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Particle-hole symmetry, F-spin, and r-process parameters
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We exploit approximate symmetry under particle-hole conjugation and the systematics associated
with a classification scheme (inspired by the neutron-proton interacting boson model) to obtain estimates
of binding energies and low-lying excitation energies for even-even r-process nuclei drawn from the ma-

jor proton and neutron shells, 50 & Z & 82 and 82 & N & 126. We anticipate that our simple formalism for
binding energies, depending on only six parameters, has an accuracy of -0.8 MeV. We argue that the
particular dual particle-hole conjugation symmetry required to relate excitation energies in neutron-rich
nuclei to the known excitation energies of the corresponding conjugated nuclei holds to within 10% or
So.

Among the various nuclear inputs into dynamical r-
process calculations, the binding energies of neutron-rich
nuclei are perhaps the most important (given the sensi-
tivity of reaction rates to Q values), but it would seem
that, in fact, the situation regarding level densities (re-
quired in the calculation of "astrophysical" neutron cap-
ture cross sections) remains the most unsatisfactory [I],
the presently favored treatment being somewhat too ad
hoc. Developments in fluctuation-free spectroscopic
methods in the last decade [2] make feasible (and relative-
ly straightforward) the calculation of level densities out-
side of the ground-state regime starting directly from a
shell-model Hamiltonian. In this paper, we argue that an
approximate symmetry under a dual particle-hole conju-
gation inspired, in part, by the neutron-proton interact-
ing boson model (or IBM-2) [3], can be exploited to esti-
mate excitation energies in the low-lying spectra of even-
even neutron-rich nuclei. We also consider the systemat-
ics for binding energies that emerge within an IBM-2 F-
spin [4] classification scheme. We take advantage of
particle-hole symmetry within this scheme to deduce an
extremely simple, yet reasonably accurate, expression for
the binding energies of neutron-rich nuclei.

For reasons that will become apparent below, we study
nuclei drawn from the major proton shell 50 & Z & 82 and
the major neutron shell 82 & N & 126. The F-spin
classification scheme on which our treatment is based is
depicted in Fig. I (which also indicates the character of
the data available to us). F spin was introduced [4] to fa-
cilitate the discussion of proton-neutron symmetry in the
IBM-2: it is formally similar to the isospin, correspond-
ing to the SU(2) symmetry group with generators (if we
restrict ourselves to just s and d bosons)

P+ =st~, +dt.Z =( I' )
(I)

P, =
—,'(st~ —st +dt d —dt.d„),

where s (s ) and d (d ) denote a proton (neutron) s

and d boson annihilation operator, respectively, and p
runs over the five spherical components of the rank-2 d
boson operator. For our purposes, we note that an even-
even nucleus with N (N ) valence proton (neutron) bo-

(82, 126)
(Z =66, N= 126)

hh

(50, 126)

(82, 104)
I
pp

(50, 104)

(82, 82)
(Z=66, N =82)

(50, 82)

FICJ. 1. F-spin classification scheme and definition of groups
Ipp Ipp A pp and A~lit . The significance of the symbols em-
ployed is as follows: 0, stable nucleus; 0, unstable nucleus—
binding energy and excitation spectrum data available; Q, unsta-
ble nucleus —only binding energy available; *, unstable nu-
cleus (listed in Ref. [5])—no data available. The sources used in
compiling our data ensemble are Refs. [6-g] and the interactive
databank of the National Nuclear Data Center (NNDC),
Brookhaven. The dashed box indicates the F-spin assignments
that would be affected by adherence to Casten's Z =64 subshell
closure rule [9].
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sons automatically has F, =(N N—) /2, while the
empirical success of the IBM-1 (in which no distinction
between proton and neutron degrees of freedom is made)
indicates that states in the ground-state band are predom-
inantly of F spin F=F,„=(N +N, )/2 (corresponding
to the configurations which are totally symmetric with
respect to proton and neutron degrees of freedom). The
observation that F spin is an approximate dynamical
symmetry of the low-lying spectrum has motivated our
classification in Fig. 1 of nuclei into formal F-spin
multiplets —i.e., groupings for which F,„ is fixed, but F,
takes on different values.

