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The reported breakdown of the low energy theorem (LET) for p(y, m ) as deduced from recent mea-

surements at Mainz and earlier at Saclay is reexamined and found to be premature. Both qualitative and

quantitative arguments are presented that suggest the conventional LET disagrees with experiment at

the 8—12% level. There is, however, a strong quenching of E +(m ) near the m+ threshold which is de-

scribed by a semiphenomenological rescattering calculation based on the integral equation for the transi-

tion operator. The results are in good agreement with the values of E +(m ) deduced from the Mainz
0

experiment, as well as the differential cross sections. Comparisons are made with other data up to

E~ =300 MeV.

I. INTRODUCTION

Measurements of the reaction p (y, m o)p near threshold,
first at Saclay [1], and more recently at Mainz [2], pro-
duced cross sections much smaller than had been antici-
pated on the basis of the so-called low energy theorem
(LET). In fact, it is claimed that the data demonstrate a
clear and spectacular "violation" of the LET itself, and
this conclusion has in turn spawned an extensive theoreti-
cal industry [3—9] which attempts to blame the
discrepancies on all manner of phenomenon from simple
final-state interactions to a severe breakdown of the par-
tial conservation of axial-vector current (PCAC).

Near threshold, the photopion cross section from the
nucleon may be written as

8
0 71% ~

2—p+ (3+tc )

where e = 1/137, f =0.080, and x. = 1.79. Model-
dependent terms, such as the PCAC-breaking vector-
meson exchanges, enter at order p . Terms of this and
higher order, although generally estimated to be small,
are excluded from the LET to conform with the strictly
model-independent spirit of the theorem. Thus, there
was some concern when the Saclay group [1]reported the
value

E +(m )=(—0.5+0.3)X10 /m (1.2)

dO g 2

dQ kq~0

where q and k are the pion and photon momenta in the
c.m. frame, and E + is the S-wave electric dipole ampli-

tude. The low energy theorems, which derive quite gen-
erally from the fundamental premises of gauge invariance
and PCAC, usually predict E + in terms of a power
series in the parameter rLt=m /M, where M is the nu-
cleon mass [10]. In the case of neutral pion production
from the proton, the LET is model independent up to,
and including, terms of order p, and is given by

while the LET prediction is

E + ( m. ) = —2.27 X 10 /m (1.3)

(Throughout this paper, m refers to the charged pion
mass. ) From the subsequent experiment at Mainz, Beck
et al. [2] report results consistent with the Saclay data,
although no threshold amplitude is specifically men-
tioned.

Our purpose in the present paper is to reexamine the
question of whether there is a large discrepancy between
experiment and the LET prediction, as has been claimed.
In our discussion, we will concentrate solely on the recent
very high quality data from Mainz. Using quite reason-
able assumptions, we will demonstrate in the first part of
our paper that the total experimental cross section
displays only a small disagreement with the LET, at
about the 8% level. It must be understood that we are
referring here to the LET at ~ threshold where it is
defined [10,11]; it generally has little predictive power
above threshold, a point often overlooked. It is our con-
tention that the interesting physics in p(y, ~ )p is not at
m threshold, but rather in the region of the m+ threshold
where the S-wave part of the cross section is highly
suppressed. In the second part of our paper, we will ex-
amine the role rescattering can play in accounting for the
suppression of E + near m+ threshold, and consider the
implications for the LET at m. threshold. As a conse-
quence, we will show that the E + amplitudes reported

by Beck et ah. are not incompatible with the constraints
of the low energy theorem.

There have been several attempts in the past to under-
stand the so-called violation of the LET by invoking
final-state interactions (FSI) through rescattering,
wherein a m+ is produced which subsequently undergoes
a charge exchange to yield a neutral pion, for example.
Most of these calculations have either relied on a E-
matrix approach [6], or have started with the integral
equation for the T matrix [5]. The typical K-matrix
method implicitly assumes that the oQ'-shell ~N charge-
exchange amplitude below ~+ threshold is equivalent to
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the on-shell amplitude above threshold, and as a result
the predicted FSI Uanish at ~+ threshold and are largest
at the m threshold (i.e., they yield a Wigner cusp). This
has led some to believe that one should compare the LET
with the p (y, n. )p cross section at the m. + threshold, not
at the m threshold.

The other approach, based on the integral equation for
the transition operator, depends on a model for the off-
energy-shell behavior of the m.N charge-exchange ampli-
tude. However, unlike the E-matrix calculations, the re-
sulting FSI are largest near the m. + threshold and tend to
be much smaller at the m threshold. Of course, a criti-
cism of the T-matrix approach is that while formally
resembling a dispersion relation, the principle part in-
tegral generally is not dominated by the low energy be-
havior of the amplitudes, which is unsettling from the
physics point of view. Nevertheless, as we will demon-
strate, the Mainz data clearly show the S-wave multipole
E + is most strongly modified near the m+ threshold, and

assuming rescattering is responsible, calls into question
the E-matrix approach.

We will show that the p (y, m ) cross section can be de-
scribed by a rescattering model based on the integral
equation for the transition operator. The resulting ex-
pression is therefore similar to that given by Nozawa
et al. [5]. We assume that the charge-exchange mecha-
nism is the dominant process, and that m. rescattering is
negligible. The on-shell values of all relevant amplitudes
in the rescattering integral were constrained by the avail-
able experimental data. The major unknown physics is
the off-energy-shell behavior (strictly speaking, the half-
off-shell behavior) of the charge-exchange amplitude.
Rather than constructing a specific form factor from fun-
damental interactions, we have turned to the photopro-
duction data and considered what sort of off-shell behav-
ior might be required in order to describe it. According-
ly, we have tried various purely phenomenological mod-
els for the off-energy-shell form factor, only one of which
comes close to giving a reasonable accounting of the data.
The ultimate purpose of the exercise is to estimate the ex-
plicit rescattering effects at m threshold by using most of
the (total) cross-section data, and thus make a statement
about the departure from the LET prediction.

By explicit rescattering effects at threshold, we mean
those FSI not already implicitly included in the conven-
tional LET's. We have adopted the point of view of Naus
et al. [11]and others [10],that in the absence of pion and
nucleon mass splittings, rescattering effects are implicitly
included in the conventional LET's and must not be add-
ed as extra corrections. (All PCAC-derived LET's
neglect the pion mass splittings). However, when the
mass degeneracies are removed it is not clear if this is still
correct; perhaps the FSI at threshold are modified slight-
ly. It is this possible change that will be termed the expli-
cit rescattering effects and whose magnitude we have at-
tempted to determine from the data. One may argue that
LET's based on chiral symmetry and extrapolated to
finite pion mass automatically contain all rescattering
effects even in the presence of isospin splitting, so what is
being proposed here would amount to double counting.
That may turn out to be true, but until LET's are estab-

lished that include isospin splitting from the beginning,
the matter is still debatable in our opinion. Note that we
are referring here to changes of order p and p . Al-
though the explicit FSI at these orders must vanish at
threshold in the limit of equal pion and equal nucleon
masses, they need not vanish above threshold since the
LET's are strictly valid only at threshold. Effects of or-
der higher than p may or may not vanish at threshold;
however, in the particular model we adopt later, all or-
ders vanish.

The preceding paragraph justifies our ignoring ~ re-
scattering effects (aside from the fact that the m p scatter-
ing length is extremely small); such effects are already
largely contained in the LET.

The values of E + presented by Beck et al. [2] were

deduced from the pion angular distributions doidQ,
which inherently contain interference terms between
large and poorly known small multipoles. We have
chosen to analyze the total cross sections specifically to
avoid such interference terms, and then predict the angu-
lar distributions. While some differences exist, on the
whole the experimental angular distributions are de-
.scribed fairly well.

Finally, Beck et al. produced two sets of E + mul-

tipoles, depending on the specifics of their analysis. The
first set, which they appear to favor, suggests a very
strong suppression of the multipole just above m. thresh-
old. On the other hand, we find the second set to be more
consistent with the present analysis.

