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Algebraic approach to cluster states in odd-mass nuclei. II. Electromagnetic and other properties

G. Levai and J. Cseh
Institute ofnuclear Research of the Hungarian Academy ofSciences, Debrecen, Hungary

{Received 5 November 1990)

The SU(3)XU(2) limit of the vibron-fermion model introduced recently by us as an algebraic ap-
proach to cluster states in odd-mass nuclei is developed further. The electromagnetic transition opera-
tors T' ', T' " and T' " are constructed, together with the one-nucleon transfer operators. Experi-
mental data available for the e-cluster states of the ' F nucleus are analyzed in terms of our model to test
its applicability. It is found that, although some quantities are not reproduced very well, the overall per-
formance of the model is satisfactory. Furthermore, the phenomenological operators introduced here
are able to describe ihe most intensive transitions in the lowest order; while introducing higher-order
(two- or three-body) terms they also qualitatively give account of the less intensive transitions.

I. INTRODUCTION

In the preceding paper [1] we have introduced an alge-
braic approach to cluster states of a class of nuclei in
which fermionic degrees of freedom also play an impor-
tant role in addition to the dipole ones describing the rel-
ative motion of two clusters. This new model, the
SU(3) X U(2) limit of the vibron-fermion model, is the fer-
mionic extension of the U(3) limit of the vibron model
[2], which has already been applied to describe cluster
states of light even-even nuclei [3]. Our model is able to
handle the interplay between the collective (bosonic) and
single-particle (fermionic) degrees of freedom using alge-
braic techniques. The collective degrees of freedom (i.e.,
the relative motion of the clusters) are described in terms
of the U(3) limit of the vibron model, while the single-
particle degrees of freedom (i.e., nucleonic excitation of
one of the clusters) are treated by allowing nucleons (or
holes) to occupy the states of an oscillator shell. (This
shell is not necessarily a real nuclear one. ) The group
structure of the model introduced this way contains the
SU (3) bosonic group of the vibron model and the
SUi(3) fermionic orbital angular momentum group, and
the coupling of the bosonic and fermionic degrees of free-
dom is represented by an SU(3) coupling of the two
group structures.

Our model was introduced in analogy with the vibron-
electron model [4] of diatomic chemical molecules, which
can be considered another limit [with O(4) XU(2)
dynamical symmetry] of the general vibron-fermion mod-
el, built on the O(4) dynamical symmetry of the vi-
bron model. The mathematical formulation of the
SU(3) X U(2) limit of the vibron-fermion model was part-
ly done following the methods used in the analogous limit
of the interacting boson-fermion model (IBFM) [5].

After identifying the group structure of the model we
introduced the coupled vibron-fermion basis associated
with the SU(3) XU(2) dynamical symmetry and deter-
mined the eigenvalues of the corresponding Hamiltonian
in this basis. We tried to identify the range of nuclei to
which our model may be applicable, and suggested the
a-cluster states of the ' F nucleus as a possible example.

Now we develop the model further and construct the
electromagnetic transition operators T' ', T' ", and
T' " and determine their matrix elements in the
SU(3) XU(2) basis. We also study the one-nucleon
transfer operators, which, in the presence of only one nu-
cleon (or hole), link SU( 3 ) X U( 2 ) basis states to vibron
model states. These will be done in Sec. II. In Sec. III
we apply our model to the o.-cluster states of the ' F nu-
cleus to test its predictions by comparing them with the
experimental data; finally, we summarize the results in
Sec. IV. Part of the mathematics necessary in the calcu-
lations is presented in the Appendix.

II. CONSTRUCTION OF
FURTHER PHYSICAL OPERATORS

Here we shall construct the operators of some physical
quantities not discussed in our preceding paper [1].
These operators can be sandwiched between the most
general vibron-fermion basis states, including those with
M =0 (i.e., no fermions), belonging to the vibron model.
In the next section we shall use the SU(3) XU(2) basis [1]
in the simplest case, i.e., with M = 1, which corresponds
to the coupling of one nucleon (or hole) to the relative
motion of the clusters. The operators to be introduced
here consist of bosonic and fermionic parts, acting on the
bosonic and fermionic parts of the coupled wave func-
tions [1]. The formulas necessary in the calculations and
the reduced matrix elements of the operators occuring in
this section are listed in the Appendix.

A. Electromagnetic transitions

In the phenomenologic algebraic models the elec-
tromagnetic transition operators are written as Hermitian
combinations of group generators with appropriate ten-
sorial character. In the usual treatment it is enough to
consider only one-body terms; nevertheless, higher-order
terms can also be taken into account if some physical
considerations require them. The application of the U(3)
limit of the vibron model to n-cluster states in light nu-
clei [3] showed that the n quantum number can be used
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to distinguish different cluster bands. Interband transi-
tions can be described only with operators not conserving
the number of m bosons. Since E2 and M1 transitions of
this kind are quite common in these nuclei, we have to
consider higher-order terms in the T' ' and T' " tran-
sition operators. The situation is the same with the odd-
mass light nuclei with Q.-cluster states, to which we want
to apply the SU(3) XU(2) limit of the vibron-fermion
model. Therefore we shall take higher-order bosonic
terms into account in the T' ' and T' " operators.
Since we consider only one nucleon (or hole) at the mo-
ment, there is no need for higher-order fermionic terms.

P„''=p[[[a. X~.]("X[cr XS]"']„''+H.c. ] . (2.6)

2. Ml transitions

The most general one-body M1 operator is

1/2

The matrix elements of this operator depend explicitly on
N, the total number of bosons, but this dependence can
be absorbed in p.