The identification of formal F-spin multiplets is predi-
cated on the posture we adopt Uis-a-Uis the counting of
valence boson numbers, N„and N: we ignore any sub-
shell closures, taking N to be half the number of valence
particle (hole) protons within the spherical shell model
for Z ~ 66 (Z ~ 66) and N, to be half the number of
valence particle (hole) neutrons for N~ 104 (N~ 104).
(Another alternative would be to respect Casten's sub-
shell closure rule [9]—i.e., for N & 90 (and ) 82) there is a
proton shell closure at Z =64. Since our binding-energy
systematics (cf. below) do not show the effect of this sub-
shell closure, we leave open in this paper the issue of
whether or not Casten's rule should be adhered to. ) The
F-spin multiplets in our naive scheme are joined by un-
broken lines in Fig. 1 and representative multiplets are la-
beled by the corresponding value of F,„. It proves con-
venient to distinguish the four quadrants of Fig. 1: In
A&i, ( At~ ), the F-spin multiplets consist of alpha-
different nuclei with particle p (hole h ) proton bosons and
hole (particle) neutron bosons; in I (It,t, ), the multiplets
consists of isobaric nuclei with particle (hole) proton and
neutron bosons. Following Ref. [10],we shall refer to the
set of all the nuclei of a given F,„ in groups AI, , II,&,
and I as an extended F-spin multiplet.

One advantage of this classification scheme becomes
apparent when we plot the binding energies (BE) of nuclei
(grouped according to these F-spin multiplets) against
their value of F, "f., Figs. 2(a) and 2(b), which are
representative. The remarkable regularity observed has
encouraged us to attempt the fit
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FIG. 2. Binding energies in F-spin multiplets of groups I»
and II,I, . (Only multiplets with four or more members are
represented. ) The unbroken curves correspond to the extrapola-
tion of the global fit based on Eq. (2) over the full extent of the
various F-spin multiplets (representative values of F indicated).

lo the distinction that in Eq. (2) we admit both particle
and hole boson numbers, whereas in Eq. (3), N and N
refer (conventionally) only to numbers of particle bosons.
We note that we can relax this restriction if we impose
the following particle-hole symmetries on the coeKcients
in Eq. (3): for a and a,

BE(F,F, ) =C ' + aF+ a 'F, +bF +b'F, +cFF, , (2)
a —+ —a —2QP

a ~a+Ac (4)

where (for subsequent convenience) we work with
F—F Fmid d F F Fm&d Fmid (Fmid)

value F (F, ) takes on at the point of intersection of the
four groups I~~, Ii,t„Ai,~, and A~&. F ' =(0
+0 )/4= —", and F, ' =(0 —0 )/4= —

—,'. This form is
motivated by the standard IBM-2 result [3]

BE(N, N )=Co+a N +a N, +b N„+b N„

under proton particle-hole conjugation (here, 2Q is the
degeneracy of the proton major shell), with analogous re-
lations under neutron particle-hole conjugation, and

a ~—a„—2QQ —Q„c

a ~—a —2Qb —Q~

+c „N N, +ED(N, N, ) . (3)
under particle-hole conjugation of both protons and neu-
trons; for the other coefficients,

Since F=F,„[=(N„+N )/2] in Eq. (2), its use is tan-
tamount to use of Eq. (3) under the assumption that the
contribution of the deformation energy ED is either negli-
gible or can be mocked up by a second-order polynomial
in N and N, (exactly this type of dependence is found in
the various special symmetry limits of the IBM-2), modu-

b =b b =b c = —c = —c =cv' ~& Ev mv F v (6)

where the bar denotes particle-hole conjugation.
Under the assumption that ED is negligible, these rela-

tions translate into the scheme of interrelationships for
the coefficients of Eq. (2) given in Table I. Here, a
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TABLE I. Conjectured interrelationship between parameters
of Eq. (2).

3000 I I i, I I I

Group a' 2250—

Ihh

Ahp

Aph

a
—a'

a
—a

2y
2y
2y
2y

denotes the value of a for the group I, o.' the value of
a', etc. We have applied Eq. (2) in fits to the binding en-
ergies of all the various combinations of groups I, I&&,
and A&~ under the constraint that the scheme of interre-
lationships in Table I is rigorously obeyed. (In this way,
we can hope to extrapolate to the group A~z. ) The re-
sults are listed in Table II. CoeKcients to which the fits
were insensitive are highlighted by an asterisk.

