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Algebraic approach to cluster states in odd-mass nuclei. I. Energy spectrum
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An extension of the U(3) limit of the vibron model is proposed to incorporate fermionic degrees of
freedom in the algebraic model of nuclear clusterization. This approach enables us to treat explicitly nu-

cleons or holes occupying single-particle states of an oscillator shell in one of the clusters. The dynami-

cal symmetries of the vibron-fermion model built on the U(3) boson dynamical symmetry are explored,
and the coupled vibron-fermion bases are constructed. Closed expressions are obtained for the energy
spectrum in each case. We suggest that the a-cluster states of the ' F nucleus may be good examples for
the application of the SU(3) XU(2) dynamical symmetry. This phenomenologic algebraic model shows

some similarity with the local potential cluster model of Buck et al.

I. INTRODUCTION

In the description of the quadrupole collectivity of nu-
clei the interacting boson model (IBM) proved to be re-
markably successful [1]. More recently, Iachello suggest-
ed a similar approach, called vibron model, to dipole col-
lectivity [2,3]. Dipole degrees of freedom appear in the
rotational-vibrational motion of chemical molecules, as
well as in nuclear molecular states. (The position vector
of the relative distance, for example, has dipole charac-
ter. ) A few applications of the vibron model have been
published so far both in molecular [4,5] and in nuclear
physics [6—8]. The U(4) group structure of the vibron
model requires somewhat simpler algebraic procedures
than the U(6) structure of the IBM.

Later the fermionic extension of the IBM to odd-even
nuclei, known as the interacting boson-fermion model
(IBFM), was introduced and it was able to handle the in-

terplay between collective and single-particle degrees of
freedom. The possible dynamical symmetries of the
IBFM have been studied systematically [9—13]. As for
the vibron model only a part of this job has been done.
This model has two dynamical symmetries, and in Ref.
[14] the authors study the fermion (electron) coupling to
one of them, which corresponds to a rigid molecule. This
limit, called O(4) dynamical symmetry, has practical im-
portance in molecular physics. Here we present the fer-
mion coupling to the other dynamical symmetry, labeled
by the U(3) group, corresponding to a soft vibrator. This
limit is more useful in applications to nuclear cluster
states. Similarly to the nuclear vibron model [15], it is
able to describe the internal excitation of one of the clus-
ters.

From the viewpoint of the mathematical description
the boson-fermion dynamical symmetries originate from
the coupling of the bosonic and fermionic group struc-
tures. The fermionic group structure depends on the
single-particle states taken into account in the model.
The decomposition of the angular momenta into orbital
and spin parts is an essential point of the boson-fermion
coupling. In certain cases it can be done on the basis of

physical orbital and spin momenta; in other cases the
concepts of pseudo-orbital and pseudo-spin momenta are
used. This latter method allows the application of
dynamical symmetries in a wide range.

When the fermions are nucleons and they are allowed
to occupy states of an oscillator shell (not necessarily a
physical one), the fermionic group chain contains SUi (3)
in the (pseudo-)orbital part, so the bosonic and fermionic
sectors can be coupled on the SU(3) level. In connection
with the IBM this dynamical symmetry has been worked
out by Bijker and Kota [12], and here we concentrate on
this limit of the vibron-fermion model. It is worth men-
tioning that the advantage of the SU(3) basis in cluster
studies is related to the Pauli exclusion principle. Recent
applications to well-established cluster bands in light nu-
clei revealed the possibility of simulating the Pauli princi-
ple by adding restrictions to the quantum number related
to the representation of the SU(3) group [7,8].

Here we attempt to give a general treatment of the
vibron-fermion problem and discuss its possible dynami-
cal symmetries. This will be done in Sec. II. In Sec. III
we introduce the SU(3) XU(2) limit of the vibron-fermion
model as an algebraic approach to cluster states in odd-
mass nuclei, present the basis states and Hamiltonian as-
sociated with this dynamical symmetry, and briefly dis-
cuss the relation between this model and other
phenomenologic algebraic models. In Sec. IV we com-
pare our model with other models of cluster structure
and propose the o:-cluster states of the ' F nucleus as a
possible example for the SU(3) XU(2) dynamical symme-
try. Finally, we summarize the results in Sec. V.

II. THK VIBRON-FKRMION MODEL

In this section we shall give a general introduction to
the vibron-fermion model. We follow the usual way of
introducing fermionic group structure and group genera-
tors. The fermionic group structure, which is then cou-
pled to the bosonic one, depends on the fermionic single-
particle states taken into account. In this respect the
decomposition of the full fermionic angular momentum
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into (pseudo-)orbital and (pseudo-)spin parts is also essen-
tial. We shall discuss the two main dynamical sym-
metries of the vibron-fermion model, built on the O(4)
and U(3) limits of the vibron model. The former one is
the vibron-electron model of Ref. [14], while the later
one, the SU(3) XU(2) limit of the vibron-fermion model,
is an algebraic approach to cluster states of odd-mass nu-
clei. The detailed presentation of this new model will be
given in Sec. III.