1. E2 transitions

The most general one-body E2 operator in the vibron-
fermion model is

T(M1) 3
c, [1r X5]„'"+gt", , '[ atXa. , ]

( )'

JJ

(2.7)

(2.1)

& (E2;~J~~'J') = 1

2J+1 (2.2)

1/2

consisting of a collective and a single-particle part. The
matrix elements of T( ' are related to the B (E2) values
and the quadrupole momenta in the usual way,

With a special choice of the t"' parameters the fermion
orbital angular momentum and fermion spin operators,
i.e., generators of the product group SU1(3)XSU, (2),
can be obtained. Replacing L~", LF", and SF ' with
another set of independent angular mom enta and
redefining the parameters, T' " can be written in a
different form:

1/2

4~ [ga Jp +(g1 —g11)LF„'+(g,—g1) )S~„"],

Q(~, J)= & JM=Jiz' "~ JM=J& . (2.3)
(2.8)

Calculations become simpler if the coefFicients t''' are
chosen in a special way, namely, if the T' ' operator can
be written as the linear combination of the bosonic and
fermionic quadrupole momentum operators:

(2.4)

An even more special case is obtained if tz=+q2 holds
(+ for particle, —for hole coupling), since in this case
T becomes proportional to the united quadrupole
momentum operator Q' '.

T(E2) ——~(2)
p 9'2~ p

(2.5)

This operator allows transitions only between states with
the same (A, , )M), while the more general operator in Eq.
(2.4) connects states with the same n, and allows the
change of (A, , )M). But this operator is still not general
enough, since the E2 transitions changing n„with two
units may also occur. In order to describe transitions of
this kind we have to add new terms to the T' ' operator.
These new terms should conserve the total boson number
N, while changing n with 2 units. The simplest two-
body terms with this character are

where S~(„)= —(I/&2)S")(—,', —,') is the generator of the
fermionic spin group SU, (2). Here J(') is diagonal in the
SU(3) XU(2) basis, so it will not contribute to the transi-
tions, only to the magnetic dipole momenta, SF links
states with the same quantum numbers (A, ,p) and L,
while LF" is able to describe transitions between bands
with different (A, ,p) quantum numbers. Besides the one-
body operators, two-body terms are also often necessary
to give a more complete description of M1 transitions in
the phenomenologic algebraic models. A possible choice
is to follow the usual treatment of the interacting boson
model (IBM) [6] and the IBFM [5] introducing the new
term [Q( 'XJ(')]('). This operator allows intraband tran-
sitions with ~b,L

~

2. In order to generalize this term to
interband transitions we can replace it with the operators
[Q(2) XJ(1)](l)and [Q(2) XJ(1)](1)8 an F P

Operators mentioned here are able to link states with
the same n quantum numbers. In order to describe
transitions with An =+2 even third-order terms may be
necessary. Based on the arguments similar to those
presented in connection with the E2 transitions, the in-
troduction of [P' 'XJ"']„"'seems to be the best choice,
where P' ' is the operator describing E2 transitions with
An =+2. The M 1 operator completed with these
higher-order terms can be written as

1/2
T(M1)

4~ [g~Jp +(gt —
g1) )LPp +(g, —

g1) )S~~'+g(2~[Q~ 'XJ ]p +ggF[QF XJ''
])J, +gt [P 'XJ" ]p '] .
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The M1 transitions and magnetic dipole mornenta can
be calculated in the usual way:

B(El;aJ~a'J')= l&a'J'IIT' "llaJ)l1

2J+1 (2.13)

B(M1;aJ~a'J')= &a'J'IIT™llaJ&',1

2J+1
1/2

(2.10)
now taking into account the possibility of complex pa-
rameters in Eq. (2.12).

4m
p(a, J)=

3
&aJ~=JITD~" laJM=J& . (2.11) B. Gne-nucleon transfer reactions

3. El transitions

T' "=d[a Xo otxrr]'"+—ri [ir Xo+o Xm]'"
p P P

= ( —d + ri ) [(r XF]„'"+( d + ri ) [n X cr ]&"

=c [otXrr]'" . c*[irtX—cr]"' .p P (2.12)

This result shows that the same real parameter
(Icl =le*I) has to be used in the n ~n +1 and
n —+n —1 transitions. Since the ordering of the levels is
such that states with higher n usually lie higher, only
the second kind of these transitions will be present in
most cases.

There is no need for higher-order bosonic terms either
(in the sense we introduced them in the previous subsec-
tions) to bridge states with b, n

I
) 1, since such transi-

tions seem to be unimportant. In principle, we could add
two-body terms which change n„with one unit and con-
tain another bilinear product of the boson or fermion
operators to give a more detailed description of the E1
transitions, but it seems unnecessary in the first step.

The B (E 1 ) values are written in the usual way:

Electric dipole transitions connect states with different
parity, so it is impossible to construct pure fermionic
terms in T' " in the SU(3)XU(2) limit of the vibron-
fermion model. This could only be possible if there were
single-particle fermionic states with opposite parity in the
model space. [This is the case in the O(4) XU(2) limit of
the vibron-fermion model. ] Considering these argu-
ments, one-body terms in the E1 transition operator can
only be purely bosonic. There are two Hermitian opera-
tors with the required tensorial character, D „"'

= [n. X cr —o. X5.](",which is usually considered the di-
pole operator, and R„("=i [~ Xcr+cr XK](') (He.re we
follow the definition of Ref. [4], which slightly dift'ers
from the original definitions in Ref. [2].) The most gen-
eral one-body E1 operator can be written as the linear
combination of D„'"and R „"',

()Pg „=gjaj„,
P(j) —

g a —
( 1)j—P(P(j) )t

~P J JP ~p

(2.14)

Since the fermions are allowed to occupy states in a given
oscillator shell, these operators preserve or change the
parity of the model states depending on the parity of the
fermionic shell taken into account. Therefore, one-body
terms can describe only either parity-conserving or
parity-changing reactions, so higher-order terms are re-
quired in order to describe both processes.

The general expression of the phenomenologic two-
body operators is

Pg &(2-body)=g g(i, ) [[b Xb]'"'Xat ] j' (2.15a)
kj'

for the nucleon adding and

P' '„(2-body) =( —1) "[P'g' „(2-body)]t (2.15b)

for the nucleon subtracting processes, where b =o. , m.

and b =0., Fr, and we take bosonic terms with definite
parity only.

