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The momentum-space treatment of the Coulomb interaction within the framework of the Watson
multiple-scattering expansion is derived and tested numerically. By neglecting virtual Coulomb excita-
tions and higher-order terms, the lowest-order optical potential for proton-nucleus scattering is shown to
be the sum of the convolutions of a two-body nucleon-nucleon t matrix with the nuclear density and the
point Coulomb interaction with the nuclear charge density. The calculation of the optical potential, as
well as the treatment of the Coulomb interaction, is performed entirely in momentum space in an exact
and numerically stable procedure. Elastic-scattering observables are presented for ' 0, Ca, and Pb
at energies up to 500 MeV. Comparisons are made with approximate treatments of the Coulomb in-

teraction. The interference of nonlocality effects in the nuclear optical potential with different treat-
ments of the Coulomb interaction is investigated.

I. INTRODUCTION

The theory of the nucleon-nucleus optical potential
continues to play an important role in nuclear physics. It
is one of the simplest and yet most powerful tools avail-
able for describing and understanding the physics in-
volved in nucleon-nucleus scattering. Recent papers have
demonstrated that significant improvement in the
description of spin observables for elastic proton scatter-
ing from nuclei is obtained within a nonrelativistic frame-
work by including the nonlocal structure of the first-
order optical potential [1—4]. Though these works differ
in the underlying nucleon-nucleon (NX) interaction, the
sophistication with which the NN interaction is convolut-
ed with the nuclear density matrix and other calculation-
al details, it has been generally found that nonlocalities in
the first-order optical potential are non-negligible.

The nonlocal and off-shell features of the optical poten-
tial are more readily obtained in a momentum-space rep-
resentation, where the scattering calculations are most
conveniently performed by solving a Lippman-
Schwinger-type integral equation. Unfortunately, a
long-standing handicap of proton-nucleus scattering cal-
culations in momentum space has been the lack of con-
sistent and reliable methods for treating charged, strong-
ly interacting particles.

The issues to be dealt with in a proton-nucleus calcula-
tion using a multiple-scattering approach in momentum
space are twofold. First, there is the obvious difficulty
given by the 1/q singularity of the Coulomb interaction.
Recently, several different methods have been proposed
to deal with the Coulomb singularity in momentum space
[1,5 —8]. Some of these methods use an extraneous cutoff'

built into the calculation to constrain the singular behav-
ior of the Coulomb interaction. These methods are, in
principle, exact; however, the cutoff can never truly be
taken to the limit. The original method of Vincent and
Phatak [5] is of this character, and its numerical stability
has been found to be very difficult to control, since the
procedure is sensitive to the cutoff parameter. Recently
proposed refinements of this method [6,7] reduce that
sensitivity.

We have proposed a method in which the limits of the
cutoff are taken analytically and no cutoff parameters ap-
pear in the numerical calculations [8]. This procedure is
exact and is not limited to a specific energy or charge in
its range of application. In Ref. [8], this method has been
explored mathematically and numerically with a simple
potential whose Fourier transform exists analytically, and
has been demonstrated to be stable and accurate. In this
paper we use which procedure to calculate elastic
proton-nucleus scattering observables.

The second issue to be discussed in this treatment of
the Coulomb interaction in a multiple-scattering expan-
sion. Two standard and equivalent approaches for
defining an optical potential are the multiple-scattering
formulations of Watson [9] and Kerman, McManus, and
Thaler (KMT) [10]. These and other similar presenta-
tions contain no explicit treatment of the Coulomb in-
teraction. For practical microscopic analyses of
intermediate-energy proton-nucleus scattering the Wat-
son and KMT approaches are most often used, and the
Coulomb interaction is generally included according to
some arbitrary prescription. In Ref. [11],a scheme has
been suggested to include the Coulomb interaction within
the KMT formalism in an approximate fashion. We do
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not follow this line but rather start from the Watson ap-
proach and show, that under the assumption of neglect-
ing Coulomb excitations, the generally applied prescrip-
tions are theoretically justified.

