15) and qp

—k&+2»i@A into
Eq. (A5) yields a formula for the kernel



SOLUTION OF THE CHANDLER-GIBSON EQUATIONS FOR A. . . 1807

Cp {p'p, kp, A;p, k, p) = (p'pkpA~bp PpP ~p k p), (A6)

valid for each 0 g P g n g 0. In Eq. (A6) bp = 1 —b~ with bp the Kronecker delta, which implies that C = 0
for all o, = 1, 2, 3.

Using the basis functions in Eq. (2.17), the expansion given in Eq. (7.10) of Ref. [2] becomes

Cp (p'p, kp, A; p, k, p) = Pp(p'p)

where

). ~~-(kp)C~-, -(A, p)X'. (k-) 4;(» ),
'AL +,
n=+, —

(A7)

(2/vr)(a ap)s~~
C~+,-+(A p) = Cp-, +(A, p) —=

[(p~m~'+2ppA + V'2p p) + a&][(+2ppA + p m&'i/2p. p)'+ a'.]
'

for all 0 $ P g o. g 0.
Consider now the breakup partition 0. Since Po ——I~, the identity operator on Q~, the kernel of POP is obtained

from Eq. (A3). In order to express this kernel in KEHS coordinates, we replace q by the right-hand side of Eq. (2.15),
and, by Lemma 2, let

p' = +2p Asin(8+ r i), q' = +2P Acos(8+ r i) .

It follows that

bo (2/x) ~ aJ b(i/2p Acos(8+ r i) —vt'2p pk )P'(p )

(A9)

(A10)

Thus [2]

Co p(A, p) = d8dp dk Ao (8)Cp (8, A;p, k„,p)P (p )A p(k )

= bo (2/~)' a

b(y'2p„A cos(8+ r~i) ~ i/'2p~p)

[2p A sin (8+ r~i) + a~]

b(i/'2P A cos 8 p ~/'2p p)
(2p Asin 8+ a2)

(A11)

for m = 0, +I, +2, . . . . In the second of Eqs. (A11) the integration with respect to dk has been evaluated using
Eqs. (2.17), and the integration with respect to dp„ is equal to l. In the third of Eqs. (All) we have used the
periodicity of the integrand to translate the interval of integration. If I = 0, then the integrand of the last integral
in Eq. (All) is an even function of 8. If m g 0, then trigonometric identities for the cosine and sine of the difFerence
of two angles may be used to express Zo (8 —r i) as a sum of even (cos m8) and odd (sin m8) terms. It follows that

b(i/2P A cos8 ~ i/2p p)do cos m0
(2p Asin 8+ a2)

Corn, a+(A& p) = 2 ~ a~ Cma.s/2 - s 3/2 (A12)

for n = 1, 2, 3, where (~„are the constants defined in Eq. (3.11). If the substitution q = i/2p~Acos8, d8
—(2p~A —

q ) ~ dq, is made in the integrand of Eq. (A12), then the resulting integral containing a delta function
can be evaluated to yield

~ (xp ) 'P '~ a ~
g cas(mt:os '+gp/A)

for A~p
Co y(A, p) = ( i/'A —p(A —p —s )

, 0, for A&p

(A13)

for a = 1, 2, 3, and I = 0, +1, j2, . . . , where z is de-
fined in Eq. (2.10). Since the operator b„oP Po is the
adjoint of the operator ho~POP~, it follows that,

hand side function given by Eq. {A13). Finally,

C~~;(A, p) = 0, (A15)

C + o (A p): Co y(p A): Co y(p, A) (A14)

for o; = 1, 2, 3, and m = 0, +1,+2, . . ., with the right-

for a, = 0, 1, 2, 3, and all combinations of i and j. This
completes the evaluation of all of the matrix elements of
C(A, p).
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2. Evaluation of B(A, p)

In this subsection we evaluate the entries in the matrix
8(A, p).