The matrix elements of the one- and two-body nucle-
on transfer operators for a transition going from the
ground state IN(n;„,0)L =0) of an even-even nu-
cleus to a vibron-fermion state denoted by
IN(n, O)(A~, )u~);(A, ,)M)L —,

' J ) can be calculated using the
formulas presented in the Appendix:

The U(3) limit of the vibron model has already been
applied in the description of u-cluster states in even-even
light nuclei [3]. As we want to use the SU(3) X U(2) limit
of the vibron-fermion model to describe such states in
odd-mass light nuclei, the study of one-nucleon transfer
reactions offer a convenient way to connect the model
spaces of the vibron model and the vibron-fermion mod-
el.

The simplest phenomenologic one-nucleon transfer
operators contain one-body terms. Since such operators
create or annihilate one nucleon in the specified state,
these one-body operators can be written as [5]

&N(n, O)(AF, pF);(A, , )M)L —,
' Jl IP(g)(1-bodyl N(n;„,0)L =0)

= —pi5jJ5„„;„5LI(2J+ 1)' & (n, O)0;(A~pF )1 I I
(A, , )M)l ), (2.16a)

&N(n, O)(j(i;,)M~);(A, , )M)L —,
' Jl IP(g)(2-body)l IN(n;„,0)L =0)

=S„yg, „j,„&( ., 0)k;(X, ,)ll l(z )L )( —1)j'+'"
kj' 2k +1

X &N(n„, O)kll[b'»](")IIN(n„;„,0)0) .

1/2 k J J
l L

J

(2.16b)
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P(j ) —g(+)at +y g(+) [[ )X-](2)Xa't ](j) (2.17a)

and the parity-changing one-nucleon transfer operators
are

+g g„,', [ [m. X rr ]'"Xa, ]„"', (2.17b)

containing only two-body terms. In the n =odd case,
however, the situation will change:

P(g „)=g g(+j', [[ tX ](i)Xat]'j
J

+g g
+' [ [m. X rr ]' "X a t ]„'j'

J
(2.18a)

is the parity-conserving transfer operator, and

p'g ) =g-),'. +yg(;,)„[[ 'X-]"'X ', ]'j'. (2.18b)

is the parity-changing transfer operator, now with one-
and two-body terms. Matrix elements of the inverse pro-
cesses can be calculated using the operators

(2.19)

To measure the strength of the transfer reaction the spec-
troscopic strength can be introduced, similarly to other
phenomenologic models, like the IBFM [5]:

S(a'I'~aj)=, l&trJ IP(j)ll(z'I'& ' .1

2J'+ 1
(2.20)

III. APPLICATION OF THE MODEL
TO REALISTIC PROBLEMS

In our preceding paper [1] we suggested that the a-
cluster states of the ' F nucleus may serve as a good ex-
ample for the approximate realization of the
SU(3)XU(2) limit of the vibron-fermion model. We
identified 25 ' F states of this kind with SU(3) XU(2)
model states comparing the structure of the experimental
and the model spectra. Here we discuss whether the
available information of the electric quadrupole, rnagnet-

Examining the reduced matrix elements of [b Xb]'"' in
Eq. (2.16b) we can establish the following. Taking
[m XP]("), k =1 cannot occur, since k must be even if
n =n;„=even. k =0 means only a redefinition of the
coefficient g. in the one-body term, so the only significant
term of this type is [vr XFr]( '. Since the one-nucleon
transfer operators are not Hermitian, we can vary the
coefficients of the terms [cr Xm. ]") and [m Xo.](" in-
dependently, contrary to the T' " operators (2.12),
which also contain these terms. Contrary to the terms
with [m.t X m. ]("), these terms change the parity of the bo-
sonic state.

The results of the preceding paragraph can be summa-
rized as follows. If the fermionic shell taken into account
has even parity (n =even), the parity-conserving one-
nucleon transfer operator can be written as

ic dipole, and electric dipole transition probabilities sup-
port this assignment. We also study the available data on
the one-nucleon transfer reaction Ne(t, a)' F and try to
interpret them in terms of our model. We expect our
model to be able to give account of the close relationship
of certain cluster bands of the Ne and ' F nuclei. Here
we accepted the band assignment proposed by
Descouvemont and Baye [7], which differs from other
schemes [8] at some places (both in the assignment and in
the interpretation of energy levels and bands), and also
introduces new bands in addition to the old ones.

As discussed in Ref [1],the physical picture behind our
model is the coupling of the relative motion of the a and
the "N clusters to a hole on the p shell of the ' N core.
This allows cluster bands built on the excited J =

—,
' ni-

trogenic state, the importance of which has been em-
phasized by several authors [7,9]. In fact, the basis states
of our model contain contributions from the a+' N,
and the a+' N( —', ) configurations alike. [The relative
weight of the two configurations in the model states is
determined by the SU(3) &0(3) Wigner coefficients [1].]

In these first calculations we assume that the cz-cluster
states of ' F have an exact SU(3) XU(2) dynamical sym-
metry. Of course, this is a simplification of the physical
problem: In a more realistic description symmetry-
breaking terms should also be taken into account, and the
model states would contain contributions from several
SU(3) XU(2) states, etc. However, our aim was the test
of the validity of our new model and not the realistic
description of any nucleus. This could be the next step
later on.

A. Electromagnetic transitions

Here we shall use two different methods to test our
model by comparing the calculated electromagnetic tran-
sition probabilities with the available experimental data.
First we shall select a number of transitions (preferably
those with the lowest relative error) sufficient to fix the
model parameters by equating their probabilities to the
values calculated from our model. Following this pro-
cedure the other transition rates can be "predicted" and
the performance of our model can be judged on the basis
of the overall "goodness" of this prediction. (We shall
call this approach method 1.) The second method
(method 2) is a least-squares fit of all the transition proba-
bilities with respect to the parameters appearing in the
transition operators. We shall take into account all ex-
perimental data with equal weight (no matter how large
their relative errors are), but we shall ignore those which
represent only a lower or upper bound of the given transi-
tion probability.