The structure of the paper is as follows: In Sec. II we
introduce the multiple-scattering expansion with nuclear
and Coulomb interactions. We then isolate the relevant
Coulomb and nuclear terms for a first-order optical po-
tential. In Sec. III we describe the calculation of
Coulomb distorted nuclear matrix elements. The calcula-
tion of proton-nucleus elastic-scattering observables and
a comparison with approximate treatments of Coulomb
distortions are presented in Sec. IV. We also compare
the size of off-shell effects for a heavy nucleus ( Pb) to
those present in lighter nuclei ( Ca). Our conclusions
are presented in Sec. V.

II. MULTIPLE-SCATTERING THEORY
FOR CHARGED PARTICLES

The incorporation of both nuclear and Coulomb effects
in medium-energy scattering is made awkward by the fact
that the long-range Coulomb interaction calls for an
essentially adiabatic treatment, whereas the short-range
nuclear part is best treated as impulsive. Here we present
a formulation of the problem of elastic scattering of pro-
tons from nuclei, which incorporates the different charac-
ters of the interactions in a theoretically consistent
fashion. The basic ingredient of this formulation is the
application of the familiar two-potential formula in a
multiple-scattering theory.

The transition amplitude T for proton-nucleus scatter-
ing is expressed by the Lippmann-Schwinger equation

T = V+ VGOT

or

We begin with a projection operator P, defined in the
usual way, such that P projects onto the nuclear target
ground state ~4~ ), i.e.,

(e„/e„)
For elastic scattering, we need only the operator PTP,
rather than the full T. We now proceed to split the exter-
nal interaction V of Eq. (3) into two parts, as

V=PV P+ g u, +QV P+PV Q+QV Q
i=1

PV P +—I 8'I, (7)

where Q is complementary to P. The operator PV P
represents the Coulomb interaction on the projectile due
to the static charge distribution of the nuclear target.

In the present treatment we ignore excitations of the
nuclear target in the Coulomb interaction, i.e., we take
V Q =QV =0, so that W contains only strong-
interaction terms

W-=g u„.
i=1

At this point, the short-range part of the Coulomb in-
teraction due to the finite size of the nucleus is separated
out and included into 8' leaving the long-range point
Coulomb interaction PV~ P and short-ranged interactions
W. We then rewrite Eq. (7) as

V=PV P + g uo;+(P [ V —
V~ ]P)

=PV P+ g uo;+(V )

T= V+ VGV . (2)

Here Uo,- and Vo, are the interactions between the projec-
tile and the ith particle. The Green's functions G and Go
are given by

Go '(E)=E —ho H„, —

'(E) =F- —ho H~ —V, —

where Hz (the target Hamiltonian) is defined as

The energy-independent potential V for proton-nucleus
scattering with two-body forces is the sum of nuclear and
Coulomb interactions,

Z
V=V+V =gu;+g V;.

=PV P+I WI . (9)

Here Eq. (9) series to define V and W, and we note that
8'is of finite range. The point Coulomb interaction V is
given in coordinate space by Ze Iro, where ro is the
coordinate of the projectile relative to the center of mass
of the target nucleus. The short-ranged Coulomb contri-
bution V represents the difference between the Coulomb
interaction folded over the finite-range density distribu-
tion and the point Coulomb potential.

By defining the Coulomb Green's function Gc as

c =E —ho —H~ PVCP

we find for the point Coulomb transition operator

PT P =PV P+PV PGOPT P .

H„=gh;+g V,

The convention we have used is that V; represents the
two-body potential between nucleons i and j, including
both the short-range nuclear and long-range Coulomb
force. The symbol h; stands for the kinetic-energy opera-
tor for particle i.

T PTcP +~( —) ~~(+ ) (12)

with the M@ller operators given by

Applying the two-potential formula to Eq. (1) and using
V as given in Eq. (9) in conjunction with Eq. (11) yields,
for the transition amplitude T,
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and

0=1+GV
=[1+GW]nc

Ac = &+GpPV PQc

+GcPV,~P

(13)

(14) UN —y (28)

This shows that the first-order optical potential U is
given by a nuclear optical potential U and a short-
ranged Coulomb interaction V as defined in Eq. (9).