Since the potential V is given in (z, y ) coordinates
as multiplication by the distribution —g~b(z~), its value
in (p, q ) momentum space is obtained by Fourier trans-
formation T to be

(ppvplvpP l~-v-) = dpdq(p'pvplvplpq)(pvlP lu v-)

gP ] Pa
p tgp+ g )2~ m~

XP*(p ), (A18)

for all n and P satisfying 0 g P f n g 0. Eqs. (2.12),
(A3), and (A18) then give

(V-4)(»'. v'. ) = &(—g-~(~-)4(~- g-))

=&( —g ~(& )& '(0(p, v )))

(p'pv p IPp Vp P-
I p-v-)

'gp(a„ap)' a Pp(pp)P*(p )

(Vp + p~mp q~) + a
(A19)

—
2 ~(v.' —v ) M(p, v )

(A16)

Using Eq. (A18) with P and y interchanged, and then
usiilg Eqs. (2.13) to convert to (pp, qp) momenta results
in

(p'. v'. IV lp v ) = —
2

~(v'. —
v ) (A17)

Combining Eq. (A17) (with a replaced by P) and
Eq. (A4) yields

It follows that V is an integral operator on g~ with
kernel given by the distribution

(p'pvpl~, P-lp v )

I PP I P~
v)c pp + &~p qp va

27r 'IT? ~ 'l7'g p

Eqs. (2.12), (A3), and (A20) imply that

4'(p )

(A20)

(p'pvplPpv P Is-v ) = dpdv(ppvplPplpv)(pvlv P lp-v )

()upm&y Vp
—p~tTLp q~)" + (a~ + ap)

(A21)

for all nonzero and nonequal n, p, and 7. The last equation in Eqs. (A21) has been obtained by using contour
integration and the residue theorem to evaluate the integral with respect to p and then algebraically simplifying the
result. Adding Eqs. (A19) and (A21) gives a formula for (ppqp lPpV P lp q ) valid for all 0 j P g n g 0, where V

is defined in Eq. (2.8). Finally, replacing q by Eq. (2.15) and qp by qp
——kp/2ppA, gives a formula for the kernel

function

Bp (p'p, k'p, A; p, k, p) = (p'pkpAlPpV P ip k p),
valid for all 0 g )9 g o. g 0.

The expansion analogous to Eq. (A7) for Bp (pp, kp, A; p, k, p) then gives

Bp+,-+(~, v) = Bp , -p(& v)-
(A22)

ga ap gpa~ 2+ g (a +ap)
(j2ppA + p m~'+2p, p)2+ a2 (ppm /2IJpA + p mp /2p, p)2+ (a~+ ap)

(A23)

for ail n and P satisfying 0 g P g n g 0.
Fquation (A23) does not hold when p = o, . In this case both of the kernel terms will be similar to Eq. (A20). In

particular, Eqs. (A18) and (2.13) yield

)v'. v'. l&~J'-lv-v-) = —
2

4- u'. +~-~ )v.' —v-)) e.(v-),2' m~
(A24)
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and the corresponding equation with P and p interchanged. A derivation similar to Eqs. (A21)—(A23) then gives the
identities

2

8 p y(A, p) = 8 ~(A, p)—:—
p2)n~ p(,~A~ ~p)2+2a2 p2rnp p (~Ay ~p)2+ 2a2

(A25)

valid for all n g 0.
We now consider the breakup cases. First, consider the operator POV P = (Vp + V~)P . The kernel in Eq. (A18)

may be transformed to KEHS coordinates by replacing q by the right-hand side of Eq. (2.15) and qp by the right-hand
side of the second equation in Eq. (A9) (with n replaced by P ). The result, is

(a-/-2~)"'Op p p
'&*.(p-)

OAVpP p k p,
[v A cos(O+ rp) ) —k icos rp ]~ + a2/(2pp)

Here we have used the identity

Pacos 7p~ ——
m~

valid for all P g n. Defining the kernel

Bp„(O, A;p, k, p) = ) (OAiVpP ip k„p), .