We shall display the results from both approaches, but,
since our aim is not the description of the ' F nucleus, we
shall present only those theoretical values which have ex-
perimental correspondents. In order to develop a more
complete picture of the performance of our model we
shall also display the results obtained from another
phenomenologic cluster model, the local potential model
of Buck et al. [8]. It has to be noted, however, that the
interpretation and level assignment of this model differ at
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some places from the conventions (given in Ref. [7]) we
followed in our model. The K =

—,', and —,'z+ bands are
interpreted as a-cluster bands with 2N +L = 8 and 9, re-
spectively, while the IC = ,',+ —(ground-state) band is de-

scribed as a t +' 0 cluster band with 2N +L =6. Simi-
larly, triton-cluster structure with 2N +L =7 is assigned
to a set of negative-parity states, some of which we inter-
preted as members of the K =

—,'3 or —,
' bands, or as

states with different structure. It is also worth mention-
ing that Buck and Pilt presented B(E2) and B(M1)
values for intraband transitions only and their B(E1)
values are also restricted to transitions connecting states
with similar cluster structure.

1. E2 transitions

There are 16 transitions (see Table I}belonging to two
intraband and two interband sets, for which experimental
data are available [7,10]. We have three model parame-

ters to fix: qz and tz from Eq. (2.4) and p from Eq. (2.6}.
The operators Qz~

' and Qz
~ corresponding to the first

two parameters link states with the same n, while opera-
tor P ' ' connects states with

~

An =2. This means that
the two transitions going from the K =

—,'2+ band to the
K"=—,'&+ ground-state band can be treated separately,
and the parameters p can be fixed to these independently
from the others. These transitions seem to be generally
weaker than the others, which is in agreement with our
expectations, since these transitions are described by a
two-body operator in our approach.

It is also worth mentioning that fitting transitions
within only one band requires only one parameter (q2 or
tz), because these parameters appear in the same com-
bination in the corresponding matrix elements. Both pa-
rameters are needed only when there are two or more
bands with intraband transitions.

The results of the fitting procedures are displayed in
Table I. Following method 1 we have selected the transi-

TABLE I. E2 reduced transition probabilities in Weisskopf units.

J,'(E., )

Expt. [7,10]
J (E ) 8 (E2),„p

Ref. [8]
a(E2},

SU(3) X U(2)
B (E2),h1' 8 (E2),h2' Band Labels

1 +
21

2 (0.20)

(1.55)

2
+(2.78)

—"+(4.6s)2

—+(5.46)

1 +
21

—,'+(0.0)

2 (0.0)

—,'+(o.2o)

-+(0.20)

—", (2.78)

2
+(0.20)

—,'+(1.ss)
-+(2.78)

6.95+0.08

6.8+0.7
(127'

8.2+0.9
5.3+0.9
2.0+0.5

14+4
3+2

6.42

6.21

2.83

7.30

4.75

0.85

7.90

0.63

6.95

6.95

3.10

8.09

5.27

0.81

7.28

0.78

10.68

10.68

4.77'

12.47

8.09

1.24

11.18

1.20

7(6,0) ~7(6,0)

2 0

2 0

1 +
22

2 (5.34)

2 (5.50)

2 (6.29)

E =—'
21

(1.35)

(1.46)

(4.00)

(4.03)
—", -(8.9s)

K = —'+
21

-+(0.20)
-'+ (0.20)
-'+(0 0)

1

21

(0.11)

(0.11)

( l.35 }

( l.46)

(1.35)

(4.00)

(4.03)

(2
2.4

1.9+O.7b

20+3
25+11

&4'
10+

28+6
8. 1+l.2

0 5+0.9

15.60

15.60

2.00

18.07

20.08

17.18

0.66

0.63

0.91

1.90

2O.OOb

21.89

3 ~ 13

25.71

22.51

23.88

1.28

0.83'

1.19

2.48

14.13

15.46

2.21'

18.16

15.90

16.86

0.90

9(8,0)—+ 7(6,0)

0 2

2 2

8(7,0)~ 8(7,O)

3 1

1

23

(6.79)

~m 1

21

(0.11) 0.7+0.3 294.78 2.60

8(8,1)~ 8(7,0)

1 1

'B (E2),h1.. fitting selected transitions (method 1);B (E2),». fitting all the transitions (method 2).
Used to fit model parameters (method 1).

'Not fitted (method 2}.
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tions —,
'+ ~—,

'+ and —,
' ~—,

' within the X =
—,
'

) and
K =

—,
'

I bands, respectively, to Gx the parameters qz and

t2, while p was fixed separately using the K
J"=—,

'+ K"=—,',+, J =—,
'+ transition. As it can be seen

from Table I, the calculated values agree remarkably well

with the e~perime~tal data for the E"=—2']+ and —,'I
bands; only the single K =

—,'3 ~K =
—,', interband

transition is overestimated considerably. The parameters
in this case are q2=7. 198, t2=61.764, and p=0.013.
Using method 2, the least-squares-fitting procedure, we
arrive at the parameter set q2=1.975, t2=7.098, and

p =0.015 (and g =487. 1). We can see that the general
trend of the transition rates is reasonably well reproduced
in this case too. A large fraction of y originates from
transitions within the E =—2'& band with large error
bal s.

It is interesting to see that our results obtained from
method 1 are close to those of Buck and Pilt [8] for the

band, while the same holds for our results from

method 2 and for the —,', band. (Of the two data sets in
Ref. [8] here we presented the one calculated with
nonzero effective charge. )

As a test of the parameters obtained from the fitting
procedures, we can calculate the quadrupole momenta of
some states using Eq. (2.3). Experimental value is avail-
able only for the K =

—,',+, J =—', + state: Q=+(11+2)
e fm . The negative sign is generally accepted, since oth-
er models give negative values: Q = —8.26 e fm (genera-
tor coordinate method (GCM) [7]); Q = —8.83 e fm
(Buck and Pilt [8]). Using the parameters fixed previous-
ly by methods 1 and 2 we get Q = —5.45 and—6.75 e fm, respectively, which are smaller in magni-
tude than the experimental value, but are close to the pre-
diction of the other models.