We now return to the consideration of U as given in
Eq. (25). If we express U as

where V'is given by

T= 8 + 8'G 8'

or equivalently by

(16)

With these preliminaries established and with the aid of
Eq. (13), we may rewrite Eq. (12) as

T=PT'P+nic-i'[W+ WGW]n~,+i

=pT'p+ n' wn',+', (15)

it follows that

U =Up +UO. GpQU +Up. GpQ g U&

JWl

If we define an operator ~; as

i Oi Oi OQ i

we obtain

U; =r;+r;GOQ g U. .
JAj

(29)

(30)

(31)

'T= W+ WGc
'T . (17)

In the context of elastic scattering we are interested in
the operator

pTp=pT p+pn' 'tpfp7p]pn + p,

Here we see that Eq. (31) represents the well-known Wat
son multiple-scattering expansion for the optical poten-
tial [9]. Its first-order term, the "impulse" approximation
to U,. is given by v.;. Since we are interested in PUP, and
hence Pr;P, we can apply completeness (P +Q = 1) to
express P~, P as

hence, we need only to consider

PTP =PWP +PWGWP

or

(19)

P~;P =Pt;P —Pt;PGpP~;P,

where t; is given by

t. =Up. + vp Gpt

(32)

(33)

T= W+ WGc 'T . (20)

If we define an optical potential U in the usual way such
that

'T= U+ UGcP7,

then it follows immediately that

U= W+ WGcQU .

The definition of Gc, Eq. (10), then yields

GcQ =GQQ

so that

(21)

U= W+ WGQQU . (24)

UN —VN+ VNG QUN (25)

In order to make contact with an optical potential as it
is usually defined in the Watson or KMT formulation of
the multiple-scattering expansion, we define a nuclear op-
tical potential as

It should be noted that the definition of t; does not con-
tain any projector Q and that it can thus more readily be
related to the free two-nucleon transition operator. In
the case of a purely strong interaction, the insertion of
Eq. (33) into Eq. (24) leads, after some algebraic manipu-
lations, to the well-known KMT formulation of the
multiple-scattering expansion [10]. The equivalence of
the first-order optical potential in the KMT and the Wat-
son formulation of a multiple-scattering expansion for the
case of a purely nuclear interaction has been shown in
Ref. [12]. However, in the presence of an additional
Coulomb interaction, this manipulation cannot be per-
formed in the same way without leading to inconsisten-
cies. We point out that Eq. (32) is a one-body integral
equation with a structure similar to the scattering equa-
tion, Eq. (1). Therefore, its numerical solution does not
impose any additional difficulties on the solution of the
scattering problem. We obtain the first-order optical po-
tential by solving Eq. (32) numerically.

Our principal task now becomes finding a reliable pro-
cedure to obtain Pt, P. The free two-nucleon transition
operator tp; is given by

We then find

U=U +(1+U GQQ)V (1+GQQU) .

rp. (E )=Up. +UQ g (Ep)rp (E )

(26) where the two-nucleon propagator gp is

(34)

U= U"+ V'. (27)

Since QV = V Q =0, the above equation reduces to our
final expression for the optical potential

gp =E Ap h +EF (35)

The energy E' is the energy of the two free nucleons in
the frame, where one is at rest. From the comparison of
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Eqs. (34) and (33), we see that

t, = to; (E')+ to; (E')[Go —go(E') ]t;
= to, (E')+ to, (E')go(E')(E' E—+H„—h, )Got, .

(36)

lowest-order term in the multiple-scattering expansion
[Eqs. (24) and (31)],we have for 0,

7 = U+ OGc'7, (38)

where we define

The second term on the right-hand side in Eq. (36) con-
tains effects of the nuclear medium on the propagator.
Various prescriptions have been put forth as to the "best"
choice of E' so as to minimize the effect of the nuclear
medium. The best choice for E' is still an open question
[14].