II. GENERAL FEATURES OF THE DATA

As noted in the Introduction, we will be working ex-
clusively with the total p (y, n ) data from the recent ex-
periment performed at Mainz. The data themselves were
taken from Ref. [12]. In this section, we wish to present
the data in a form such that we might readily extrapolate
to the m threshold in a model-independent way.

The total cross section near threshold is dominated by
the l =0 and l =1 partial waves, and may be written in
terms of the fundamental multipole amplitudes as

~=4~ (I&,+ I'+2IM, + I'+ IM, —I'+6I&, + I') .

2IM, + I'+ IM, —I'+6I&,+ I'=2f o(qk )', (2.2)

where fo is a scale factor with units 10 Irn . Estimates
of fo for a pure magnetic dipole transition vary widely,
but an average value is roughly f0=8 X 10 Irn

We can now recast Eq. (2.1) in the form

(2.1)

The l = 1 amplitudes are assumed to vary smoothly and
monotonically as a function of the product qk at low en-
ergy, and their imaginary parts are negligible in the ener-
gy region of the data. Now, since

I
M

I
and

I
E + I

are
much smaller than the dominant magnetic dipole IM, + I,
we will lump all three together:
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(ReE +) = —2fo(qk )
—(ImE + )

q
(2.3)

which is indicated by the dashed line in the figure. The
sign of ReE + is based on the LET value, as well as the
conclusion of Beck et al. [2].

Also shown in Fig. 2 are the two sets of values for
ReE + deduced by Beck et al. , solution 1 (boxes) and
solution 2 (triangles). Based on the points closest to
threshold, solution 2 is clearly preferred within the con-
text of our P-wave assumptions.

The slope of the data below the m+ threshold in Fig. 2

The first term, (cr/4~)(k/q), is plotted as circles in Fig.
1, and the second term, 2fo(qk), is represented by the
solid and dashed lines for f0=7.9 and 8.0, respectively
(from now on, we will suppress the units of fo for brevi-
ty). The third term in Eq. (2.3) is the imaginary part of
E +, and presumably it is negligible below the m+ thresh-

old at Ez =151.44 MeV. It is negligible below
threshold in both the K-matrix and integral-equation
methods of calculating final-state interactions, but there
is as yet no experimental evidence to confirm this. Any-
way, to keep things simple we will ignore ImE + until the
detailed analysis of the following sections.

The square root of Eq. (2.3) should yield ReE + below
m. + threshold, and this is presented in Fig. 2 for f0=8.0.
Extrapolation by eye to the nthre. shold (Er =144.67
MeV) gives the estimate

ReE + ~,h, = —(2. 1+0.2) X 10 /I

depends on the choice of fo, but for fo =7.7—8.2 the ex-
trapolation to ~ threshold gives essentially the same esti-
mates as Eq. (2.4). The upper limit fo=8.2 is about as
far as one can go without cutting deeply into the data
points shown in Fig. 1. The lower limit f0=7.7 corre-
sponds to the lower bound defined by the errors on the
P wav-e multipoles given in Refs. [1]and [12]. Such a low
value would produce a serious discrepancy between the
E + results of Beck et at'. and those deduced from Eq.
(2.3) in the 151—154 MeV region.

As we said, the P-wave amplitudes are assumed to vary
smoothly and monotonically in the low energy range.
Large local oscillations or wiggles in M, +, such as might
be generated by rescattering in the l =1 channel, could
alter our conclusions. Our own rough estimates using a
K-matrix approach produced negligible modifications to
M, +. Note that an overall renormalization of fo caused

by FSI would not alter our conclusions since the data still
require fp =7.7—8.2.

Because the pion momentum q appears in the denomi-
nator of Eq. (2.3), an energy calibration error in the
Mainz experiment could cause a vertical shift in the data
points in Fig. 2, and modify the extrapolation to thresh-
old. However, according to the authors, the uncertainty
in the tagged-photon energies is about 220 keV. An ener-
gy shift of +220 keV would have the following conse-
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FIG. 1. The Mainz total cross sections, with a kinematic fac-
tor removed to emphasize the low energy behavior, in units of
10 /m„. The solid and dashed curves are the P-wave contri-
butions for fo =7.9 and 8.0, respectively. The threshold for m+

production (E~ =151.44 MeV) is indicated by the marker. The
m. threshold is E~ = 144.67 MeV.
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FIG. 2. The amplitudes ReE +(m ) as deduced directly from
0

the Mainz total cross sections using Eq. (2.3) of the text. The
P-wave amplitude is taken as fo =8.0 and the imaginary part of
E + has been ignored. The errors in some cases terminate at 0,
since Eq. (2.3) is positive definite. Extrapolation to ~ threshold
by eye gives ReE + ~,„,= —(2. 1+0.2) X 10 '/m, indicated by

the dashed line. Also shown are the amplitudes from Beck
et al. (Ref. [2]), solution I (squares), and solution 2 (triangles).
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quences for the data shown in Fig. 2. The lowest energy
point would either disappear (it would fall below thresh-
old) or would drop to about —1.8. The second lowest
point would shift roughly to the extremes of the error bar
shown in the figure. The shifts of the other points de-
creases very rapidly. Thus, if we choose to reject the
point closest to threshold, the estimate given by Eq. (2.4)
is not seriously compromised.

To conclude, an extrapolation by eye to the m thresh-
old, using the Mainz total cross-section data with quite
reasonable assumptions, gives 0=4~ '

[IE + ~'+2f p(qpk)'], (3.1)

In the calculation we rely on available experimental
data whenever possible to constrain certain amplitudes
before introducing the phenomenological aspects. How-
ever, because phenomenology does play a role, our final
conclusions should be regarded as plausibility arguments
rather than firm deductions.

Let us outline here the procedure to be adopted in the
remainder of this paper. From Eqs. (2.1) and (2.2) we
have

ReE + (vr ) ~,h, = —(2. 1+0.2) X 10 /m

to be compared with the LET value

(2.5)
where qo is the c.m. momentum of the final ~ . The elec-
tric dipole amplitude splits into real and imaginary parts:

E ~ ( rr ) = —2.27 X 10 /m (2.6)

Equation (2.5) thus represents an 8%+8% difference
from the LET prediction. Therefore, there is no significant
discrepancy between the low energy theorem and the
threshold amplitude as deduced from the experimental
data.

Now let us turn to the general features of E + as

displayed by Fig. 2. It is clear that the amplitude is de-
creasing rapidly as one moves away from m threshold,
and it. goes through a minimum just above the m+ thresh-
old, after which it seems to increase. That apparent in-
crease contains contributions from ImE +, but we will

see later that ReE + is indeed rising and, at higher ener-

gy, links up with values deduced years ago from the mul-
tipole analyses of photoproduction data.

If we assume that rescattering e6'ects are responsible
for the behavior of ReE + as a function of energy, then
we conclude that they are largest near the m+ threshold
and smallest at the ~ threshold. As we alluded to in the
Introduction, the usual K-matrix approach does not pro-
duce such a behavior. (The reason is that the rescattering
correction involving charge exchange is proportional to
the on-shell momentum of the m+, which vanishes at m+

threshold. ) Furthermore, the LET value is applied at m+

threshold, which is certainly questionable, and ReE +

remains relatively constant several MeV above m+

threshold. Therefore, in the following sections we will
try to describe the behavior of ReE + using the integral-
equation method.

III. OUTLINE OF THE PROCEDURE

The preceding conclusions have derived from some-
what qualitative arguments. We will now build a more
quantitative case based on physical principles and show
how the p (y, m' ) cross section can be interpreted through
a rescattering correction to the so-called Born terms.
The rescattering involves the two-stage process
yp —+m+n —+m p and competes strongly with the direct
reaction yp —+m. p since the S-wave m+ photoproduction
amplitude is an order of magnitude larger than the corre-
sponding ~ amplitude. The direct and reseat tering
channels interfere and yield the energy-dependent behav-
ior seen in Fig. 2.

~E,, ~'=(ReE, ,P+(imE, , )2, (3.2)

and the real part subdivides into a Born part, E +, and
the explicit rescattering part AE + ..