The mathematical formulation of the vibron-fermion
model can be done using the analogous formulas of the
various limiting cases of the IBFM. The bosonic part of
the model contains X interacting bosons (vibrons), occu-
pying single-particle states with I =0+ and 1 giving ac-
count of the dipole-type collectivity [2,3]. The bosonic
group structure is U (4), which is generated by bilinear
products of the form

The single-particle degrees of freedom are accounted
for by M fermions (nucleons or electrons) occupying
single-particle states with certain spin parities j; '. The
fermionic group structure is U (m), where
m = g, (2j;+1). The m generators are bilinear prod-
ucts of the fermion creation and annihilation operators

A,'"'(j,j')=[a Xa'],'"'= g (jvj 'v'Ik~)a, a'
V~ V

(2.2)

where aj =( —1)j a . These creation and annihila-
tion operators obey the anticommutation relations, but
the bilinear products of (2.2) satisfy the same relations as
those of (2.1).

These bilinear products can be used to construct the
Hamiltonian in rotationally invariant form

B,' '(l, l ')=[b( Xbl. ]',"'= g (Ivl 'v'~)ki(:)br, b( ~, (2.1)
V, V

H =H~+HF+ V~F, (2.3)

where bo=a', b) =sr, and b) =( —1) b(, and
they satisfy the usual commutation relations of the boson
operators. (It can easily be shown that choosing the b, „
boson creation operators as spherical tensors, only the
b, operators transform like spherical tensors under ro-
tations, while the b, operators do not. )

where H~ and HF are the Hamiltonians of the bosonic
and fermionic parts and V~F represents the boson-
fermion interaction term. Usually it is enough to keep
only the one- and two-body terms in the phenomenologic
algebraic models, so we shall follow this treatment in the
case of the vibron-fermion model as well:

H~=E~+ QE&BO '(l, l)+ g g [uI'"&'I
&

B'"'(l&, l )2B'"'(l3, l4)+H. c.],
1 k 1l 121314

~F EF+ g gj Ao (J J)+ X g [vj j A'"'(J„Jz) A '"'(j3 j4)+H c. ]
J j&J2J3j4

V~F = g g (vI'",'j j [B' '(l„l, ).A'"'(j„j2)+H.c. ] .
k 1112jl j~

(2.4)

Here the dot denotes the scalar product:

'"=(—1)'&2l +1[a'"Xc'"]"'

y ( 1)va(&)c(&)
V V (2.5)

These expressions were taken from Ref. [12] as the
most general expression for the IBFM Hamiltonian con-
taining one- and two-body rotationally invariant terms.
They can be applied in the vibron-fermion model too,
with a slight modification, namely, taking I; =0 or 1 in-
stead of 0 or 2. Certain physical circumstances may lead
to simplifications in these expressions; for example, if
there is only M = 1 fermion in the system, we can drop
the two-body terms in HF.

Dynamical boson-fermion symmetries correspond to
specific choices of the parameters in H in the sense that
we can write H in terms of the Casimir invariants of
groups appearing in some group chain of U (4) XU (m).
They are built on the dynamical symmetries of the
separate bosonic and fermionic system. There are two
bosonic dynamical symmetries of this model, the O(4)
and the U(3) limits [14,16]. In order to couple the boson-
ic and fermionic group structure, U (m) has to contain

fermionic subgroups like U (4), O (4), U (3) [SU (3)],
or 0 (3). (These groups are expected to describe the or-
bital part of the fermionic structure. ) In the vibron-
electron model [14] fermionic states are taken from de-
generate hydro genic levels. In this case the boson-
fermion coupling can be established on the level of the
O(4) groups. [If the hydrogenic levels are those with
n =2, the U& (4) group can also be coupled to the U~(4)
group of the vibron model. ] If we take the fermionic
single-particle states from an oscillator shell (not neces-
sarily a nuclear one), the coupling of the bosonic and fer-
mionic structures can be done on the SU(3) level, similar-
ly to the SU(3) X U(2) limit of the IBFM [12].

III. THE SU(3) X U(2) DYNAMICAL SYMMETRY

In this section we give a detailed study of the group
structure of the SU(3) XU(2) limit of the vibron-fermion
model, discuss the question of labeling the basis states, in-
troduce the coupled wave functions of the boson-fermion
system, and determine the energy spectrum associated
with this dynamical symmetry.

Here we shall follow the notation and presentation of
the SU(3) XU(2) limit of the IBFM [12], since from the
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mathematical point of view it is closely related to the
analogous limit of the vibron-fermion model.

A. Group structure and generators

In this limit the fermions are allowed to occupy the
states of an oscillator shell characterized with n oscillator
quanta. In this case the possible fermionic single-particle

states are those with j=
—,', —,', . . . , n + —,', with parity

( —1)". The (pseudo-)orbital angular momentum is re-
stricted to the values l =n, n —2, . . . , 1 or 0, and the
(pseudo-)spin is s = —,

' (Ref. [12]). Making use of the
decomposition of the angular momentum into (pseu-
do-)orbital and (pseudo-)spin part, the fermionic group
structure is

U (m)& Ul (m/2)XU, (2)&SU&(3)XU, (2)DO((3)XSU, (2)&Spin (3)&Spin (2),
where m =(n + 1)(n +2). This group chain can be combined with the

U (4)DU (3)&SU (3)OO (3)&O (2)

group chain of the vibron model resulting in the group structure

U (4) XU (m) &U (4) XUl (m/2) XU, (2)

aU (3)XSUl (3)XU, (2)

&SU (3)XSUl(3)XU, (2)

~ SU(3) X U,"(2)

DO(3) X SU, (2)

&Spin(3)&Spin(2) .