2. Ml transitions

There are 17 M1 transitions for which experimental
information is available (see Table II). We shall use four

TABLE II. M1 reduced transition probabilities in Weisskopf units.

J; (E„;)
Expt. [7,10]

Jf (E„f) B(M1),„p

Ref. [8]
8(M1)~

SU(3) X U(2)
8 (M 1),»' 8 (M1),h2' Band Labels

Km 1+
21

-+{1.55)

—+(5.46)

~K 1 +
21

-'+(0 0)

2
+(0.20)

-', +(0.20)
-+(2.78)

(4.3+2.5) X 10

2.3+1.4
(1.5+0.5) x 10-"

0.9+0.2

2.49

2.29

0.001

0.972

0.0015b

0.900b

0.227

1.110

0.238

1.028

7{6,0)~7{6,0)

2 0

2 2

K=—'+ K22 21
—' +(5 34) -' +(0 0)

2 (1.55)
-'+(5.50) -'+(0.20)

2+(1.55)
-'+ {6.29) -'+(0.20)

-+(1.55)

0. 19+0.03

& 0.03'

0.33

0.18

(3.0+1.1)X 10

(3.0+0.8) x 10-"

0.005

0.046

0.083

0.252

0.030

0.002'

0.020

0.036

0.109

0.013

9(8,0)—+ 7(6,0)

0 0

1

21

(1.46)

(4.00)
—"-(8.95
2

1

23

(6.79)

K =—'
21

(0.11)

(1.35)

) —', (4.03)

~K =-'
21

(0.11)

{1.35)

(1.46)

(9.1+1.9) X 10

(6.2+2.4) x10 '
(8.3+1.4) X 10

0.34+0.06

(8.6+2. 1)x 10-'
0.44+0.09

0.518

0.666

0.707

0.340

1.702

0.510

0.656

0.696

0.126

0.629

8(7,0)~ 8(7,0)

1 1

3 3

8(8,1)-+ 8(7,0)

1 1

1 3

K 77—3
2

{6.89)

~K = —'
21

2 (1 35)

(1.46)

0.53+0.14

0.27+0.09

0.557

0.255

0.206

0.094

8(8,1)—+ 8(7,0)

2 3

2 1

fitting selected transitions (method 1);8 (m 1),». fitting all the transitions (method 2).
Used to fit model parameters (method 1).

'Noi fitted (method 2).
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parameters to fit these: g&
—g~, g, —g~, g&=g& —g&,

and g~ from Eq. (2.9). The third one of these is the pa-
rameter of the two-body operator [Q' 'XJ"']"',which is
able to describe intraband transitions only. The same
holds for the operator related to g, —g~(S„'-"), while LF",
the fermionic orbital angular momentum operator, is able
to link states with diff'erent (A, ,p) (and the same n )

Without any calculations we can estimate the impor-
tance of various terms of the T' "operator, since there
are transitions which can be described by only I.I;,
[Q' 'XJ"']"', or [P' 'XJ'"]'" in our approach. The
one-body term LF ' is expected to be significant, since it is
the only operator which is able to link states with
(k,p)=(8, 1) and (7,0), which we assigned to the strong

We expect the two-body term [Q' 'XJ"']'" to be less
important: the only transitions it describes alone are the
two weak ones within the E =

—,
'

&+ band. The three-body
term [P' 'XJ'"]"' describes only transitions with
b, n =2 (corresponding to K =

—,'2 ~K =
—,',+ in our ap-

proach), so the related parameter can be fixed indepen-
dently from the others, similarly to the P' ' operator of
the E2 transitions. This term is also expected to be less
significant, as the corresponding transitions are not too
strong.

Following method 1 we used transitions E =
2 3

J77 3 — ~7T ] — Jw ] —
and ~& ] + J71

21 7

K =
—,'&+, J =

—,
'+ to fix parameters gI

—gz and

g&, respectively, as these are the most precisely measured
transitions among the ones that can be described by the
operators LF ' and [Q' 'XJ"~]"' alone. In order to fix
the third parameter, g, —gz, we chose transition
J"=—,'+ J"=—', + within the K z i band, which is the
strongest among those with comparable relative error.
Unfortunately, the best candidate to fix g~ to the
E =

—,'z+ —+K =
—,'i+ transitions (with ~b, n

~

=2) belongs
to a vanishing matrix element in our approach
(J =

—,
'+~

—,'+), so we used transition J =
—,
'+~ —', + with

the next smallest relative error. The parameter set ob-
tained from method 1 is as follows: g&

—g~=3. 118,
g, —g&=2. 396, g&=0.055, and g&=0.005. The least-
squares fit (method 2) leads to the parameter set

g)
—

g~ =1.895, g, —
g~ =4.298, gg =0.686, and

g~ =0.003 (with y =2.913). The agreement between the
experimental and calculated data is not really satisfacto-
ry, especially not for the transitions within the K
band, where the transition rates are overestimated in
both approaches (methods 1 and 2). Transitions to this
band from other bands, however, are relatively well
reproduced by using method 1. K =

—,',+~K =
—,',+

transitions, to which we assigned ~b, n
~

=2, are poorly
reproduced, which shows that operator [P' 'XJ'"]' ~

may not be the best choice here.
There are two states for which we know the magnetic

dipole momenta from experiments, both of them belong-
ing to the K =

—,',+ ground-state band: p( —,'+)=2.63@&
and p( —,

'+
) =3.61p&. The corresponding values are

2.55@~ and 3.39pz in the GCM [7] treatment, while
Buck and Pilt [8] got 2. 98p& and 3.70p&. When we cal-

culate magnetic dipole momenta in our model, the diago-
nal g&J"' term in Eq. (2.9) appears in addition to the
ones used already in determining the M1 transition rates.
If we fix g~ by a least-squares fit of the p( —,

'+) and p( —,
'

)

values, we get the following results: method 1,
p( —,

' +
) = 1.80'& and p( —,

' +
) =3.78p~ (with g~ = l.226);

method 2, p( —,'+)=2.02pz and p( —', +)=3.73@~ (with

g~= —0.252). These results are somewhat worse than
those obtained from other models, but are still in good
agreement with experimental data.