ReE + =E ++hE + . (3.3)

+dispersion relation (cuts, etc. ),
where the dispersion relation implicitly contains the vari-
ous FSI. However, we also know that (to the same orders
of p)

E + (PCAC) =E +'" (PV ~NN coupling)

=E ~ (LET) . (3.4)

The quantity E + in Eq. (3.3) is therefore to be identified

with E +'" (PV) and will be calculated accordingly, since

by Eq. (3.4) it reduces to the LET value at threshold at
the appropriate order of p.

IV. THE INTEGRAL EQUATIGN
FOR THE RESCATTERING CORRECTION

We start with the integral relation for the transition
operator [13]

T=V+T . V,1

E —Ho+i c.
(4.1)

As stated before, AE + must vanish at threshold at least

through order p in the limit of equal pion and equal nu-
cleon masses. We will construct AE + with this in mind

using two free phenomenological parameters, combine
Eqs. (3.1)—(3.3), and perform a least-squares fit to the
Mainz data. With the parameters now determined, we
return to the m threshold and evaluate AE +. This
quantity, we claim, represents the discrepancy between
the threshold amplitude and the LET prediction.

Some clarification is necessary concerning the quantity
E0+ Consider the limit of equal pion and equal nucleon
masses. Then at threshold we have the well-known
equality (up to and including the model-independent or-
ders of p)

E + (PCAC) =pole terms (PS 7rNN coupling)
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where V is the transition potential, Ho is the sum of the
free-particle Hamiltonian operators, and E is identified as
the total energy of the final m. p system in the c.m. frame.
Thus, E = Wo, where Wo is the invariant mass of the
final state. In the first Born approximation T ""=V.
Following the usual procedure, we insert the complete-
ness condition for angular momentum eigenstates [13],

Vf; =(qok)' E +(vr, qo),

V =(qk)' E (m+ q)
(4.8a)

etc. A q symbol has been included in the above ampli-
tudes to remind us of the momentum of the pion. The
charge-exchange matrix elements are related to the
respective scattering amplitudes by

—g f q dq~qlm&&qlm~=l,~ Im &q
Tf~ = —(qoq )'/ F,„(qo,q), (4.8b)

to the left of V in the second term of Eq. (4.1), then form
transition matrix elements between the initial yp state (i)
and the final ~ p state (f) to obtain

+ 2 q dq fq qi
T V.

W —W+ic (4.2)

Here, W is the invariant mass of the intermediate ~+n
system, q is the c.m. momentum of the neutron and m+,
and Tf represent the charge exchange

(rr+n )q ~(1r p)q

etc. , where the minus sign has been introduced to con-
form with the sign convention for scattering. Introduc-
ing Eqs. (4.8) into (4.7) yields the final result:

E +(m, qo)=E +(vr, qo)+iqF, „(qo,q)E +(~+,q)

2d W F, (qo, q)E +(sr+, q)—P
o ~ E E~ W, —W

(4.9)

If F„is real, the above can be separated into real and
imaginary parts, giving

where qo is the final-state momentum of the proton and
m . We have set I =m =0 in Eq. (4.2) since Tfq conserves
angular momentum and we are considering S-wave pro-
duction. For a two-body intermediate state with masses
n + and M„,the normalization constant N is given by

ReED+
(~o, qo) =EDB+ (~o, qo)+ b Eo+,

ImED+(~o, qo) =qF..(qo, q)EDB+(~+,q),
with the rescattering correction

(4.10a)

(4.10b)

E E~
1V =2q

where

(4.3)

qF,„(qo,q)E + (1r+,q)
bE += —P

o m. E E~ Wo —W

(4.11)

(m 2 +q2)1/2 E (M2+q2)1/2

and W =E +E~.
Equation (4.2) is developed further by employing the

formal identity

1

Wo —W+ ic,

1=P —im 5( W11
—W),

0
(4.4)

iEE
5( Wo —W) = — 5(q —q),

q W

where q is the on-shell momentum defined by

W(m2+q2)1/2+(M2+q2)1/2

(4.5)

(4.6)

For future reference note that since q in Eq. (4.5) is real, q
must be real as well.

Combining Eqs. (4.2)—(4.5) and integrating over the 5
function gives

V T V +P q dq W fT V;
fq q o ~ EE (4.7)

The potential matrix elements are related to the electric
dipole amplitudes by

where P denotes the Cauchy principle value. The 5 func-
tion is converted to one in momentum giving

T =K i 7rT5( W11
——Ho)K, (4.12)

in which the model dependence is transferred to the K
matrix. Inserting the eigenstate completeness condition
(including the m p channel) into Eq. (4.12) and using Eq.
(4.5) gives, after some manipulation,

i5(n )Tf, =e'" &'cos5(1rop)

K(qo, q)K(q, q)
X K(qo, q) i8—

1+i8K(q, q )
(4.13)

where 8=8(WO —m + —M„)originates from the reality
of q, K describes m.+n~~ p, K describes ~+n~~+n,
and 5(1r p) is the 1r p S-wave phase shift evaluated on
shell at Wo. The presence of the complex phase factor in
Eq. (4.13) ensures that the rescattering correction satisfies

We have seen by virtue of Eq. (4.5) that q must be real,
but according to Eq. (4.6) if Wo is below the 1r+ thresh-
old, i.e., Wo ((m ++M„),q would become purely imag-

inary. Therefore, ImE + as given by Eq. (4.10b) must
vanish below m+ threshold, as previously noted by No-
zawa et al. [5].

If one uses a model for Tf~ in Eq. (4.7) [i.e., F,„(qo,q)
in Eq. (4.11)], the unitarity of the T matrix cannot be
guaranteed. This problem can be avoided in principle by
employing the so-called Heitler damping equation [13],
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V. THE BORN AMPLITUDES

A. Pseudovector coupling and vector-meson exchanges

The photoproduction amplitudes decompose in isoto-
pic spin space into isoscalar ( A ' ') and isovector
( A'+', A' ') components as follows:

E (m.+)=&2(A' '+A' '), (5.1a)

EB ( 0) A(0)+ A(+)
0 (5.1b)

Watson's theorem. The Born term E +(~ ) in Eq. (4.9}
would acquire an identical factor had we included ~ p re-
scattering in the development leading to Eq. (4.9). How-
ever, since 5(m p) is small in the energy range of interest
[e.g. , ~5(m p)~ (4 for E ~250 MeV by our estimation],

i5(m )we can set e' ( ~)cos5(m. p) =1 everywhere with little loss
of generality. Then, according to Eq. (4.13), Tf will be
real below m+ threshold since the K matrix is Hermitian.
A rough estimate of the relative magnitudes of the two
terms in Eq. (4.13) based on the mNsca. ttering lengths in-
dicates that for Ez ~ 250 MeV the second term contrib-
utes about 10/o or less, and is negligible at low energy.
Therefore, to a good approximation we can assume
F,„(qo,q) is real, and Eqs. (4.10}and (4.11) stand as they
are.

Equations (4.10) and (4.11) form the starting point for
our analysis. Three ingredients are required to evaluate
them, namely, the Born amplitudes E + (~ ) and
E +(m. +), and the charge-exchange scattering amplitude

F,„(qo,q). Because of the integral over q, the half-off-
shell behavior of the latter two amplitudes must be
specified, where by off shell we mean WX Wo. As it hap-
pens, the anal form of the integrand of Eq. (4.11) con-
verges rapidly for photon energies near and below the ~+
threshold, so in that region at least, we do not have to go
far off shell.

One notices that the numerator of 8' —8'o in Eq.
(4.11) is equivalent to ImE +(m. ) from Eq. (4.10b). By
comparing ImE +(n ) with the available data, we can be
sure that the on-shell calibration of the numerator is
correct.