(3.1)

(3.2)

(3.3)

The generator sets of Ul (I /2) and U, (2) can be obtained after changing the coupling scheme of the angular momenta
using the transformation brackets ((ll')J, (ss')O, J (ls)j, (l's')j ',J ) and ((Il')0, (ss')J,J~(ls)j, (l's')j ',J ):

s s' J
S~()(s,s')= g g v'(2j +1)(2j'+1)(—1)'+ +~+' ',

l AM'(j,j ') . '

(3.4)

These operators satisfy the same commutation relations
as the bilinear products of the boson operators, B„' '(l, l').
In order to get the generators of the SUl(3) group the
following combinations have to be taken [12,17]:

L~(„'= g v l(l+1)(2l+ I)/3'„("(l, l),

I

The factor of &3/2 diff'ers from the usual convention
used in the vibron model, and it is needed to reproduce
the correct SU (3) structure constants. The combined
SU(3) generators are the same as in the case of the
SU(3) X U(2) limit of the IBFM [12]:

QFp= gqll(n)K' '(l, l'),
I, I'

where
1/2

(3.5)

(&) — (&) + (&)Q„=Q2),„—QF,„~
(3.8)

l (l +1)(2l + 1)
40(2l —1)(2l +3)

'ql, l +2( ~ ) =ql + 2, l ( ~ )

1/2
3(l + 1)(l +2)(n —1)(n + l +3)

20(l +3)

(3.6)

The + and —signs of Qz(„) correspond to cases in which
the fermions are particle-like and hole-like, respectively
[11,12]. The generators of the Spin(3) and Spin(2) groups
are again the same as in the corresponding limit of the
IBFM:

The generators of the SU (3) group are known from the
vibron model:

(1) (1)
p a~z (3.9)

L =v 2B' (1,1)=v 2[7r X7r)"',B,p

Q(2) B(2) ( 1 1 )
— [~t X ~](2)

v'3 v'3
B,P 2 P 2 P

(3.7)
We have a special case for n =1, which gives rise to

the coupling of the fermion and boson groups on the U(3)
level:
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U (4)XU (6)«U (4)XUi(3)XU, (2)

«U (3)XU((3)XU, (2)

«U(3) X U,~(2)

«SU(3) XU, (2)

«O(3) XSU, (2)

«Spin(3) «Spin(2) . (3.10)

(&) — (&)Jp'„' =LI;I'4 ~—SI4' (T) —,) . (3.14)

If we use the first common boson-fermion group of the
corresponding group chains to distinguish the dynamical
symmetries, we can call these limiting cases the
O(3) X SU(2) and the Spin(3) limits. In practical calcula-
tions these weak-coupling limits can be used instead of
any limits with coupling on a higher level. It is the na-
ture of the actual physical problem which may favor the
usage of a particular coupling scheme.

This coupling scheme represents only a minor
modification of the SU(3)XU(2) limit of the vibron-
fermion model. As we shall see later, there is no
di6'erence in the practical applications of these two limits
(with n = 1), in spite of the different labeling.

The generators of U(3) are the eight generators of the
SU(3) group, together with the scalar operator

+3G(() }(1,1)=+3B' }(l,l)++3'({))(1,1), (3.1 1)

in the case of particle-like and hole-like fermions, respec-
tively.

Further dynamical symmetries arise if we couple the
group chains (3.1) and (3.2) on the level of angular mo-
menta. There are several possible coupling schemes in
this weak-coupling limit. If we couple the fermionic or-
bital angular momentum to the bosonic angular momen-
turn erst, the corresponding chain is

B. The coupled vibron-fermion basis states

Besides identifying the possible dynamical symmetries,
group chains like (3.3) provide a convenient way to find
basis states in which the most general Hamiltonian can
be diagonalized. These basis states can be labeled using
the irreducible representations of groups appearing in the
corresponding group chain. This labeling problem
amounts to solving the problem of decomposing the irre-
ducible representations (irreps) of the groups belonging to
the group chain, which (in favorable cases) is a straight-
forward group-theoretical task.

First we present the labeling procedure for the bosonic
and fermionic states separately, then turn our attention
to the coupled boson-fermion basis. The bosonic
rotational-vibrational states are of the type [3]

U (4)XU (m)«U (3) XSUI (m/2) XU,"(2)

«U (3)XSU((3)XU, (2)

«SU (3)XSUI (3)XU, (2)

«0 (3)XO((3)XSU, (2)

«O(3) X SU, (2)

«Spin(3) «Spin(2) . (3.12)

U (4)&U (3)DSU (3)OO (3)&On(2))
[N] [n „] (n „,0) R Mz (3.15)

n =NX —1, . . . , 1,0,
R=n, n —2, . . . , 1 or 0,
—R +M~ +R

(3.16)

where [N] stands for the abbreviation of [N, O, O, O], and
similarly [n ] denotes [n, 0,0] The .relation of the
quantum numbers is the following:

«O (3)X Spin"(3),

«Spin(3)«Spin(2) .
(3.13)

The generators of Spin (3) are

The generators of 0 (3) and OI (3) are the angular
momentum operators L~ „' and LI; „'. Another possibility
is to couple the full fermionic angular momentum to the
bosonic angular momentum. We can get the correspond-
ing group chain replacing the last two lines of (3.12) with

Here R stands for the eigenvalues of the operator L~ in

Eq. (3.7).
The irreducible representation [N] of U (4) is totally

symmetric, since it describes the set of X bosons. The
number of the basis states is determined by X. Therefore
it should be chosen in such a way that it produces a large
enough model spectrum. In certain applications of the
U(3) limit of the vibron model a basis truncation is re-
quired [7,8], and only states with large enough n are
considered. This will be discussed in Sec. IV.