Pga, O

and using the same procedure as in Eqs. (All) and (A12), we obtain

(A27)

(A28)

80 y(A, p) —= dOdp dk yo (O)BO (O, A; p, k, p)(t (p )A y(k )

&o (O)

(2~) )'

p [icos(O+ rpt) p ~pcosrp ]2+ a2/(2Pp)

3/2
qp(m. p

21/2 +2 ~
ppPga, O

cos rn0

(~Acos O ~ ~pcos rp )2 + a2/(2pp)
(A29)

for o, = 1, 2, 3, and m = 0, +1, k2, . . . . These integrals are finite and may be easily evaluated numerically.
The kernel 8 y 0 (A, p) of the operator P VOPO may be obtained from the kernel of the adjoint operator PoVOP

(V + Vp + V~)P . The kernels of the VpP terms have already been obtained in Eq. (A29). Consider the operator
V P . By Eqs. (A3), (A17), and (2.12),

(p'. q.'IV-P-lp q ) = dpdq —
2

~(q'. —q) 4-(p)~(q —q-)4".(p. )

= —
2

~(q'. —
q )&;(p-) dpi'-(p)

~(q'. —
q )4*.(p )27r

Using Eqs. (2.15) and (A9), t, his becomes

(t)A~V P ~P ( V) = —g 6 (/2P, „Acoc(8 y c, ) —( /Ilia) c)'(P ) . ,

The term that must be added to Eq. (A29) is thus

(A30)

(A31)

8() g(A, p)
—= dOdp dk g() (O)(OAiV P„ip k p)P (p )y„y(k )

—g (2a ))) ~(
d0 cos rn0b 2p A cos 0 ~ p (A32)

Letting q = /2p A cosO, and dO = —(2p, A —q ) ~ dq, the last integral in Eq. (A32) may be evaluated to obtain
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—g aa (ma cos(Icos +gp/A)
1/2 —1

1/~ for A)p
Bp p(A, p) = & xp gA —p

0, for A&@.

Then

8 +,p (A, p) = Bp, +(p A) + Bp..,.~(p A)

(A33)

(A34)

with the right-hand side functions given by Eqs. (A29) and (A33), respectively.
The kernel of PpVpPp —Vi + V2+ Vs is the sum of three terms of the form of Eq. (A17). Substituting Eqs. ('2.27),

(2.28), and (A9) into Eq. (A17) gives the kernel

(0'i(V ~8p)—:— "6 (/2p lvicoslg'+ r„&) —~ptostg + r &)I)27r

in KEHS coordinates for o = 1, 2, 3. Thus

(A35)

B.".
, p (»p)=— d0Ap (0')(O'A~ V i0p)Ap (0)

d9y~„(g' —r„, )li (/2p (KAcosg' —~pcosg)) yp (g —r, )

7r2
do cos no'cos rno b 2p, A cos 0' — p cos0 (A36)

for I,, n = 0, +1,+2, . . . , and n = 1, 2, 3. The integrand of the last integral is symmetric in A and p. Suppose that
A ) p, and let q = /2p A cos O'. Then d0' = —(2p, „A —q"") f dq, and the resulting integral with respect to q may
be evaluated to yield

8(a')
(A )

gA'(f7iA'(net'2z/2
OnOm & ~ ~ )/27t'2 p~

cos (7l cos [gp jA cos 0]) cos rn0
do

gA —p, cos2 0
(A37)

for A ) p, , I, , n = 0, +1,+2. . . , and o = 1, 2, 3. Then, for rn, n = 0, +1,+2, . . . ,

Bp„p (A, p) = ) Bp„p (A, p, ), for A ) p, , (A38)

and

Bp„p (A, p) =Bp p„(p, A), for A(p, (A39)

with the right-hand side of Eq. (A39) defined by Eqs. (A37) and (A38).
In summary, we have evaluated, or obtained integral formulas for, all of the matrix elements of C(A, p) and 8(A, p).

In particular, the matrix elements of C(A, p) are given in Eqs. (A8), (A13), and (A14). The matrix elements of 8(A, p)
are given in Eqs. (A23), (A25), (A29), (A33), (A34), and (A37)—(A39). Substit, uting these formulas for the matrix
elements of C(A, p) and 8(A, p) into Eq. (Al) yields formulas for all of the matrix elements of A(A, p). We note that
Q(A, p) is a real-valued symmetric matrix, as expected, since Q(A, p) is the kernel of a symmetric operator.

Present address: EDV-Zentrum, Universitaet Graz, A-
8010 Grenz, Austria.
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