In the following sections we will discuss the Born and
charge-exchange amplitudes, including our off-energy-
shell assumptions.

x"=a —a„ for i =(+,—) and )(&+a„otherwise;
I~ =1.79 and ~„=—1.51, and the quantity (Z/p) is
defined by Eq. (8.18) of Berends et al. [14]. Equation
(5.3) has a small effect on E +(m.+) but is crucial for

E,'.(~o).
The threshold value of E + (m ) given by the above am-

plitudes is

E +(~ )~,h,
= —2.47X10 /m (5.4a)

It differs from the usual LET value, Eq. (1.3), mainly
through the presence of a phase-space factor ( I+(M)
which occurs expanded and truncated in the derivation of
Eq. (1.1). However, it seems more reasonble to keep this
model-independent factor intact, in which case the
modified LET becomes

f 1

0 m (1+ )3/2
—P+ Kp

2
(5.4b)

and is numerically equal to Eq. (5.4a). We will use this
modified version in later comparisons with experiment.

As a separate check on our PV amplitudes, we have
confirmed that at threshold they reproduce the LET's up
through the model-independent orders of (m /M) as re-
quired by Eq. (3.4).

In calculating the Born amplitudes, we will use the ap-
propriate physical pion and nucleon masses, and take the
~NN coupling constant to be

f =0.0796.

We will now break PCAC by including (p, co) vector-
meson exchanges in the Born amplitudes, following the
approach of Olsson and Osypowski [16]. These additions
of course introduce some model dependence into the
Born amplitudes. Since p exchange uniquely affects A' '

while co exchange only contributes to A '+', the p contrib-
utes uniquely to E + (m+) but both exchanges enter into
E (m. ).

With reference to the Olsson paper [16], the vector-
meson exchanges are specified by the photon-meson-pion
coupling constants A, , A, , the pNN vector and tensor cou-
pling constants g& and g2, and the corresponding coNN
constants g& and g2„.From the p and co photon decay
widths we obtain

w") =a")+ax")pv ps (5.2)

Convenient expressions for the isospin amplitudes, de-
rived in pseudoscalar (PS) coupling, are given by Berends
et al. [14] [their Eq. (8.13)]. They are easily modified for
pseudovector (PV) coupling according to the prescription
of Olsson and Osypowski [15) by including their "current
algebra term. " Therefore we write

A, =0.102(4ma)'

A, =0.325(4~a)'

For the vector coupling constants, we take

g, =2.63 (Ref. [17]; note g, =f, /2),

g,„=3g, (Ref. [16]) .

(5.5)

(5.6)

where for S waves

gg( )—
p

(5.3)

For the pNN tensor coupling constants, we adopt the
mean of f2/f, as found by Hohler et al. [17] and Gus-
tafson (quoted in Nagels et al. [18]), giving f2/f) =6.3,
or in current notation

Here /=+1 for i =(+,0) and —1 otherwise; g 2p /g ]p 0 47 /m (5.7)
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This is a factor 1.7 greater than expected. , based on the
vector dominance model (VDM). Little is known about
the cod% tensor coupling, so we will adopt the prediction
of the VDM [16] and assume it is renormalized by the
same factor of 1.7 as the p coupling. This gives 25

g2 /g, = —0.015/m (5.8)

At ~' threshold the vector-meson exchanges induce the
following changes in the isospin amplitudes: ~ 20

b. A ' '(p) = +0.0785 X 10 /m

AA'+'(co)=+0. 0790X10 /m„.
(5.9)

C)

It may seem surprising that these changes are nearly
identical although the co coupling constants in Eqs.
(5.5)—(5.6) are a factor of 3 larger than those of the p.
However, the p contribution is dominated by its strong
tensor coupling, while the co contribution comes mainly
from the vector coupling. Nevertheless, a lot of uncer-
tainty is attached to the above estimate of AA'+'(co) be-
cause of our poor knowledge of the co tensor coupling.
For example, 63 '+ ' nearly vanishes for
g2 /g, = —0.06, which is the median value found by
Olsson and Osypowski [16] in their fits to isospin arnpli-
tudes deduced from photoproduction data.

We have not included a contribution to E + from the
b, (1232) since most calculations suggest it is small, the
order of a few percent or less of the nucleon term. Be-
sides, the correct treatment of the 6(1232) is till a con-
troversial topic in the literature; even the sign of its con-
tribution to E + seems uncertain. (See, for example,
Table I in Ref. [7].)

15
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I

200
I

300
E (Me V)

I

400 500

FIG. 3. The Born amplitude E +(m+) including p exchange

(curve 1) compared with the values of ReE +(~+) as deduced
0

by Berends and Weaver (Ref. [20]), shown as circles, and Pfeil
and Schwela (Ref. [21]), shown as squares. No errors were
given in Ref. [20]. The effect of omitting the monopole factor
f, (q ) is indicated by curve 2, while curve 3 shows the effect of
omitting the p exchange.

B. The on-shell behavior of Es+ (n.+)

,(q')= 1

1+(q/A, )
(5.10)

where q is the pion three-momentum. So far, gauge in-
variance has not been disturbed.

The cutoff parameter A, was estimated by fitting
E +(rr+) to the values of ReE +(m.+) up to E~ =450
MeV as deduced by Berends and Weaver [20] and Pfeil
and Schwela [21] from their analyses of photoproduction
data. We find A, =650 MeV/c, which is precisely the
value determined by Nozawa et al. [5] in their fit to the
total yp ~m. p cross section.

As can be seen in Fig. 3, our E + (rr+) amplitude gives

The presence of terms like Eq. (5.3) eventually causes
the electric dipole amplitudes to diverge with increasing
photon energy E . This can be countered to some extent
by introducing mX1V form factors at the appropriate ver-
tices. A favorite parametrization of ~PAN form factors
used to regularize potentials at short distances is the
monopole form, with a cutoff parameter A, lying around
700 MeV/c or so [19]. In order to at least partially mirn-
ic the effect of the form factors, we employ the expedient
device of simply multiplying the Born amplitudes by a
common monopole factor

a good description of the data over the whole energy
range. For comparison, we also show the amplitude with
f, (q ) omitted (curve 2), and then with the p exchange
omitted (curve 3).

C. The ofF-sheB behavior of E + (m+)

There is of course no model-independent way of estab-
lishing the oF-energy-shell behavior of E + (m+). Nozawa0
and Lee [22] give a prescription for dealing with the
Feynman diagrams for the Born amplitudes which allows
them to maintain gauge invariance when the ~+n system
is off the energy shell. Our own approach is less sophisti-
cated. In the expressions given by Berends et al. [14]
terms which depend on the m+n final-state variables
(such as q and E2) are evaluated at the momentum q cor-
responding to the off-shell energy W, while those that de-
pend on the initial-state variables (such as k and E, ) are
evaluated at the on-shell energy 8'o. The common
coefficient (Z/p) contains a factor I/W'originating from
normalization, and assuming symmetry, we replace
8 ~(WWo)'~ . The few remaining terms depending on
Ware evaluated on shell except f, (q ).

Admittedly, this rather simplistic approach may not
maintain gauge invariance and we have not pursued the
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matter. However, most of our final conclusions do not
require us to go more than few hundred MeV off energy
shell from 8'p, so hopefully the violation is not serious.