The fermionic states can be labeled as

Un(m)&U&(m/2)XU, (2) S ~(U3) UX, (2) Ot(O3)X SU, (2)OSP(n (3)DS(n (2))
[M] [f] (g~(Mp) l J

(3.17)

Here [M I standing for M fermions must be a totally antisymmetric representation of U (m). Following the notation of
Bijker and &ota [12], we denote the representation of U~ (m) with [M] = [1 I and [M] = [1
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particle-like and hole-like fermions, respectively. Now [f]=[f„.. . ,f &2] stands for the general representation of
U& (m /2). If we take only one odd nucleon (or hole) on the oscillator shell characterized with n oscillator quanta, these
quantum numbers are

(Af, p~)=(n, O) [or (O, n)],
I =n, n —2, . . . , 1 or 0,
s= —'

2

J —I+ 1

(3.18)

where i and j are the eigenvalues of the operators L~ and J~ introduced in Eqs. (3.5) and (3.14).
These basis states can be used to generate the coupled boson-fermion basis associated with the group chain (3.3):

U (4), U (3), U (m), U&(m/2), SU (3), SUI (3), SU(3) O(3), SU, (2), Spin(3), Spin(2)

[~] IM] (n, O) (A~, p~) (A, p)~L L s J MJ
(3.19)

This is the most general form of the basis states in the SU(3) XU(2) limit of the vibron-fermion model. If we take
M =0, the U(3) limit of the vibron model emerges as a special case. For the sake of simplicity, we shall restrict our-
selves to M =1 which means the coupling of only one nucleon or a hole to the dipole-type collectivity, i.e., to the
rotational-vibrational motion of two clusters.

The coupling between the basis states (3.15) and (3.17) is established on the SU(3) level. This procedure requires the
introduction of the SU (3) group, the representations (n, O) of which are trivially determined by the totally symmetric
representation [n ] of U (3). The irreducible representations (irreps) (A, ,p) of SU(3) are obtained by taking the outer
product [17] (n, 0) X(AF,pF):

(n, O) X(n, O) = g (n„+n 2r,r)— (3.20a)

(n, O) X (0, n) = g(n —r, n r), — (3.20b)

with 0 ~r ~min(n, n) in both cases. Due to the simple nature of (n, O) and (A~, pF) each representation (A, ,p) is ob-
tained only once in the outer product.

The angular momentum content of the (I,,p) representations is given by [17]

L =KI,KI +1, . . . , Ki +max[A, ,pj,
K~ =min[A, ,pj, min[A, ,pj —2, . . . , 1 or 0,

with the exception of KL =0, for which

L =max[ l.,p j,max I A, ,p j
—2, . . . , 1 or 0 .

(3.21)

(3.22)

Instead of the Elliott basis, which is not orthogonal, the orthogonal Vergados basis [18] is used in most applications.
The switch to the Vergados basis means the introduction of another sequence of quantum numbers, namely, ~L is used
instead of KI . In fact, ~L and EL have the same values, but there is a difference in the L values contained in them. The
construction of the Vergados basis is such that if a given L, occurs in a representation once, twice, thrice, etc. , it belongs
to the one, two, three, etc., lowest possible values of xL. The only exception is vL =0, for which the allowed I values
are restricted to be even or odd, for A. +p even or odd, respectively. J and MJ are determined by the usual angular
momentum coupling rules: J=L+—,

' (except for L =0, when J=—,') and MJ= —J, . . . , J. Finally, the parity of the
nbasis states is determined by the parities assigned to the bosonic and fermionic basis states, which are ( —1) and

n +n
( —1)",so the parity assignment to the basis state (3.19) is ( —1) "

Taking only one fermion, the coupled boson-fermion wave function is
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~ [N](n, O), [M j [f](AF, lj,z);(A, ,p)ill L ,'; JM—J)

= y ((n„,o)R, (AF, py )l I A, ,p)KL L ) ~ [N](n, o)R, IM j [f](Ay, pF )I;L ,'; J—MJ)
Rl

=y((n, O)R, (&F,py )l~~(&,p)~I L ) y y (RM/lM/~LML )
Rl M~MI Ml Ms

X (LMI. ,'Ms —JMJ ) ~[N](n, O)R, Mi, )
~ [M }[f](&F,pF)lMi, ,'Ms—),

(3.23)

where [M j[f)(AF,pz)=[1}[1](n,O) for particle coupling and [1}[1](O,n) for hole coupling. The double barred sym-
bols are SU(3) DO(3) isoscalar factors (ISF's) or Wigner coefficients. They have been tabulated for some simple cases in
Ref. [18], and a computer code has been written to determine them in more complicated cases [19]. Note that there is
no need for the additional quantum numbers aii and )r& at the SU (3)DO (3) and the SUi (3)&O&(3) decomposition,
since each R and l is unique within the (n, D) and (A,F,p~) =(n, O) or (0, n) representations.