3. E1 transitions

There are 16 transitions between ' F states for which
experimental information is available (see Table III). In
our approach all of them correspond to transitions with
b, n =1; so we use only parameter c [from Eq. (2.12)] to
fit their probabilities. Here the matrix elements of T'
explicitly depend on N, the total number of bosons (see
the Appendix), and this may slightly influence the rela-
tive strength of different interband transitions. Here we
used N =16. Following method 1 we chose transition

Since this is the only parameter now, the results from
method 2 differ only in an overall scaling factor. Our re-
cults are c =0.429 (method 1) and c =0.364, with
y =502.7 (method 2). The results are not very satisfac-
tory. It has to be added, though, that we used only one
parameter here, and E1 transitions are generally poorly
reproduced by other models too [7,8]. K
=

—,'& —+K =
—,',+ transitions are overestimated by an or-

der of magnitude in both the GCM and orthogonality
condition model (OCM) treatment [7]. (According to
Buck and Pilt [8], these transitions connect a-cluster
states with triton-cluster ones, and no calculated values
are given in Ref. [8].) These models also overestimate the
K =

—,
' 2+ ~K =

—,
'

&
transitions, while our model un-

derestimates them. Our results could be improved if we
introduced two-bod~ terms containing the n operator
(e.g., n [vr X o cr X N]' ") which —co. uld increase the
difference between the average strength of the transitions
with n„=8~n =7 and n =9—+n =8.

B. One-nucleon transfer reactions

In order to test the predictions of the model we used
spectroscopic information obtained from the

Ne(t, a)' F proton pickup reaction by Garrett and Han-
sen [11]. These authors presented data for the states of
' F below E =6. 1 MeV and for a single state at
E„=6.79 MeV. Their results are presented in Table IV,
in which we included all the states which have corre-
sponding model states in our approach. (Besides these
there are 13 other states in Ref. [11],which are not inter-
preted as a-cluster states [7].)

In Ref. [11] there are nine ' F states for which the
spectroscopic factor (C S) is given numerically, six of
which have corresponding model states in Table IV. The
authors also refer to nine states as being weakly popu-
lated in this reaction and also nine states as not having
angular distribution characteristic of an orbital angular
momentum transfer. There are four states of both kinds
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included in Table IV.
If we assign the vibron model quantum numbers n„=8

and R =0+ to the ground state of the Ne nucleus,
there are only four SU(3)XU(2)vibron-fermion states
which give nonvanishing matrix elements with the one-
body transfer operator introduced in Sec. II 8. %'e ex-
pect these states to be strongly populated in this reaction.
This seems to be the case, since three of them have nu-
merical spectroscopic information (C S) in Table IV (the
only negative-parity states which have at all), and the
fourth (with E =6.99 MeV) is just outside the energy
range studied in Ref. [11]. (It has to be added, though,
that there is a peak at E„=7MeV in Fig. 1 of Ref. [11],
which is not analyzed by the authors, but which may
arise from the J =

—,
' state of E„=6.99 MeV. )

If we neglect the two-body terms in P' „'[the inverse
of (2.18b)] at the moment, we have a chance to test the
predictions of our model for the J"=—,

' states of the
K =

—,'& and IC = ,'3 band—s. Using (2.18b), (2.19), and
(2.20) we get S= —,", (g(f t/2)3/2) and S=—„(/It I/g)3/2) for
the two states. The ratio of the two is —„'„' =0.364. At the
same time C S=0.30 and 0.96 for the same two states
from the experiment (see Table IV), so their ratio is

0.30/0. 96 = 0.313, which is close to the prediction of the
model. Unfortunately no similar check can be done for
the J =

—,
' states of the same bands.

There are no more numerical data for the other
negative-parity states, so there is no point in trying to fix
the parameters of the two-body operators. Nevertheless,
we expect that their contribution is not significant. There
are six other negative-parity states giving nonzero matrix
elements with the two-body transfer operator (2.18b).
Four of them are outside the energy range studied in Ref.
[11],one is referred to as being weakly populated in the
reaction, and one has angular distribution not charac-
teristic of an orbital angular momentum transfer.

As for the positive-parity states, there are three of
them with well-defined C S in Table IV, all three belong-
ing to the ground-state band K =

—,'&+. They are just the
same three states the model correspondents of which can
be reached from the ground state of Ne with the
lowest-order transfer operator, the inverse of (2.18a),
which now has two-body terms. Three states of the
IC =

—,'2+ band can also be linked with the ground state of
Ne by two-body transfer operators, but these transitions

are weakly populated in the Ne(t, a)' F reaction (see

TABLE III. E1 reduced transition probabilities in 10 Weisskopf units.

J; (E„;)

~m 1

21

(0.11)

( 1.46)

(1.35)

(4.00)

~sr 1 +
21

-'+ (0.0)
-'+(0.0)

2
+(0.20)

—'+(0.20)
-+(0.20)

B(E1)„p

1.2+0. 1b

1.0+0.2
0.81+0.19

(6.5+2.2) X 10

0.23+0. 10

Ref. [8]
B(E1)

1.20

1.20

0.54

8.08

SU(3) X U(2)
B(E1 )th2

0.86

0.86

3.46

0.39

5.81

Band Labels

8(7,0)~7(6,0)

1 0

1 0

1
— ~~ 1+

23 21

(6.79)' 2+(0.0)
—+(0.20)

(6.93 ) -'+(0.20)
-+(2.78)

5.4+1.5
5. 1+1.3

12+2

1.7+0.5

309

404

2.86

4.31

0.05

0.03

0.002

3.1

0.04

0.002

8(8,1)~ 7(6.0)

1 0

~sr 3 — ~~ 1 +
21

(6.89) -'+(0.0)

~sr 1 + ~~ 1

22 21

( S.34) —' (0.11)

( 1.46)
—'+(5.50) -' (0. 11)

(1.35)

(6.28) —,
' (1 ~ 35)

( 1.46)

1.7+0.6

10+2

12+2

7.0
9.8

2. 1+0.5
1.2+0.4

15

25.4

15.4

0.48

0.96

4.83

S.06

0.24

5.80

0.34

0.69

3.48

3.64

0.17

4.17

8(8,1)~ 7(6,0)

2 0

9(8,0)~ 8(7,0)

0

'B (~1),hl. fitting selected transitions (method 1); B(M1),».. fitting all the transitions (method 2).
Used to fit model parameters (method 1).