53=a3qp
[1+(qo/A3, ) ]

'
(qo/A3, )

'

[1+(q(i/A3b) ]
'

VI. THE CHARGE-EXCHANGE AMPLITUDE

As we have seen, the charge-exchange amplitude
F,„(qo,q) may be considered a real quantity for our appli-
cation; therefore we will take it to be the real part of the
S-wave charge-exchange amplitude as deduced from the
experimental mN phase shifts and introduce the necessary
phenomenology for going half off shell. Thus we write

F,„(qo,qo)= Re(f'" —f' '), (6.1)

(6.6b)

where the n; are even integers and the A,. are constants,
all to be determined from the experimental data. The
forms of these expressions ensure that Eq. (6.3) is satisfied
as qp~0. The set of integers n; is constrained by the re-
quirement that 52, varies as 1/qp as qp~ao, this being
the asymptotic behavior which derives from separable
potentials of the form

e e
—Ar —Ar'

Vo(r, r') =g
r

where the scattering amplitude for isospin t is

f(2t) (~ e 2t 1)
1 i5

2lqp
(6.2)

as used by some authors [24,25].
The procedure for taking Eqs. (6.6) half off shell is

clear: the overall factor qo becoines (qoq)' [also in Eq.
(6.5)] and each interior term factors symmetrically, such
as

Here, g2, is the inelasticity parameter and 52, is the real
part of the n.N S-wave phase shift. In the following we
will set g2, = 1, which is a good approximation at least for
T„(lab)~500 MeV. At low energy Eq. (6.1) reduces to
the familiar expression

v'2
F,„(qo,qo)= (a, —a3), (6.3)

where the t =
—,
' and t =—', scattering lengths are given by

[23]

a, =0.175/rn, a3 = —0. 100/m„. (6.4)

5, =a, qp
[1+(qo/A(, ) ] '

(qo/A„) '

[1+(qo/A, b) ]
'

(6.6a)

and

In seeking algebraic parametrizations of the ampli-
tudes f ' " that go off shell in a plausible manner, we will
be guided by the separable-potential approach to scatter-
ing where the amplitudes decompose symmetrically into
initial- and final-state factors. Actually, we will
parametrize the phase shifts themselves in a separable
form to simplify the numerical analysis. This is almost
equivalent to expressing F,„(qo,q ) in a separable form, as
is easily seen. From Eq. (6.1) and (6.2) we get

&2 1F,„(qo,qo)= (sin25( —sin253) . (6.5)
3 2qp

Now, with the formulation of the phase shifts described
below, we find sin252, =252, for on-shell momenta qp cor-
responding to E +250 MeV and arbitrary off-shell q.
Therefore, a small-angle expansion of sin252, can be em-
ployed in Eq. (6.5) to good approximation, and F,„(qo,q)
in effect takes on a separable format.

The on-shell phase shifts are parametrized by

[1+(qo/A„) ]
' [1+(q/A„)2] '

The functional forms given by Eqs. (6.6) are too
simplistic to reproduce in detail the available phase shifts
up to 8'p =2200 MeV, so we quantitatively fit the low en-

ergy regions, T &500 MeV for 5& and T &300 MeV for
53 and at the same time tried to reproduce the general
qualitative features at high energy. The optimal parame-
ters so obtained are, for t =

—,',

ni =2, Ai, =350 MeV/c,

n2=6, A»=1113 MeV/c,

n3 =4, Ai, =356 MeV/c,

and for t =
—,',

n4=2, A3, =450 MeV/c,

n5 =4, A3& =965 MeV/c,

n6=2, A3, =221 MeV/c .

(6.7a)

(6.7b)

The resulting phase shifts are compared with the data in
Fig. 4, where the rapid rise of 5, is seen to be especially
di%cult to model.

The experimental data presented in Fig. 4 have been
drawn from several sources and were smoothed by eye, so
to speak. They do not necessarily represent current "ac-
cepted values. " For example, our compilation on 5,
below T =300 MeV closely follows the results of Carter
et al. [26] and Amdt as quoted in Ref. [25].

The fit to 53 is not very sensitive to the value of A3,
and acceptable results are obtained for values as large as
800 MeV/c. For comparison, from their fits to the low
energy t = —,

' phase shifts, Siegel et al. [25] obtained 600
MeV/c while Desgrolard et al. [24] obtained 690 MeV/c
for the corresponding separable-potential range parame-
ter.
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FIG. 4. The t =
2

and t =
2

m.N phase shifts, as parametrized

by Eqs. (6.6) and (6.7) of the text, compared with the data as a
function of the total c.m. energy 8'0. No attempt was made to
separately parametrize the resonances N(1535) and A(1620},
evident in the figure.

VII. THE IMAGINARY AMPLITUDE ImE + (m )

Since the imaginary amplitude ImE +(vr ) forms part
of the kernel in the rescattering integral, Eq. (4.11), it is
useful to compare the corresponding on-shell amplitude
as given by Eq. (4.10b), with the available experimental
data. Using the Born amplitude E + (n+, q ) and

I',„(qo,q ) as derived above, and q as defined by Eq. (4.6),
the prediction for ImE +(vr ) is given by the dashed

curve in Fig. 5. The reference data, shown as circles in
the figure, have been derived from the amplitudes of
Berends and Weaver [20] as described below. Also
shown are data selected from Pfeil et al. [21] and Noelle
et al. [27].

The theoretical amplitude falls short of the data al-
though the energy dependence appears correct. Howev-
er, a simple upward renormalization by a factor of 1.13
yields a very good description of the data up to Ez =300
MeV, as illustrated by the solid curve in Fig. 5.

The source of the 13%%uo discrepancy is unclear. With
reference to Eq. (4.10b), it probably does not originate
with E + (m+, q ), considering the good agreement seen in

Fig. 3. The phase-shift parametrization is not likely at
fault, since the charge-exchange amplitude does not devi-
ate appreciably from Eq. (6.3) for the energies of interest
here. Finally, the scattering length combination
a

&

—a3 =0.275 from Ref. [23] agrees with others [28], al-

FIG. 5. The imaginary amplitude ImE +(~ ) for m produc-
0

tion (dashed curve) compared with the reference data shown as
circles. These data derive from the amplitudes of Berends and
Weaver (Ref. [20]) as described in the text. Also shown are re-
sults from Pfeil et al. (squares, Ref. [21]) and Noelle et al. (tri-
angles, Ref. [27]). The solid line represents a simple renormal-
ization of the theory by a factor of 1.13.

though a recent analysis by Siegel and Gibbs [25] prefers
a slightly larger value, a, —a3=0.290, which is in the
right direction to reduce the discrepancy.

Whatever its origin, we will assume the same factor of
1.13 also applies to the half o+shell am-plitude appearing
in Eq. (4.11).

The reference data in Fig. 5 were derived from a
smoothed version of the E + amplitudes taken from
Table 3 of Ref. [20], together with the unmodified E'~+

amplitudes from the same source. The E + amplitudes
were smoothed by fitting them to a linear function of E
(MeV) which gives a very good fit over the range
E& =150—450 MeV. Specifically, we find

E ~+ = (aEr +b) X 10 Im

where a =5.611X10 and b = —29.224. Finally, the
phases of the amplitudes were taken from Ref. [29], inter-
polating when necessary.

VIII. THE OFF-ENERGY-SHELL FORM FACTOR

The explicit rescattering correction AE + must vanish

at threshold, at least through terms of order p, in the
limit of equal pion and equal nucleon masses as required
by the LET' s, but this condition is not met by Eq. (4.11)
as presently constituted. Apparently there is some half-
ofF-shell characteristic of the charge-exchange amplitude
we have neglected so far, which we will now ascribe to a
hypothetical off-energy-shell form factor f ( Wo, W). The
existence of such a form factor which forces the LET re-
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f (Wo, W)=e

with

A (W —Wo)

(
2 +52)( 2+52)g(WO, W)=

(S.la)

(S.lb)

The momenta q; in the above are given in terms of 8'; by

q; = (S;—M+ )(S;—M )8( W; —M+ ),1
(8.2)

where S;=O'. , M+ =M+m, M =M —m, and M, m
are the nucleon and pion masses in the absence of isospin
splitting. The quantity A in Eq. (S.lb) is a free parameter
with units of mass, and R=c = I as usual.

In order to satisfy the second, and later the third of our
premises, the quantity 5 in Eq. (S.lb) must depend on the
mass splitting of the m.N systems, so we will assume

5=p(M„+m + —M —m o), (8.3)

quirement would imply a fundamental connection be-
tween the underlying physics governing the LET's and
the half-off-shell behavior of the ~N charge-exchange am-
plitude in the physically inaccessible region below the ~+
threshold.

With only a few propositions to guide us, we have tried
to construct a purely phenomenological form factor that
satisfies the degenerate-mass LET constraint, yet does not
convict with known observables. As we shall see in the
next section, this form factor with two free parameters
gives a very good accounting of the Mainz data, includ-
ing a predicted "dip" in E +(m ) just above ir threshold,
and even has some predictive power up to E~ =300 MeV.
The phenomenological nature of our model means of
course it is hardly unique; however, it is far more success-
ful than other versions we have explored, with less sym-
metry and more parameters.