As we have already mentioned, a special coupling scheme arises in the n =1 case, since now the coupling of the bo-
sonic and fermionic states can be carried out on the U(3) level. This special limit, associated with the group chain
(3,10), can be considered the analogue of the U(5) X U(2) limit of the IBFM.

If we take one fermion on the p shell, the fermionic state can be labeled as

UF(6)»U( (3 ) X U (2)» SU( (3) X U~(2)» 0( (3 ) X SU (2)»Sp(nF(3)» SpjnF(2))
[Mj [f] (A~, p~) l s j M (3.24)

where [M j =[I}or I 1 j =[1 j and [f]=[1,0,0] or [1,1,0] for particle coupling and hole coupling, respectively. [f]
determines the SU& (3) representations uniquely: ())(~,)MF ) =(1,0) or (0, 1) in the two cases.

The coupled boson-fermion basis states in this limit can be written as

Un(4), U~(6) Un(3) Ut(3) U(3), SU(3), O(3) SU*(2) Spin(3), Spin(2)
)[N] IM j [n ] [f] [N„Nz, N3] (A, , tu, )i61 L s J MJ

(3.25)

It is easy to check that the U(3) representations
[N„N2, N3] given by the [n ] X [f]outer product are

[n„]X [1]=[n„+1]e[n, 1]

for particle coupling, and

[n ] X [1,1]=[n +1, 1]e[n, 1, 1]

(3.26a)

(3.26b)

for hole coupling. The trivial U(3)&SU(3) decomposi-
tion yields the SU(3) representations (n + 1,0),(n —1, 1)
and (n, 1),(n„—1,0), which are identical with the repre-
sentations obtained from Eqs. (3.20a) and (3.20b) with
n =1. Therefore we conclude that the basis states of this
special limit are identical with the basis states of the
SU(3) XU(2) limit for n = l. (This result holds for M ) 1

as well. )

The basis states belonging to the weak-coupling
[O(3)XSU(2) and Spin (3)] limits can be obtained from
the bosonic and fermionic basis states [Eqs. (3.15) and
(3.16)] by ordinary angular momentum coupling.

We remark that the boson-fermion bases obtained from
the coupling of the bosonic (3.15) and fermionic (3.17)
basis states seem to be convenient for numerical diagonal-
ization of Hamiltonians with bosonic terms breaking the
U (3) dynamical symmetry, since most of the terms in
the general bosonic Hamiltonian are diagonal in this
basis [3]. We do not consider symmetry-breaking fer-
mionic terms at present.

C. The energy eigenvalues

+5C, (O(3))+eC2(Spin(3)) . (3.27)

The Casimir operators of U (4), U (m), Ui(m/2),
SU&(3), U, (2), and SU, (2) contribute equally to H from
every state, so they do not split the energy spectrum.
These terms are absorbed in Eo. We dropped C2(U (3))
since including it would only mean the redefinition of az
and y~. We have displayed the relevant Casimir invari-

Having constructed a basis we can now calculate the
matrix elements of operators; in particular, we can diago-
nalize the Hamiltonian H =Hz+Hz+ V&F. If the Ham-
iltonian can be written as the linear combination of
Casimir invariants of groups appearing in the group
chains (3.3), (3.10), (3.12), or (3.13), i.e., in the case of
dynamical boson-fermion symmetry, the eigenvalues can
be obtained in closed analytic form. We only have to cal-
culate the expectation values of the Casimir invariants in
the corresponding basis. If we consider only one- and
two-body terms in the Hamiltonian, we have to take only
linear and quadratic Casimir invariants.

First we consider the SU(3) XU(2) limit associated with
the group chain (3.3). The most general one- and two-
body Hamiltonian which is diagonal in this basis can be
written as

R =Eo+uiiC, (U (3))+yiiC, (SU (3))+yC, (SU(3))
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TABLE I. Casimir operators and their eigenvalues.

C;(6)

C}(U(3))
C2(U(3) )

C2(SU(3) )

Cq(0(3) )

Cz(Spin(3) )

Casimir operator

—&3G' '(1, 1)

y G(k)(1 1).G(k)(1 1)

PQ(2) g(2)+ 3L(l) L(()
4

L(}).L(})
J(&).J(&)

Labels

[N), NpN3]

[N), Nz, N&]

(A, ,p)
L
J

Eigen values

N}+N2+N3
N}(N] +2)+N2+N3(N3 2)

k+p +Ap+ 3A. + 3p

L(L+1)
J(J+1)

ants and their expectation values in Table I.
In Figs. 1(a) and 1(b) we have presented typical energy

spectra with SU(3) XU(2) dynamical symmetry for parti-
cle and hole coupling, respectively. In order to calculate
the energy eigenvalues we used the expression

E(n, (g,p)L, J)=ED+ann +y~n (n +3)

+y(A, +p +Ap+3A, +3p)

+5L(L+I)+eJ(J+I) . (3.28)

In this strong-coupling limit several bands of the odd nu-
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FIG. 1. (a) Part of a model spectrum with SU(3) XU(2) symmetry in the particle coupling case. The fermionic states considered
here are from the n =2 shell, with (pseudo-)orbital angular momenta l =0, 2, and s = —', (j = —',—+, —'+). Here we considered bo-
sonic excitations with only n =8 and 9. States with lower n„are excluded on the basis of arguments presented in Sec. IV. The pa-
rameters used in Eq. (3.28) are n&+20y& = 1.0. y =0.05, 5=0.07, and @=0.02. (b) The same as (a), in the hole coupling case.
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+aC, (U(3))+pC2(U(3))+yC2(SU(3))