Inspection of Table II indicates that the conjectured
particle-hole symmetry of Table I is reasonably well
satisfied. It would seem that we are in possession of a re-
markably simple yet accurate ansatz for A & binding en-
ergies, based on the global fit (the last row in Table
II), i.e., Eq. (2) with C ' = 1373.582, a =6.501,
a'=29. 243, b = —2.387, b'= —0.251, and c = —1.389
(all in MeV). For completeness, a Haustein plot [11] of
the residuals (i.e., BE,„,—BEs,) corresponding to the
global fit is given for all three groups in Fig 3 and a plot
of the predicted mass excesses of A~& nuclei is given in
Fig. 4. We note the encouraging absence, for neutron-
rich nuclei, of any significant bias towards either under-
binding or overbinding in the residuals. No significance
should be attached to the fact that, of the mass excess
predictions appearing in a recent tabulation [12],we have
chosen in Fig. 4 to compare ours with those of Spanier
and Johansson [13].

We now consider whether we can exploit the systernat-
ics of extended F-spin multiplets to predict energy levels
in neutron-rich nuclei relevant to the r process. More
specifically, we want to relate the known excitation spec-
tra of nuclei in group A& to those of the r-process nuclei
in group A~z (a successful N~N„-interpolation scheme ex-
ists for the excitation spectra of unstable nuclei within
groups I~&, I&z, and A&~ [14]), so that we investigate the
particular dual particle-hole symmetry involving the
simultaneous particle-hole conjugation of both proton
and neutron degrees of freedom.
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FIG. 3. Residuals BE,„~
—BEfit with the global fit (last row of

Table II) for all nuclei in groups I», Ihh, and Ah~. (X denotes
the neutron number, and, following Ref. [11],we parametrize
X„,„„asZ+0.4A /(200+ A). )

Our interest is in low-lying members of the excitation
spectrum with energies of the order of a few hundred
keV, which dominate the Boltzrnann sum for ternpera-
tures relevant to the r process. We shall assume that
these states arise predominantly from the mixing of
different configurations of valence nucleons in the shells
50&Z &82 and 82&N &126. The lynchpin of our con-
siderations is the observation that, within this model
space, the matrix elements of the residual interaction
(within, for definiteness, the spherical shell model) with
respect to a particle-particle basis coincide with the cor-
responding matrix elements with respect to the hole-hole
basis obtained by dual particle-hole conjugation. (A rela-
tionship of this simplicity does not hold for all manner
of particle-hole conjugation —viz. , particle-hole and
particle-particle matrix elements are related [15] by a Ra-
cah transform (the Pandya relations). ) In view of this as-
sertion, the source of deviations from the desired dual
symmetry lies in the nondegeneracy of the proton and
neutron single-particle energies. For the major shells of
interest, we estimate that these nondegeneracies should
imply deviations of the order of 10%.

To confirm empirically whether or not these expecta-

TABLE II. Parameters of 6ts to binding energies.

Groups No. BE's
Cmid a

(MeV) (MeV)
a

(MeV) (MeV) (MeV)
y

(MeV)
rms error

0 ev)

Ahp

Ihh

Ahp and I
A hp and Ipp

Ipp and Ihh

All 3

75
49
44

114
124
93

168

1375.9
1378.1
1376.4
1375.1
1374.5
1372.6
1373.6

28.9
31.8
27.6
28.8
29.6
29.4
29.2

5.3
6.7
7.0
5.6
6.1

7.3
6.5

—0.285
—0.02*
—0.06*
—0.22
—0.224
—0.241
—0.251

—2.24
—2.56
—2.49
—2.26
—2.35
—2.60
—2.39

—0.665
—0.80
—0.71
—0.63
—0.72
—0.74
—0.65

300
460
240
630
800
810
820



1658 DAVIS, DIALLO, BARRETT, AND BALANTEKIN

I ~ I
-

I

(a) F=11/2

O
0 0

50
0

&&.
'

o

0
0 I s I i I t I

(b)

~,
I

* *
0

I 0 I I i I

F=6

-50 i

—5 0
Fz

FIG. 4. Predicted mass excesses for the F-spin multiplets (of
four or more members) in group A~z on the basis of our global
fit (unbroken lines) and the Spanier-Johansson formula [12,13]
(dotted lines}. Representative values of F are indicated.
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tions are borne out, we have attempted a comparison of
the ground-state band excitation spectra of nuclei in
groups Izz and Iz~. (Observe that we expect deviations
from our dual particle-hole symmetry to be larger for
groups Ipp and I&I, than for groups A&~ and A~& —the
changes in the single-particle energies cancel to some ex-
tent in the latter case. ) Unfortunately, the limitations of
our data set mean that only for the F=2, —,', —'„and 4 ex-
tended rnultiplets is a direct comparison of dual particle-
hole conjugated spectra possible and even that is restrict-
ed to the 2+ and 4+ energies. The relevant data are sum-
marized in Table III (empty entries denote an absence of
data). Observe that Casten's rule [9] does not affect the
assignment of F and F„cf. Fig. 1. We take as a measure
of the deviation from the desired particle-hole conjuga-
tion symmetry