The structure of f (Wo, W) is constrained by the fol-
lowing basic premises. First, we require f (Wo, W)=1
when 8'= 8'o in order to keep the on-shell amplitudes
intact. Second, we will assume AE + vanishes identically
at threshold in the absence of mass splittings. Third,
hE + may or may not vanish at m threshold when the
mass degeneracy is lifted. Fourth and last, we assume
symmetry between the initial- and final-state parameters
W and Wo. f ( W, WD ) =f ( Wo, W).

The form factor should depend on qo, q, and perhaps
(qo —q), but the first premise is accommodated more
succinctly when mass splittings are considered by using
( Wo —W) instead of (qo —

q ) . Also, we will treat the in-
variant masses 8'o and 8' as the fundamental quantities
entering the form factor (since it is an energy-shell form
factor), and derive the momenta from them using the ap-
propriate masses. This has particular significance when
imposing the fourth premise on f ( Wo, W) when the iso-
spin symmetry is lifted.

An exponential function satisfies all the requirements
in the degenerate-mass limit, and our model takes the
form

where p is a dimensionless free parameter. In the
degenerate-mass limit 5~0; otherwise 5=p (5.9 MeV).

Let us see how f (Wo, W) modifies the rescattering
correction at threshold with no mass split tings.
Mathematical ambiguities which can arise in g(WO, W)
in this case are avoided by taking the limit 5—+0 after the
integration in Eq. (4.11) is performed. A good approxi-
mation to the integral is obtained by noting that for small
5 the integrand peaks at small q, so 8'can be expanded in
terms of q /2p„, where p„is the m.N reduced mass. With
this and other simplifications one obtains

bE + ~,h,
= lim —F,„(0,0)E + (m+, 0)5 (8 4)

(8.5)

where A, is a dimensionless constant and m is included for
future convenience.

One might object to Eq. (8.5) because in the soft pion
limit (m ~0) it implies f (Wo, W)~1, and as a result
AE + would no longer appear to vanish at threshold.
However, according to the Weinberg —Tomozawa rela-
tions for the S-wave scattering lengths [30], the combina-
tion a, —a3 [recall Eq. (6.3)] is proportional to p„to
lowest order, and so vanishes as m ~0. It follows, then,
that AE + also vanishes in the soft pion limit.

The Weinberg —Tomozawa relations together with Eq.
(8.5) as applied to Eq. (8.4) would yield a rescattering
correction at threshold that is proportional to m to
lowest order. This is also the leading order of m in the
model-independent regime of the LET for p (y, m. ). Con-
sequently AE + must vanish at threshold; i.e., 5 must ap-
proach 0 in the degenerate-mass limit, as we have already
assumed through Eq. (8.3). Of course, we have not yet
excluded the possibility that p =0.

For the final step of our phenomenological construc-
tion, we will generalize f (Wo, W) to accommodate the
mass splittings, and reimpose the symmetry condition
f ( W, Wo) =f ( Wo, W). Admittedly this condition is
somewhat arbitrary and our only justification for it is (1)
it certainly applies in the degenerate-mass case, and (2) it
seems necessary, a posteriori.

The expressions analogous to Eq. (8.2) for the "usual"
vr p and ~+n momenta now become

2= 1
qo = [$0—M+ (p)][SO—M (p)]8( Wo —M+(p)),

(8.6)

q = [S—M+(n)][S —M (n)]8(W —M+(n)),1

Therefore AE + vanishes at threshold as required, but
not above threshold (i.e., qo) 0). Immediately above
threshold, hE + is proportional to qo.

The quantity A in g ( Wo, W) must be proportional to
some characteristic mass of the mN system, and it is
reasonable to assume it is symmetric between the two
particles. An obvious candidate is the n.X reduced mass
p„,so we will write
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where M+(p)=M&+m 0, M+(n)=M„+m ~, M (p)
=M —m 0, M (n) =M„—m +, So = Wo, and S = W~.

In order to symmetrize f ( Wo, W), we introduce two new
momentumlike quantities:

q o= [So—M+(n)][So —M (n)]8( Wo —M+(n)),2= 1
0 gg 0 +

(8.7)

[S—M+(p)][S —M (p)]8(W —M+(p)) .

g ( Wo, W) =A, ( Wo —W)
Pr

(qo+5 )(q +5 ) (qo+5 )(Q +6 )

(8.8b)

(8.8a)f (Wo, W)=e

where

Thus, under the exchange So~S, one has qo~q and

q ~q o. The function g ( Wo, W) is symmetrized by

g(WO, W) —& —,'[g(Wo, W)+g(W, Wo)], and using Eqs.
(8.1) and (8.5) we obtain the final expression for the phe-
nomenological oA'-energy-shell form factor,

—g(w, , w)

5=p [M+(n) —M+(p)],
p„=p„(p~ )p, (n sr+ ) .

(8.8c)

The final form of the rescattering correction equation
(4.11), including f ( Wo, W) and the "missing-physics"
factor of 1.13 from Sec. VII, is

113q Ro8F qoq E+~ qbE+= —P
o a EE~ 8'o —8' (8.9)

We are now ready to compare with the experimental
p(y, m ) data

IX. COMPARISON WITH THE p ( y, o o) DATA

The total p (y, m ) cross section is given by Eqs.
(3.1)—(3.3). The unknown quantities are the two phenom-
enological constants p and A, of the explicit rescattering
correction and the P wave amplit-ude fo defined by Eq.
(2.2). As we have seen, one expects the latter to lie in the
range fo =7.7—8.2. These parameters will be determined
by least-squares fits to selected subsets of the experimen-
tal data. Because of our poor knowledge of the ~-meson
tensor coupling, two separate analyses have been per-
formed, one using b, A '+~(co) as given by Eq. (5.9) and the
other with b, A +(co)=0. These alternatives have a larger
impact then their relative contributions at ~ threshold
would suggest, primarily because of the rapid drop in
E +(~ ) with Er as seen in Fig. 2. The experimental

data, shown in Fig. 1, is comprised of 21 points, 12 points
below m+ threshold and 9 points above.

A. Determination of p

The first parameter to be determined is p, using only
the data below m+ threshold. This restriction makes the
results completely insensitive to the imaginary amplitude
ImE + (vr ). It also reduces the sensitivity to fo by avoid-

ing the "dip" region in Fig. 2 near E& =153 MeV. Final-
ly, the rescattering integral converges quickly below
threshold so the far off-energy-shell behavior of F,„(qo,q)
and E + (~,q) is of minimal concern. In this part of the

analysis, A, is allowed to fioat while fo is held at a series
of values.

The set of p values corresponding to the y minima fell
in the range p =1.8 —2.2, with an average p =1.96, and

p =2

with an uncertainty of about 20%, judging from y .

(9.1)

B. Determination of fo

In order to gain more sensitivity to fo, the data set is
now expanded to include six points above ~+ threshold.
The highest energy pair has been excluded because of an
apparent inconsistency with the value of ReE +, as given

by Beck et al. [2], near E~ =156 MeV (see Fig. 2). As
before, k is allowed to Goat, but we set p =2. The result-
ing values for fo were quite insensitive to the two options
for the co exchange (this is not true for k, however), and
our best estimate based solely on y is

fo=7.90X10 /m„. (9.2)

The reduced y for 16 (18—2) degrees of freedom is

y =0.21. It is difficult to place a standard deviation on

fo (as with p also) because of the nonlinear nature of the
functions, but a rough estimate, based on several factors
in the final analysis, is fo

=7.90+0.04.
Assuming fo is dominated by the M, + amplitude, the

I

were only mildly sensitive to the two co-exchange options.
The reduced y 's were typically y, =0.3 5 for 9 ( 12—3 )

degrees of freedom. This is rather low, and more will be
said about it later. The average value p = 1.96 is
sufficiently close to the integral value p =2 that we will
use the latter for the remainder of the analysis.

At this stage we believe we can rule out p =0, which
would have implied no explicit rescattering correction at
m threshold within the framework of our model. The
corresponding y is twice the minimum value for p =2,
and visually the fit is clearly inferior.