'In Ref. [8] another J =
—,
' state is taken here with E„=6.088 MeV.
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Table IV). Therefore we conclude that the parameters
/+i~+'i are much smaller than the parameters gI,+J'~~ in Eq.
(2.18a).

It is not our aim to give a precise description of the ' F
nucleus, so we are not going to analyze the data further

by fixing model parameters. As a conclusion we can say
that the phenomenological one-nucleon transfer opera-
tors of the vibron-fermion model give a reasonably good
prediction of the spectroscopic factors in the

Ne(t, a)' F reaction. They give large matrix elements
in the lowest order for those ' F states which are strongly
populated in the reaction, while using higher-order terms
they predict reasonably well the range of states which are
less strongly populated.

IV. SUMMARY AND CONCLUSIONS

Here we have developed further the SU(3) XU(2) limit
of the vibron-fermion model introduced recently by us

[I], as an algebraic approach to cluster states in odd-mass
nuclei. We introduced the electric quadrupole, magnetic

dipole, and electric dipole transition operators, and the
one-nucleon transfer operator. These operators contain
bosonic and fermionic parts acting on the corresponding
constituent of the coupled vibron-fermion basis states.
They may include one-, two-, or even higher-order terms
to describe transitions between vibron-fermion states (in-
cluding vibron model states as a special case), but our ex-
pectation is that they should be able to describe the most
important transitions in the lowest order.

We used the basis states assigned to the SU(3) XU(2)
dynamical symmetry to calculate the matrix elements of
these operators in the simplest case, in which we take
only one nucleon (or hole) into account on an oscillator
shell. In this case the one-nucleon transfer operators link
SU(3) XU(2) states with basis states of the vibron model
assigned to the U(3) dynamical symmetry.

In order to test the general performance of our model
we applied it to the a-cluster states of the ' F nucleus,
proposed previously [I] as an example for the approxi-
mate realization of the SU(3) XU(2) dynamical symmetry.
The physical picture behind our model in this case is the

TABLE IV. Spectroscopic information on the Ne(t, a)' F reaction and its interpretation in the
SU(3) X U(2) limit of the vibron-fermion model.

1 +
21

1+
22

1

23

3
22

1

22

1+
2
3+
2
5 +
27+
29+
2
13+
2

1—
2
3
25—
2
7
29—
211—
2
13—
2

1 +
23+
2
5+
2
7+
2

1—
2
3
25—
2
7
2

3
25—
2

1—
2
3
2

0.0
1.55

0.20
5.46
2.78
4.65

0.11
1.46
1.35

4.00
4.03
8.95
8.29

5.34
5.50
6.28
7.11

6.99
6.69
7.74
6.93

6.89
9.82

6.43
7.90

C Sexp
(Ref. [11])

0.12

0.31
1.6
b

1.7
0.30

0.96

Order of the
transfer operator

1, 2

1,2

2

2

3

3

4

1,2

1,2
2

2

n (A, ,p)L

7 (60) 0
2

2

4
4
6

8 (7,0) 1

1

3

3

5

5

7

9 (8,0) 0
2

2

8 (8,1) 1

1

3

3

8 (8, 1) 2

2

10, (9,0) 1

1

'Z, is outside the energy range studied in Ref. [11].
Not strongly populated.

'Angular distribution not characteristic of an orbital angular momentum transfer.
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coupling of a hole on the p shell to the relative motion of
an a cluster and the ' N core. Besides the ground state
of the core nucleus, this approach also takes into account
the excited state of ' N with J =

—,'; in fact, the basis
states of our model contain contributions from both
configurations, so they are not "pure" n+ ' N, or
a+' N( —', ) states. We identified the SU(3)XU(2) states
with experimental ones comparing the band structure of
our model and that proposed by Descouvemont and
Baye [7] to classify the a-cluster states of the ' F nucleus.

We used two different methods to fix the model param-
eters of the electromagnetic transition operators. [In the
first one we selected the minimal number of transitions
(preferably those with the smallest relative error) neces-
sary to fix the model parameters, while in the second one
we performed a least-squares fit of all the transition rates
with respect to the model parameters. ] It was found that
generally there was only a difference of less than 30% be-
tween the transition rates calculated from the two
methods. We found that although the experimental
values are not always reproduced very well, our model is
able to describe qualitatively these transitions, and it can
account for the most important ones in the lowest order
(i.e., using only one-body terms in the transition opera-
tors). Very good results were obtained for the E2 transi-
tions (especially from method 1), while the agreement be-
tween the experimental and calculated 8 (M 1 ) values was
not very satisfactory in some cases. In case of the electric
dipole transitions the overall agreement was not very
good either, but it was still not worse than the prediction
of other models [7,8], which generally overestimate many

of the 8(E1) values. We used the fixed parameters to
calculate quadrupole momenta and magnetic dipole mo-
menta of the model states, and it was found that these
values are in good agreement with the available experi-
mental data, and are close to the predictions of other
models [7,8] as well.

We studied the one-nucleon transfer reaction Ne(t, a)
and tried to interpret the available experimental data in
terms of our model. We again found that the lowest-
order operators are able to reproduce qualitatively the
most important transitions.