+5C2(O(3))+@CD(Spin(3)) . (3.29)

Here we again dropped the Casimir operators of groups
U (4), U (6), UI(3), U, (2), and SU, (2), since they do
not split the spectrum. It is easy to prove that this Ham-
iltonian is still redundant, since C&(U(3)) and C2(U(3))
can be expressed in terms of other Casimir operators:
C2(U(3))= —,'Cz(SU(3))+ —,'[C, (U(3))] and C, (U(3)}
=Ci(U (3))+C,(U~(3)), so these two terms can be ab-
sorbed into the remaining terms. In addition to this, not-
ing that the eigenvalues of C2(V (3)) can be replaced

cleus are built on the same collective (bosonic or cluster)
band, and each of them has contributions from several
fermionic states, in general. Their mixing is governed by
the SU(3)DO(3) Wigner coefficients and the O(3)
Clebsh-Gordan coeKcients.

The Hamiltonian associated with group chain (3.10)
can be written as

H= Eo+ a~ Ci(U (3))+P~C2(U (3))

with the eigenvalues of C2(SU (3)} and C, (U (3)), we
can conclude that the energy spectrum belonging to the
Hamiltonian (3.28) is identical with that of the Hamil-
tonian (3.27) with SU(3) XU(2) dynamical symmetry .

The Hamiltonian in the O(3) X SU(2) limit is written in
terms of the Casimir invariants of group chain (3.12):

H=EO+a. C, (U (3))+y~C, (SU (3))+5~C,(O (3))

+5FC2(O, (3))+5C2(O(3))+eC~(Spin(3)) .

(3.30)

Finally, the Hamiltonian associated with group chain
(3.13) of the Spin (3) limit is

H=E0+a~C, (U (3))+y~C2(SU (3))+5~C2(O (3))

+5FCz(O~(3))+eFC2(Spin (3))+eC2(Spin(3)) .

(3.31)

Contrary to the other dynamical symmetries, the energy
eigenstates of the Spin(3) limit have contribution from
only one fermionic state. It is also worth mentioning that
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H(O(3) X U(2) ) =E +oa~n +2}~ Q~ Q~

+(—4y~+5ii+5+e)Lii L~

+ (5F +5 )LF 'L~+ eJF 'JF

+26L~ -LF +2'~ JF,
H(Spin(3) }=Eo+~~~„+2yQ~ Q~

(3.32a)

(3.32b)

+(4yq+5~+e)L~ L~+5F'LF'LF

there is no difference between the energy spectra belong-
ing to the particle and hole coupling cases in the weak-
coupling O(3) X SU(2) and Spin(3) limits.

The interaction terms in the Hamiltonians associated
with the SU(3) XU(2), O(3) X SU(2), and Spin(3) limits of
the vibron-fermion model can be interpreted in a
straightforward way, since the Casimir operators can be
identified with certain physical operators (see, for exam-
ple, Table I). In order to give a uniform treatment of
these limiting cases we write the three Hamiltonians in
terms of the same operators. The Hamiltonians in Eqs.
(3.27), (3.30), and (3.31) can be rewritten as

H(SU(3)XU(2))=E o+agn +2(yg +y) Q~ Q~

+(—3(y~+y)+5+a)L~ L~

+5LF LF+eJF J„+4yQ~ Q~

+(—2y+25)L~ L~+2eL~ JF,

we can introduce further symmetry-conserving
phenomenologic terms in the Hamiltonians. Certain
physical circumstances may require the introduction of
third-order terms. Noting that C&(U (3)}is the number
operator of the vr bosons, we can include terms like
n C2(G) in the Hamiltonian. Since n is diagonal in any
of the bases discussed above, terms like this do not des-
troy the dynamical symmetries. Basis states character-
ized by different values of n„correspond to different col-
lective bands of the underlying bosonic configuration.
This difference in the nature of the collective bands may
influence the coupling to the single-particle (fermionic)
degrees of freedom. This mechanism may manifest itself,
for example, in rotation-vibration coupling, or n

dependent angular momentum (spin-orbit) coupling.
These interactions can be approximated with terms like
n C2(O(3)) or n Cz(Spin(3)) in the Hamiltonian. Simi-
larly, phenomenologic parity-dependent interactions, not
destroying the dynamical symmetry, can be taken into
account by terms like (

—1) C2(G).
Dynamical symmetries corresponding to special

choices of the physical interactions are only rarely real-
ized in real physical systems. Thus, in order to give a
more accurate description, symmetry-breaking terms
may be necessary. In the simplest cases these new terms
can be appropriate expressions of operators with clear
physical interpretation (e.g., multipole operators, etc. ),
but in general any term from Eq. (2.4}, or similar higher-
order terms, can be included.