~=&+„fife„& .

&+&~ II"Ic'
(39)

The operator ~,. is related to the free two-nucleon transi-
tion operator t, as .given in Eq. (32), which takes the ex-
plicit form

III. CALCULATION
QF THE TRANSITION AMPLITUDES

(e„f~, fa „&= &c „ft„ fe„&

In the previous section we have established the general
formalism for treating consistently the nuclear and the
Coulomb parts of the external interaction in a multiple-
scattering expansion. The approximations, which lead to
the first-order optical potential in a Watson-type rear-
rangement of the multiple-scattering series, have been
presented. The elastic proton-nucleus scattering T-
matrix element, Eq. (18), can be written explicitly as

+&y' '(k')& I&ly"'(k)+, &, (»)
where the f/''(k)& are Coulomb distorted wave func-
tions. Since we restrict ourselves to considering the

At this point we do not need to specify the calculation
of (C&„ ft, f@„&,this has been studied in detail elsewhere
[1—4]. The tp type m-atrix element may be obtained by a
full-folding procedure [1,2,4] or by an approximation to
it. After having obtained tp, we calculate the Watson-
type rp by solving Eq. (40). This leads to the optical po-
tential 0 shown in Eq. (39). We then need to solve for
the scattering matrix element (gc '(k')

f
V'f/'+'(k) & as

displayed in Eqs. (37) and (38). To this end we solve the
equation

&0' '(k')I&If"'(k) &
= &1t', '(k')I &fq',+'(k) &

d k"+I&0' '(k')I~I&'+'(k")& „, . -&y'+'(k")IVI'"'(k) & .E —E(k" )+is (41)

It should be noted that the propagator takes this simple
Lippmann-Schwinger-type form through the insertion of
a complete set of Coulomb eigenfunctions. (It is assumed
that there is no bound state present. ) In the angular
momentum decomposed form, we note that
(P'c (k')f=e '(pc+'(k')f, where o.

l is the so-called
Coulomb phase shift, so that Eq. (41) becomes the stan-
dard Lippmann-Schwinger equation

&k f Tfk &
= &k'f U fk&

+ J&k fUfk"&

crate the momentum space matrix element (k'f Ufk& as
given by Eq. (44). We begin with (k'4z fg;r; fk4„&,
which we obtain from the free tp by means of Eq. (40).
We transform this into coordinate space, through the
double Fourier transform

&'f &fr&= I('lk &d'k (k fUlk&d'«klr& (45)

and then construct the matrix element of Eq. (44) by fold-
ing (r'f Ufr& with coordinate space Coulomb wave func-
tions

&k fUfk&= I(@',+'(k') fr'&d'r &r f&fr&

x
E E(k )+ic— ,

(42) Xd'r&r fy',+'(k) & . (46)

where

&k'I &fk& =
& @'+'(k')

I
&lg'+'(k) &, (43)

(k lUlk& =(q~c"(k')I ~lq',"(k) & (44)

In order to solve Eq. (42), we need to be able to gen-

The reason for applying this procedure is that the
Coulomb wave functions are well defined in coordinate
space, whereas their counterparts in momentum space do
not exist in a functional sense. The details and
mathematical justifications for the above outlined pro-
cedure for treating Coulomb distortions in momentum
space are carefully discussed in Ref. [8]. The actual cal-
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potential formula in this case becomes

(y(+)(k )Ig Iy(+&(k) )

(48)

6, =o, +5sR, (49)

where 6& (the short-range phase shift with Coulomb dis-
tortions taken into account) is the difference between the
full phase shift 6I and the point Coulomb phase shift o I,
is approximated by the choice

gSR $ SR (50)

The approximation, Eq. (47) (which we henceforth refer
to as the PW or plane-wave approximation), simply re-
places the Coulomb distorted matrix element of the opti-
cal potential by its plane-wave counterpart. In other
words, this means that the total phase shift 51, which is
given by

Mgller factor is obtained in a manner discussed in Ref.
[13].