These calculations were not meant to give a detailed
description of the ' F nucleus; rather, our aim was to test
the applicability of our model to realistic problems. Our
results indicate that this simple phenomenological model
can serve as a starting point for further studies either by
introducing new degrees of freedom, or by taking into ac-
count symmetry breaking.

APPENDIX

Here we collect the formulas necessary to calculate
electromagnetic transition rates and other quantities with
physical importance, such as matrix elements of
symmetry-conserving or -breaking interaction terms in
the Hamiltonian. We use the SU(3)XU(2) basis and
present the formulas separately for operators with
different tensorial character. Here we consider only one
fermion (M= 1), so the (Az, pF) SU&(3) representations
are either (n, O) or (O, n).

Reduced matrix elements of boson number conserving
tensor operators with 0 (3) tensorial character, 8„'"'.

((n„,O), (AF, p~);(A, ,p)~, L—,
' J~ ~8'"'~ ~(n ', 0), (A p~);~(A.', p')~', L' —,

' J')
J' k J=5, , ( —1) +' + +"&(2J+1)(2J'+1)

F'I F ' F'~F L 1 L'

L' k L
X g ( —1) +'+"+ &(2L+1)(2L'+1) '

R l R'

X((n, O), R;(AF, pF)l~~(A, ,p)KL)((n', 0),R', (A+, p+)l~~(X', p')~'L')((n. , O)RII8'"ll(n' o)R') (A 1)

0& ( 3 ) tensor operators F„'"':

((n, O), (A~, pF);(A, p)~, L ,'J~ ~F,
' '~ ~( —'n0),(A pF);~(A, ', p, ')~', L' —,'J')

J' k
~ ( —1) +' + + &(2J+1)(2J'+ I) .

n~, n~ L l L'

L' k L
Xg ( —1) + + + v (2L+1)(2L'+1) '

I Rl'

X ((n, O), R;(Az, pz)l~ (A, ,p)&L )((n, O), R;(AF, pF)l'~ ~(A, ', p')x'L')((Az, pF)l~ ~F'"'~ ~(AF, pz)l') . (A2)

SU, (2) tensor operators S„'"':
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((n, O), (AF, pF );(A,,p)x, L—,
' Jl IS'"'I I( n', 0), (A Fp ~);(A,',p')~', L' ,' J—')

J' k J=5 5L 1.( —1) +' + +"+(2J+1)(2J'+1), L, .( —,'IIS'"'ll —,
' ),

2 2

where a=n, (k~, p~), (A, ,p)~.
O(3) tensor operators A„'"':

&(~,P, )~,L—,'Jll~'"ll(~, l )~,L,'J &

J' k J
=( —1)'+'"+'+'v'(2J+1)(2J'+1) L, L, .((X,P, )ALII W'"'ll(z, l )&L ) .

2

(A3)

Further relations can be derived for SU(3) ~O(3) ~O(2) tensor operators, such as the quadrupole and angular
momentum operators Q' ' and L"'. The T,'I'g' tensorial character of these operators is [12,13]

I (1) —y(1, 1)
p 11p

~(2) „g 3 y(1, 1)
~p V 8 12p

(Asa)

(ASb)

and they form the generator set of the SU(3) group. [There are several conventions known for the choice of the numeri-
c» factor in (A&b). Here we followed the one used in Ref. [5].] The reduced matrix elements Q"' can bt: determined
from the formula

((A, ,p)~'L';(1, 1)lllI(A, ,p)~L )p=,
&(A,,p)KLIITII "Il(A,', p')K'L'&=5(~„) (~. „.) L(L+1)(2L+1)

A. ,p)~L; 1, 1 11 (A.,p, )aL)z. (A6)

which is obtained from the requirement that it should reproduce the matrix elements of L ' "in the l = 1 case [5]. Simi-
lar relations hold for the reduced matrix elements of the SU (3) and SU&(3) tensor operators in the corresponding
bases, with the difference that the (A, ,p) representations are to be replaced with the simpler representations (n, O) and
(n, O) [or (O, n)], respectively. Below we displayed the reduced matrix elements of Q~ '. These can be used to determine
the reduced matrix elements of QF

' as well for the (n, O) (particle coupling) case, while the reduced matrix elements for
the (0, n) (hole coupling) case can be calculated from the formula

((O, n)ll IQP'I I(O, n)l') = —((n, O)ll IQP'I I(n, O)l'), (A7)

obtained from the symmetry properties of the SU(3) DO(3) Wigner coefficients.
Reduced matrix elements of some (boson) operators in the vibron-fermion model follow. Some of these formulas can

be used to determine the reduced matrix elements of fermionic operators as well (see above):

&N(n. , O)RII&. I IN(n, O)R ) =n v'2R+1,

(N(n, O)RI L~~ 'I N(n, O)R ) =V R (R +1)(2R +1),
2(n +R+3)(n —R)(R+l)(R+2)

N(n, O)R +2 Q~
' N(n„, O)R ) =—

2 2R +3
1/2

(N(n, O)RIIQ& 'IIN(n, O)R ) = ——(2n +3)1 R (R +1)(2R +1)

&N(n. —1,0)R —1IID& 'IIN(n. , O)R &
= Q(N n.+1)—(n.+R —+1)R,

(N(n —1,0)R + 1
I
ID~" I IN(n, O)R ) =Q(N n+1)(n——R)(R +1),

(N(n —2, 0)R 2I l~g'I IN(n. , O)R &
=

1/2
(N n —2)(N —n—+1)(n +R +1)(n +R —l)R (R —1)

2R —1

2(N n+2)(N n—+1)(n +R +1—)(n R)R (R +1)(2R +—1)
N(n —2, 0)R P~ ' N(n, O)R

3(2R —1)(2R +3)

(N(n. 2, 0)R +2—II~,"'I IN(n. , o)R &
=

1/2
(N —n +2)(N —n +1)(n —R —2)(n —R)(R +1)(R +2)

2R +3
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