D. Relation to other phenomenologic algebraic models
+ ( e+ eJ- )JF 'JF +2'~ 'JF ~ (3.32c)

The new model introduced in this section and the
vibron-electron model [14] can be interpreted as the
dynamical symmetries of the general vibron-fermion
model. These dynamical symmetries with SU(3)XU(2)
and O(4) XU(2) group structure correspond to the fer-
mionic extension of the U(3) and O(4) limits of the vibron
model, respectively. Similarly to the vibron model, the
two dynamical symmetries of the vibron-fermion model
are applicable in two different branches of physics, name-
ly, the SU(3) X U(2) limit seems to be more appropriate in
nuclear physical applications, while the O(4) X U(2) limit
(i.e., the vibron-electron model) was proposed to describe
certain problems in molecular physics [14].

The difference between the possible fields of applicabili-
ty of these two limits can be viewed as the consequences
of the group structure of the vibron-fermion model. The
two possible group chains of U(4) group appearing in
both the vibron and the vibron-fermion model are just
the two well-known groups giving account of the degen-
eracies of two model problems of fundamental impor-
tance, the Coulomb and harmonic-oscillator problems in
three dimensions. The orbital degeneracy group of the H
atom is the O(4) group, while that of the three-
dimensional harmonic oscillator is the SU(3) group [20].
Fermionic single-particle states can be approximated
with hydro genic states and with harmonic-oscillator
states in molecular physics and in nuclear physics, re-
spectively.

The discussion of the vibron-electron model in Ref.

The structures of the bosonic and fermionic parts is the
same in all three Hamiltonians; the difference arises only
in the boson-fermion interaction terms. The bosonic part
is equivalent with the Hamiltonian of the vibron model in
the U(3) limit [3] and it can be interpreted as an
anharmonic-oscillator system, in which the anharmonici-
ty is represented by the operators n +3n =2Q~ Qz
+4L& Lz and L~ L~. The number of the oscillator
quanta is equal with the number of ~ bosons.

The complexity of the boson-fermion interaction terms
in (3.32a) —(3.32c) depends on the coupling scheme associ-
ated with the given dynamical symmetry. In the strong-
coupling SU(3) XU(2) limit a quadrupole-quadrupole in-
teraction is present, while in the Spin (3) limit the only in-
teraction term is the angular momentum coupling of the
relative motion to the spin of the core nucleus, giving rise
to the weak-coupling limit.

Although there are terms in the Hamiltonian (3.32a)
and (3.32b) which are not diagonal in the corresponding
bases, the full Hamiltonians are diagonal. This is due to
the restrictions imposed on the parameters by the dynam-
ical symmetry, since the number of terms in these expres-
sions is bigger than the number of independent parame-
ters in the original expressions (3.27) and (3.30). If the
parameters of each term in Eq. (3.32a) and (3.32b) were
varied independently, the Hamiltonians would cease to be
diagonal in the corresponding bases.

In addition to the interaction terms discussed above,
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[14] was presented for the united atoms limit. Consider-
ing the hydrogenic levels of the unified atom with hydro-
genic principal quantum number n the electronic group
turns out to be U (2n ). (Instead of F the authors in Ref.
[14] use the superscript e, standing for electron. ) This
group plays the same role as the U ((n +1)(n +2) )
group in the case of the SU(3) XU(2) limit of the vibron-
fermion model. The factor of 2 accounts for the spin of
the electrons. The orbital and spin parts can again be
decomposed, leading to the reduction U (2n )

DU& (n ) XU, (2). The generators of these groups can be
expressed as bilinear products of the fermion creation
and annihilation operators. One possible choice is to use
the operators presented in Eq. (2.2). It is only a matter of
convenience to label the single-particle states with the or-
bital angular momentum and spin quantum numbers in-
stead of the full fermionic angular momentum. The
vibron-electron model was formulated using the former
set of quantum numbers [14].

Since the vibron-fermion model and the IBFM have
similar mathematical structure, one can find analogies be-
tween the dynamical symmetries of these two models.
Here we shall not study this question in detail, only men-
tion some general observations. One of these is that the
dynamical boson-fermion symmetries of the IBFM show
a bigger variety due to the richer group structure of the
corresponding boson model. It also has some dynamical
symmetries based on isomorphisms [like o(5) =sp(4) and
o(6)=su(4)] with no equivalents in the vibron-fermion
model. Comparing the structure of the generator sets of
the group chains associated with the dynamical sym-
metries of these two boson-fermion models we can see
that the SU(3) XU(2) limit of the vibron-fermion model
[and its special subcase, the U(3) XU(2) limit] can be re-
lated to the SU(3) XU(2) and U(5)XU(2) limits of the
IBFM (see Refs. [12],and [10]),while the vibron-electron
model [14] [with O(4) XU(2) group structure] can be con-
sidered the analogue of the O(6) X U(2) limit of the IBFM
[11].

Another phenomenologic algebraic model which can
be related to the SU(3) XU(2) limit of the vibron-fermion
model is the nuclear vibron model [15]. In this model
one of the clusters (the core) is assumed to have quadru-
pole deformation, and the relative motion of the clusters
is coupled to this collectivity. The group structure of this
model is U(6) XU(4), and the only dynamical symmetry
discussed in this model is the SU(3) one, which is based
on the coupling of the SU(3) limit of the IBM to the U(3)
limit of the vibron model.

IV. OTHER CLUSTER MODELS
AND POSSIBLE APPLICATIONS

Cluster structure of nuclei can be discussed in terms of
microscopic and phenomenologic cluster models. Since
the SU(3) X U(2) limit of the vibron-fermion model can be
viewed as a phenomenologic approach to cluster struc-
ture of odd-mass nuclei, its comparison with other
phenomenologic cluster modes seems necessary. Here we
point out some similarities between our model and the lo-
cal cluster model of Buck et al. [21].