In Figs. 1 —3 we show the angular distributions of the
differential cross section, the analyzing power ( A~), and
the spin rotation function ( Q) for p-nucleus elastic
scattering at 200 MeV laboratory energy for ' 0, Ca,
and Pb. All calculations are carried out in the op-
timum factorized approximation. We employ the NN t
matrix from the full Bonn interaction [16], which in-
cludes the effects of relativistic kinematics, retarded
meson propagators as given by time-ordered perturbation
theory, and crossed and iterative meson exchanges with
NN, Nb, and AA intermediate states. The densities of
' 0 and Ca are described by three-parameter Fermi
shapes, derived from experimentally determined proton
charge distributions, which are obtained from electron
scattering [17]. For Pb, the baryon densities are ob-
tained from a microscopic Hartree-Fock-Bogoliubov cal-
culation [18],where the finite-range D1S effective interac-
tion of Gogny [19] is used. This interaction includes
density-dependent terms and provides pairing correla-
tions and the average mean field in a consistent fashion.

The phase shift 5 I is calculated for the short-range (SR)
force without the point Coulomb interaction. This
short-range force includes the difference between the
point Coulomb and the distributed Coulomb as well as
the nuclear force. The PW approximation has been stud-
ied in a few cases [2,7], but in order to precisely quantify
its range of validity, a study of various nuclei at different
scattering energies is required and presented here.

In order to calculate the matrix element of the optical
potential (k'I OIk), given in Eq. (39), it is necessary to
evaluate the matrix element (k'4z

I to; Ik4 ~ ) entering
Eq. (40). This quantity represents the full-folding integral
over the off-shell two-body nucleon-nucleon (NN) t
matrix and the nuclear density matrix. Its evaluation has
been performed by several groups with different nuclear
densities and NN interactions [1,2,4]. To simplify the cal-
culations, we use the optimum factorized or off-shell tp
approximation [13], which has been found to be a good
approximation to the full-folding integral in the energy
regime between 200 and 800 MeV [2,4]. As shown in Eq.
(36), the free NN t matrix has to be evaluated at an ap-
proximate energy E'. In principle, this energy should be
the beam energy minus the kinetic energy of the center of
mass in the interacting pair less the binding energy of the
struck particle [14]. Since, in practice, the relevant-
matrix elements do not depend strongly on this variable
[15], E' is set to the two-body energy corresponding to
free NN scattering at the beam energy. It is to be under-
stood that all spin integrations are performed in obtain-
ing (k'IOIk) (under the usual assumption of a spin-
saturated target) thus reducing the required NN t matrix
elements to the spin-independent component (corre-
sponding to Wolfenstein amplitude A) and the spin-orbit
component (corresponding to Wolfenstein amplitude C).
All scattering calculations presented here contain an ad-
ditional factor in the optical potential to account for the
transformation of the NN t matrix from the two -nucleon
c.m. frame to the nucleon-nucleus c.m. frame. This
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This fully microscopic mean-field theory using the D1S
interaction has been shown to accurately describe static
and dynamical properties of a range of nuclei [18]. We
used Hartree-Fock-Bogoliubov densities because of our
lack of knowledge about the neutron densities and our
uncertainty about the validity of the usual prescription,
in which the neutron and proton densities are taken to be
identical. We note, however, that if we use this prescrip-
tion, the elastic-scattering observables are not
significantly changed for angles smaller than 40'.

The solid curves in Figs. 1 —3 represent the proton-
nucleus elastic-scattering calculations at 200 MeV with
the Coulomb distortions taken into account as described
in Secs. II and III; the dashed curves show the PW ap-
proximation. The dotted lines correspond to the corn-
plete omission of any Coulomb contributions altogether
to illustrate the size of the effects discussed relative to the
size of the entire Coulomb correction. From Fig. 1 it is
evident that, for a light nucleus such as ' 0, the PW ap-
proximation is quite accurate even for larger angles,
though it slightly overemphasizes the dip structure in the
spin observables A and Q, as well as the minima in the
differential cross section. This is different for heavier nu-

clei, as can be seen in Fig. 2, which shows the scattering
observables for proton-nucleus elastic scattering from