00
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o &&
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FIG. 5. gsb excitation spectra within naive F-spin multiplets
of groups I~~ and II,&. Points to the right (left) of the vertical
dashed lines denote levels in nuclei belonging to I» (Iqz ). The
key to the symbols used is ~, 2+ energy;*, 4+ energy; Q', 6+
energy; 0, 8+ energy.

p =
I E» &I,~ I

/(E»+&—QI, ),

where E denotes an I excitation energy and EI,& the
corresponding II,I, excitation energy. It can be seen from

Table III that, the F=—,
' multiplet excepted, dual

particle-hole symmetry holds at the 10—20%%uo level. It is
also noticeable that an I excitation energy is always
smaller than its II,I, counterpart. This is consistent with

TABLE III. Comparison of spectra related under dual particle-hole conjugation.

(F,F, ) (2,0)

(keV)

E+
(5 1)

+ E4+
(keV)

E+
(keV)

E+

P

376.6
466.0

0.11

834.3
1099

0.14

205.0
407.2

0.33
985.1

181.0
218.5

0.094

513.4
601

0.079

141.7
205.8

0.18

423.1

580.3
0.16
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TABLE IV. Dual particle-hole symmetry violation implied by the discontinuities in Fig. 5.

F,

11
2

(kev)

pd;, (L) F,
(keV)

pd;, (L)

13
2

E +

(keV)

pd;, (L)

—3
2
1

2

122.6

72.8

0.25 107.4

76

0.17 —3
2
1

2

97.9

72.8

0.15

—3
2

1

2

—3
2

1

2

—3
2
1

2

396.6

235.2

808.6

478.9

1348.6

807.0

0.26

0.26

0.25

349.8

250.2

717.4
517.3

1199.3

0.17

0.16

—3
2
1

2

—3
2
1

2

—3
2
1

2

322.3

240.3

666.4

498.5

1122.5

844.5

0.14

0.14

0.14

our conjecture that the dual particle-hole symmetry
breaking is related to the nondegeneracy of the single-
particle spectrum: the single-particle states present in the
dominant configurations contributing to an I&I, state are
of higher energy than those present in the corresponding
configurations of the I counterpart.

Another somewhat less direct measure of dual
particle-hole symmetry is available to us for higher
F (F= —", ——", ). Figures 5(a)—5(c) contain a graphical com-
parison of the ground-state band (gsb) excitation spectra
of nuclei in groups II,I, and I~~ based on our naive F-spin
multiplet scheme: we plot, where available, the lowest 2+
to 8+ excitation energies (our "ground-state" band} of
nuclei against the corresponding value of F, . The feature
of interest in these figures is the appearance of an ap-
parent discontinuity at the interface between the I&& and
I data. We can exploit this discontinuity to gauge the
extent to which dual particle-hole symmetry is violated in
these F-spin multiplets using

pd;, (L)= ~E +(F, ) E+(F, )~/[E—+(F, )+E +(F, )],

where F, (F, ) is the largest (smallest) value of F,
within a multiplet corresponding to Ihh (I~~ ) data
(F, =F, +1 for these multiplets). The data and results
are given in Table IV. We interpret the consistency of
the values of pd;, (L ) for different L as evidence that this
measure is indeed meaningful. It also indicates that dual
particle-hole symmetry holds at the 10-20% level.

In summary, our shell-model considerations described
above and the empirical data at our disposal together in-
dicate that we are justified in assuming that our dual
particle-hole symmetry holds at the 10-20%%uo level or

better for groups A&~ and Az&. Thus, if we identify the
known excitation energies of low-lying levels in A& nu-
clei with the excitation energies of levels in the corre-
sponding A~t, nuclei (one could also introduce a prescrip-
tion which takes into account the fact that the dual
particle-hole symmetry breaking is such that A I, ener-
gies are systematically higher than Ah energies}, we ex-
pect to incur an error of typically a few tens of keV,
which is as good as can be expected of any calculation.
As with the binding energies discussed earlier, we have a
very simple prescription for deriving nuclear r-process in-
put. In principle, the same dual particle-hole symmetry
can be invoked to infer from %=82 sernimagic nuclei
low-lying excitation energies in N = 126 sernimagic
waiting-point nuclei. However, as these estimated excita-
tion energies will typically be greater than 1 MeV, they
are of little relevance to the r process.
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