Therefore we conclude
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present estimate is lower but not inconsistent with other
determinations. For example, Beck [12] finds

fo
=7.95+0.4, while Mazzucato et al. [1] report

fo
=8.0+0.3 in units of 10 Im

C. Determination of A,

Once again we will use only the data below a+ thresh-
old, for the reasons specified in the determination of p.
We fix p =2 and fo =7.90 and seek a y minimum with
A, . With the full (o contribution b, A +((o) included, the fit
yields

A, = 1.074+0.040,

and with b. A+(co)=0 we get

A, =0.991+0.036 .

(9.3a)

(9.3b)

The reduced y 's are both about y =0.29 for 11 (12—1)
degrees of freedom, but the error estimates were calculat-
ed as if g = 1, which is more realistic. The fact that k= 1

is interesting, but not independent of the factor vr intro-
duced in Eq. (8.5).

Finally, the reduced g 's for the complete set of 21 data
points with p =2 and fo=7.90 is y =0.19 and 0.18 for
A, =1.074 and 0.991, respectively. The small y 's encoun-
tered here and throughout this analysis suggest the errors
associated with the Mainz cross sections [12], assuming
they are statistical, are about a factor of 2 too large.

D. Description of the data

Let us now examine how effectively the present formal-
ism describes the Mainz data, both total and differential
cross sections, and test it at higher energies as well.

The total cross section is displayed in Fig. 6 where, as
in Fig. 1, the factor q/k has been removed to emphasize
the low energy behavior. In this and future illustrations,
the solid and dashed curves correspond to b, A +((o), as
given by our estimate [Eq. (5.9)], and hA ((o)=0, re-
spectively [i.e., A, according to Eqs. (9.3)]. Notice there is
a hint of a cusplike structure near the ~+ threshold.

The structure is more apparent if we examine
ReE +(~ ) in Fig. 7. The experimental data shown as
circles have been reduced according to Eq. (2.3), using
the amplitudes fo and ImE + as deduced from the
preceding analysis. The triangles are the solution 2 mul-
tiples from Beck et al. [2] Keeping in mind that p and A,

mere determined below ~+ threshold, our results predict a
pronounced dip in ReE + above m threshold. The dip is

a direct consequence of our forced symmetrization of
f(Wo, W) and reflects the increasing influence of the
second term in Eq. (8.8b) above vr threshold. At the
minimum, ReE + is quenched to a value of about
—0.28 X 10 /I

As seen in Fig. 7, we achieve a very good agreement
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FIG. 6. Description of the Mainz total cross sections of Fig.
1 by the rescattering formalism developed in the text. Only data
below m+ threshold were used to determine the off-energy-shell
form-factor parameters A, and p. The solid and dashed lines cor-
respond to analyses with and without co-exchange contributions.
The reduced y 's are about 0.19 for 21 degrees of freedom.
Note the hint of a cusplike structure near the m. + threshold.
Units are 10 /I ~.
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FI&. 7. The amplitude ReE +(770} as given by the rescatter-
0

ing calculation compared with the values (circles} deduced from
the Mainz total cross sections using Eq. (2.3) with fo =7.90 and
ImE + as described in the text. The errors in the original cross

0
sections have been reduced by a factor of 2 for display purposes,
and because of the small y obtained in the analyses. The solid
and dashed curves represent analyses with and without co ex-
change included. The triangles are the solution 2 amplitudes of
Beck et al. {Ref. [2]).
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FIG. 8. Differential cross sections in the c.m. frame, assuming the P-wave amplitudes are dominated by M +, compared with the
1

Mainz data (Ref. [31]). The dashed curve in Fig. 8(b) includes a small E + contribution, E,+ /M + =0.10, simply to illustrate the

sensitivity to the omitted amplitudes. Units are pb/sr.

with the solution 2 multipoles of Beck et al. , providing
the tensor coupling of the co meson is small, as in Eq.
(5.8). The alternative corresponds to gz„/g,
= —0.06/m, the median value deduced by Olsson and
Osypowski [16].

Next, we consider the pion angular distributions in the
c.m. frame, i.e., the differential cross sections. To the ex-
tent that partial waves 1~2 are unimportant, the cross
sections depend on cosO„up to order 2 and contain in-
terference terms between the multipoles Eo+ M&+ M]
and E,+. Since E,+ and M, are poorly known at low

energy and are presumed to be small, we will ignore them
and set M, + =fo(qk) from Eq. (2.2). The resulting
differential cross sections are compared with the Mainz
data [31] in Fig. 8, and although some difFerences exist,
on the whole the comparisons are seen to be satisfactory.
Some improvement might be gained by including and op-
timizing E,+ and M, , but this is beyond our present

scope. However, just to illustrate the degree of sensitivity
to these amplitudes, the dashed curve in Fig. 8(b) corre-
sponds to E,+ /M, + =0.10.

Finally, Fig. 9 depicts ReE + (m ) from threshold up to
E =300 MeV. The "data" shown as squares were de-
rived from the isospin amplitudes of Berends and Weaver
[20] as described at the end of Sec. VII above. Since no
errors were given for those amplitudes, we have included
an arbitrary +10%%uo uncertainty in Fig. 9. Up to Er =300
MeV the general trend of the data is reproduced fairly
well, but at higher energies (not shown) the
Berends —Weaver amplitude decreases rapidly and
changes sign between E =350 and 400 MeV. The solid
curve in Fig. 9 changes sign around 500 MeV.

The overall structure of ReE +(m. ) is quite striking,
and deviates markedly from the behavior when the re-
scattering term hE + is excluded, as shown by the
dashed line in Fig. 9.
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Re Eo+ (7I;0)

Three components entered into the formulation of
ReE +, namely, the Born term E +, the rescattering
term b,E +, and the vector-meson exchanges b,E&+ (p, co):

ReE + =E + +DE ++DE +(p, cu) . (10.1)

2
C)

-r3 r3
[]f3~~—

Their threshold values are summarized in Table I for the
two co-exchange options.

The standard LET prediction at threshold, based on
Eq. (1.1), is

h, EO ——0

I

I(
I I

140
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180 220 260 300
E (Mev}

FIG. 9. The amplitude ReE + (m ), from threshold to
0

E~=300 MeV, compared with the solution 2 values of Beck
et aI. (triangles) and the results derived from Berends et al.
(squares, Ref. [20]) as described in the text. An arbitrary uncer-
tainty of +10% has been assigned to the latter values. The two
curves represent different co-exchange options as in Fig. 6. The
dashed line represents no rescattering, but includes both
vector-meson exchanges.

A comment is in order here concerning the conver-
gence of the rescattering integral, Eq. (8.9), in the various
energy domains of Figs. 7 and 9. Near and below m+

threshold the integral saturates quickly for q & 300
MeV/c; therefore the amplitudes need project only a few
hundred MeV half off shell (i.e., 8' —8'o). However, at
the higher energies of Fig. 9 the integral does not saturate
until q reaches a few thousand MeV/c; hence it must de-
pend to some degree on the asymptotic behavior of the
half-o6'-shell ~X scattering amplitudes. The reasonable
agreement displayed by Fig. 9 thus lends some support to
our off-shell parametrization, Eq. (6.5) et seq.

E + (vr ) = —2.27 X 10 /m

while the modified LET, Eq. (5.4b), gives

E + ( vr ) = —2.47 X 10 '/m

(10.2)

(10.3)

The above difFer numerically for the reason previously
discussed. While both are legitimate LET statements, we
consider Eq. (10.3) to be the more realistic estimate be-
cause it does not involve the expansion of (1+p, )

~ . In
deriving Eq. (1.1), all terms of order p and higher are re-
jected even if the respective coeScients contain some
model-independent parts [10]. Actually, we are forced to
use Eq. (10.3) as our benchmark LET anyway, since
ReE + as defined by Eq. (10.1) reduces to it at threshold

in the absence of explicit rescattering corrections and
meson exchanges.