Ca at 200 Me V. The angular distribution of the
differential cross section shows that the PW approxima-
tion is slightly more diffractive than the exact calculation,
a tendency which is again rejected in the fact that the
PW approximation deepens the dip structure of the spin
observables A and Q in the first minimum. We note fur-

ther that, for angles larger than 40' the PW approxima-

tion differs considerably from the exact calculation. For
very heavy nuclei like Pb, the deficiencies of the PW
approximation begin at -20 . The angular distribution
of the differential cross section shown in Fig. 3 indicates
that the PW approximation squeezes the diffraction mini-
ma to smaller angles compared to the exact calculation.
This mimics the effect of scattering from a larger nucleus,
hence, the PW approximation somewhat misrepresents
the physical size of a large nucleus. This effect is ap-
parent as well in Figs. 1 and 2, but to a much lesser de-
gree. The spin observables A and Q for elastic p-nucleus
scattering from Pb clearly indicate that, for this case,
the PW approximation is inadequate even for smaller an-
gles. Of particular interest is the curve for Q, where we
see the crucial importance of the inclusion of Coulomb
effects.

In Fig. 4 we plot the real part of the phase shift 6 as a
function of the orbital angular momentum L for proton
scattering from Ca at 200 MeV in order to characterize
how the PW approximation may inAuence the interior
wave function of the nucleus. We separate the cases
J =L +—,

' and I=L —
—,
' to isolate possible effects of the

spin-orbit force. We also show the absolute value of the
S matrix (g&), which gives a measure of the absorptive
character of the potential in each partial wave. As ex-
pected, different treatments of the Coulomb distortions
do not alter the absorptive character of the optical poten-
tial. However, neglect of Coulomb distortions as in the
PW approximation (dashed line versus solid line) un-
derestimates the phase shift by -25% for L ~10. Be-
cause the absorption is relatively strong in the low partial
waves, the elastic-scattering observables shown in Fig. 2
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are not as sensitive to the PW approximation as could be
concluded from the real part of the low partial-wave
phase shifts shown in Fig. 4. It should be noted that, for
I. ) 10, the Coulomb distorted waves become increasing-
ly close to plane waves. This behavior suggests that, for
high enough I. at a given scattering energy, the PW ap-
proximation becomes very good. This is of considerable
numerical advantage in the actual calculations. We
found that, for very high partial waves, the Coulomb
wave functions can safely be replaced by plane waves
without loss of accuracy in the observables when evaluat-
ing the integral Eq. (42).

Because elastic scattering is strongly surface dominat-
ed, higher partial waves gain increasing relative impor-
tance at higher scattering energies. It can be expected
that the PW approximation improves when increasing
the energy. For our scattering calculation at 500 MeV,
we start from an extension of the Bonn meson exchange
interaction above pion production threshold, which is de-
scribed in more detail in Ref. [3]. In Fig. 5 we show the
scattering observables for elastic scattering from Ca at
500 MeV laboratory energy. The solid curve represents
the exact treatment of the Coulomb distortions, the
dashed curve the PW approximation, while for the dotted
curve all Coulomb contributions are omitted. The first-
order optical potential has been calculated in the op-
timum factorized form. A comparison of the solid and
dashed curves shows that the PW approximation is very
close to the exact result for small angles. At angles larger
than -30, the two calculations begin to deviate from
one another. This improvement of the PW approxima-
tion can be understood by a comparison of the real parts
of the phase shifts 5 for both calculations (Fig. 6). Omit-
ting the Coulomb distortions still underestimates the
phase shifts (dashed versus solid line), but, in contrast to
Fig. 4, the difference in magnitude between the two phase
shifts is only about 15% for L ~ 15. Similar to the results
at 200 MeV, the elastic-scattering observables are not as
sensitive to these differences because of the strong ab-
sorptive character of the optical potential. In the case of
proton scattering from ' 0 at 500 MeV, we also find that
the PW approximations is very close to the exact treat-
ment of the Coulomb distortions.

So far we have established that the PW approximation
is quite reliable for light nuclei in describing elastic-
scattering observables for small angles and that its quality
increases with increasing scattering energy. In order to
see significant differences even at small angles, we have to
go as low as 100 MeV laboratory energy. in Figs. 7 and 8
we present elastic-scattering observables for proton
scattering from Ca and ' 0 at 100 MeV laboratory en-
ergy. The solid line shows the exact treatment of
Coulomb distortions, the dashed line the PW approxima-
tion, and, for reference purposes, the dotted line omits all
Coulomb contributions. Both targets show that, even at
small angles, the PW approximation differs from the ex-
act treatment of the Coulomb distortions. The effect is,
in both cases, larger in A~ and Q than in the cross sec-
tion, where there exist shifts in the spectrum as well as
changes in the overall strength. However, it should be
kept in mind that, at such a low energy, the concept of a

first-order optical potential in impulse approximation is
questionable. Certainly, medium modifications as well as
higher-order terms in the multiple-scattering expansion
are expected to give significant contributions.

All calculations above were carried out with a nonlocal
optical potential in the optimum factorized form. Since
the elastic observables show sensitivity to the treatment
of Coulomb distortions for heavier nuclei, it is
worthwhile investigating the size of the off-shell effects,
which have been shown to be non-negligible, and deter-
mine if they are altered by the exact or approximate in-
clusion of Coulomb distortions. We have performed cal-
culations with nonlocal optical potentials in the optimum
factorized form (off-shell rp) and compared them with
their local (on-shell rp) approximations. For details of
the calculation of the optical potentials, we refer the
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lation which omits all Coulomb contributions (dotted) are based
on the first-order optical potential in the optimum factorized
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Rutherford scattering amplitude in the extreme limit in
which the short-range potential 8' is ignored as well as
the correct distributed Coulomb amplitude, when the nu-
clear interaction is neglected. The Coulomb distorted nu-
clear matrix elements are calculated in mornenturn space
in an exact and numerically stable manner. We have
compared our exact results for ' Q, Ca, and Pb to the
PW approximation, which replaces the Coulomb distort-
ed nuclear matrix element by a plane-wave matrix ele-
ment in the two potential formula. We determined that
the PW approximation is well suited for describing
elastic-scattering observables for light nuclei in the for-
ward direction, and it improves with increasing energy.
In a more detailed analysis of the elastic-scattering calcu-
lation, we found that the Coulomb distortions are very
significant in low partial waves, and that they decrease in

magnitude with increasing orbital angular momentum.
This is evident from the figures which display the phases

and magnitudes of the S matrix as a function of the orbit-
al angular momentum.

The general trend is that the PW approximation
squeezes the diffraction pattern of the differential cross
section and consequently of the spin observables and thus
mimics a target nucleus of larger size. This is especially
evident in the elastic-scattering observables for Pb and
makes the PW approximation clearly inadequate for
large-Z nuclei.

We further investigated whether the correct treatment
of the Coulomb distortions influences the size of nonlo-
cality effects in the nuclear optical potential. For light
nuclei (up to Ca), we found a very small dependence of
the size of oF-shell effects on the treatment of Coulomb
distortions. The effect is found to be nearly the same as
reported in Ref. [2]. Furthermore, the size of the effect is
the same whether nonlocal optical potential is obtained
from the full-folding integral or whether the optimum
factorized form is used. As long as the nuclear charge is
small, off-shell effects are larger than effects induced by
approximate treatments of Coulomb distortions. This is
no longer true if the nuclear charge is large. The spin ob-
servables in the forward direction for Pb are dominat-
ed by the Coulomb distortions and nonlocal effects play
only a less important role. Their inhuence only becomes
visible at larger angles.

In conclusion, we have provided an exact procedure
for treating the Coulomb interaction in a first-order
Watson-type multiple-scattering expansion and have used
this to find the range of validity of the PW approximation
of Ref. [13].
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