The low energy theorem is based on the strict validity
of PCAC; therefore any comparison with ReE +(vr )

should exclude the PCAC-violating part caused by the
vector-meson exchanges. The threshold value of Ja~akEp+

then becomes the measure of the departure from the LET
due to the isospin splitting of the masses.

Of the two sets of entries in Table I, the first set
(A, =1.074) is preferred since it is more compatible with
the E + amplitudes of Beck et al. [2] (triangles, Fig. 7)

and furthermore corresponds to a small co tensor cou-
pling, in contrast to the second set where it is unreason-
ably large.

We would conclude, then, that the mass splitting of the
m.X system induces a change in the threshold E +(vr )

amplitude of about

X. AMENDMENT TO THE LOW ENERGY THEOREM AE + =+0.29X10 /rn (10.4)

The rescattering calculation has been shown to give a
good account of the p(y, ir ) data, so let us return to
threshold and examine the implications for the low ener-

gy theorem.

which represents a 12% deviation from the LET predic-
tion, Eq. (10.3).

The magnitude of the deviation is too small to describe
it as a "violation" of the LET. If one claims that the iso-

TABLE I. Threshold values of the Born term, the rescattering term AE +, and the vector-meson ex-

change for the two cu-exchange options employed in the analysis. The corresponding threshold value of
ReE + (n ) is given in the final column. Units (except A, ) are in 10 /m

0

~~(+)(~)

0.079

0.000

1.074

0.991

EB

—2.468

—2.468

0.291

0.357

AE +(p, ~)

0.158

0.079

ReE + Ithr

—2.019

—2.032
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spin splitting in fact induces a very small change in the
LET [32], implying all rescattering corrections are still
implicitly accounted for at threshold, then AE + could

be interpreted as a measure of the model-dependent terms
of order p and higher. Instead, we prefer to think of
AE0 + as an "amendment" to the LET and offer an a1ter-

native hypothesis. In our phenomenological formalism,
the parameter 5 was introduced to insure that as the mass
splitting was reduced to 0, the explicit rescattering term
vanished at threshold, and the conventional prediction
was recovered. This rescattering term was appended to
the Born term and the sum is model dependent. Now it
seems reasonable to expect that a LET in which the mass
splitting was included from the beginning would again be
model independent to some order, say, p, and that a
correct treatment of Born +rescattering would reduce
under expansion to the same LET expression. In our par-
ticular model, the rescattering term converges to the ex-
pression given by Eq. (8.4) as 5~0. From the discussion
following Eq. (8.4), we saw that this expression was of or-
der m [or m if one rejects Eq. (8.5)], i.e., of order p or

p . By our hypotheses, then, the LET might also carry
terms that similarly resemble p5 (or p 5) and therefore
vanish when the isospin splitting is lifted. The result ex-
pressed by Eq. (10.4) would then be a measure of these
terms.

XI. CONCLUDING REMARKS

We have demonstrated that the recent Mainz p (y, ~ )

measurements are not in serious convict with the photo-
pion low energy theorem, and such disagreement as ex-
ists, about 12%, can be attributed to an explicit rescatter-
ing effect. Above threshold, the rescattering induces a
substantial quenching of ReE +(~ ), but at higher ener-

gies the amplitude recovers until numerically it becomes
roughly commensurate with the threshold value.

We suggest that the rescattering correction at m

threshold (hE + =0.29X10 /m„) constitutes an

amendment to the conuentional LET due to the isospin
splitting of the pion and nucleon masses. Within the con-
text of our semiphenomenological description, such
amendments would lie within the model-independent
domain (i.e., be of order of p, or p, where p=m /M),
and would depend explicitly on the ~ p-m+n mass split-
ting. The correction is about 12% and therefore not un-
reasonable. We find it difBcult to subscribe to the claim
that such effects are automatically contained within the
conventional LET because the mass splittings are not a
factor in the original derivation. Since the Born ampli-
tude E + yields the LET at threshold, we presume that it
too is devoid of any rescattering effects deriving from the
isospin splittings.

The rescattering formalism developed here, as in Ref.
[5], is based on the integral equation for the transition
operator and therefore depends on the half-off-energy-
shell behavior of certain amplitudes. Wherever possible,
the on-shell behavior of these quantities, such as
ReE +(~+), ImE +(m. ), and the vrX phase shifts, have

been constrained by their respective experimental values.
The only free parameters in the analysis, aside from the
P wa-ve photoproduction amplitude f0, occur in a phe-
nomenological form factor f ( WQ, W) representing the
off-energy-shell behavior of the m+ n ~~ p charge-
exchange amphtude. This form factor provides a mecha-
nism for continuing the amplitude into the physically
inaccessible region between the m and ~+ thresholds. In
the usual E-matrix approach to rescattering, in effect one
assumes f ( WD, W) =0 in the off-shell region and employs
the on-shell amplitude everywhere. We make no such as-
sumption, and instead use the Mainz total cross sections
below m+ threshold to provide some hints as to how
f ( W0, W) might behave. Naturally this requires some
sort of parametrization, and our particular choice was
constructed around a few basic premises. With the pa-
rameters (I, and p) determined, we predict a strong
depresssion of ReE +(vr ) just above the m. + threshold
and then a gradual increase with increasing photon ener-
gy. The results are in good agreement with the ampli-
tudes deduced by Beck et al. [2] (solution 2), and in
reasonable agreement with others up to Ez =300 MeV.

Our ansatz for the form factor goes off shell rather
slowly since df/dW~~ ~ =0, but in the degenerate-

0

mass limit (5~0) the transition becomes more rapid as
one approaches threshold. However, we have employed
phenomenology to promote plausibility arguments, not
necessarily to reach firm deductions concerning off-shell
behavior. (For example, we have not considered the
question of how the off-shell unitarity of the AN S matrix
can be maintained in the presence of off-shell form fac-
tors in general. ) Our main conclusion here, simply stat-
ed, is that most of the structure seen in ReE +(m )

derives from some kind of off-shell behavior which we
postulate is associated with the charge-exchange ampli-
tude, and in this conclusion we differ with the K-matrix
approach.

Actually, the present formalism reduces to the usual
K-matrix expression for rescattering in the limit where
f ( W0, W) is unity on shell and vanishes otherwise. This
is equivalent to letting A, —+00 in the form factor, Eqs.
(8.8), and as a result the integrand of the rescattering
correction, Eq. (8.9), becomes highly localized around the
pole. By converting to an integral over 8' one easily
verifies that the principal value integral vanishes as

If we now turn to Eq. (4.9), employ Eq. (6.3) for
the charge-exchange amplitude, and allow q to be com-
plex below ~+ threshold, we recover the familiar K-
matrix result to lowest order.

We conclude with a brief statement concerning the
md% coupling constant. Throughout the present analysis
the traditional value f =0.0796 has been employed, but
two recent works [33,34] have seriously questioned this
result, both proposing somewhat smaller values. As it
pertains to the present work, a change in coupling con-
stant has no effect on the integrand of b,E + [recall Eq.
(8.9)], since the numerator was normalized against the ex-
perimental values of ImE +(vr ). However, it does alter
ReE +(vr ) because the Born amplitude in Eq. (4.10a)
gets modified slightly. Therefore, we have repeated the
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data analysis according to the procedure of Sec. IX using
f (n NN)=O. D749 (Ref. [33]), and make the following
observations. The values of p and fc remain essentially
unchanged, while I, increases to A, =1.146 compared with
the previous value of X=1.074. Below m+ threshold
ReE +(n. ) is indistinguishable from the solid curve in

Fig. 7, but above threshold we now achieve perfect agree-
ment with the amplitudes of Beck et al. [2], shown as the
triangles. The discrepancy with the LET at threshold is
reduced to about 10%, while the LET value itself is re-
duced by about 3%.

Finally, as this paper was nearing completion we be-
came aware of a preprint by Bernstein and Holstein [35]
in which the Mainz total cross sections were analyzed in

a manner similar to Sec. II above, with similar con-
clusions regarding the threshold amplitude. There is
sufficient difFerence in approach, however, that we have
retained our discussion, also keeping in mind its
relevance to the subsequent analysis.
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