F. (N L)=F(2N+L)+CL (L+1) . (4.1)

This is very similar to the energy spectrum obtained from
the vibron model, if we replace 2X+L, with n and ap-
proximate the function F(n„) with a quadratic expres-
sion of n Therefore. we expect the U(3) limit of the vib-
ron model and its fermionic extensions to lie close to the
local potential cluster model of Buck, Dover, and Vary
[21], which is a successful model of cluster structure of
light nuclei with even and odd mass alike.

Although it is not our aim to give detailed study of any
nucleus in terms of the new model presented in this pa-
per, before closing this section we brieAy refer to nuclear
cluster systems which can be the subject of such investi-
gations. Here we introduced the SU(3) XU(2) limit of the
vibron-fermion model as an extension of the U(3) limit of
the vibron model. This fact helps us to identify its most
promising field of application. Originally the U(3) limit
of the vibron model was applied to nuclear cluster sys-
tems in which the clusters have no internal structure.
This requirement allows only closed shell nuclei (like
He, ' 0, or Ca) as clusters, so the most obvious exam-

ple for this dynamical symmetry is the ' 0+a system,

As it was shown in connection with the application of
the vibron model to the ' 0+a system [7,8], the Pauli
principle can be taken into account at an approximate
level if we exclude states with n &q, where q can be
determined on the basis of microscopic considerations by
applying the Wildermuth condition, [22] for example.
(As discussed in Refs. [7] and [8], it originates from the
relation between the shell model and the microscopic
cluster model in the harmonic-oscillator limit. ) In the
shell-model picture, nucleons forming the lighter cluster
are placed on orbits above the Fermi level of the core. If
we assume that the lighter cluster is not excited, the exci-
tation quanta carried by these nucleons can be viewed as
the excitation quanta of the relative motion of the clus-
ters. Thus, q is the number of shell-model oscillator
quanta carried by the nucleons of the lighter cluster when
it is assumed to be in the lowest orbit. This exclusion
procedure is the same as that in the local cluster model of
Buck, Dover, and Vary [21] used in this description of
two-cluster systems.

The basis states with the same n form a rotational
band and belong to the (n„,0) SU (3) representation.
This configuration corresponds to the maximal alignment
of the orbits of the nucleons forming the lighter cluster.
The states of the boson-fermion system are built on this
bosonic configuration. Besides the way of handling the
Pauli principle the band structure also shows some simi-
larity between the local potential cluster model and the
algebraic models of dipole-type collectivity. In the local
potential cluster model the energy levels with the same
value of 2N+L (i.e., the members of a rotational band)
follow an almost perfect rotational spacing, proportional
with L(L+1), while the energy of the band heads
changes monotonously with increasing 2N +L [21].
(Here N is the number of nodes in the radial wave func-
tion. ) This behavior can be summarized in the approxi-
mate energy expression
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which is also a textbook example of other cluster models
[22,23]. We expect the neighboring light nuclei to be
candidates for the SU(3) X U(2) dynamical symmetry.
The most obvious examples are the A =19 and A =21
nuclei (' F, ' Ne, 'Ne, 'Na) for hole coupling and parti-
cle coupling. Besides these odd-mass nuclei the model
can handle other cluster systems as well, with M ) I (i.e.,
with more than one hole or nucleon on a shell). A whole
series of nuclei are known to have marked o;-cluster char-
acter in this mass region [23,24). Some other examples of
a clustering (such as the Ca+a, K+a systems, etc.)

are also known near the closure of the sd shell.
Among the examples mentioned above, the ' F nucleus

is the most well studied cluster system. In addition to
this, the simplicity of the mathematical formulation (due
to the M = I choice) also suggests this nucleus to be stud-
ied first in terms of our model. Many low-lying states of
' F have been identified as ' N+a or ' 0+t cluster states
[25—27]. Several cluster bands have been identified, some
of which have equivalents in the ' 0+0. system. Later,
microscopic studies showed [27] that satisfactory results
can be obtained taking only the ' N+0. configuration.
At the same time the importance of the excited state of
the ' N core with J =—', has been emphasized. The
coupling of the configurations ' N( —,

'
) +a and

' N( —,
' )+a has been discussed in terms of several cluster

models [27,28]. In our model, this system corresponds to
the coupling of the relative motion of the clusters (as bo-
sonic structure) to a hole in the p shell (as fermionic
structure).

In the left side of Fig. 2 we displayed the known a-
cluster states of the ' F nucleus. These are classified into
six cluster bands [27]. The I(. =

—,', , —,'z+, and —,'z bands
have well developed ' N+a cluster character and are
known as the equivalents of the K =0,+, 0, and 04+

cluster bands of the Ne nucleus [25,27,29], while the
members of the E =

—,'3 and —,'~ bands can be interpret-
ed as states with ' N( —', )+a configuration [27]. The
K =—,'&+ ground-state band has often been identified as a
' 0+t cluster band [25]; nevertheless, recent microscopic
investigations showed that it can also be interpreted as a
' N+a band [27]. [In addition to the a-cluster bands,
there are two more cluster bands in the spectrum of the
' F nucleus (denoted by —', i+ and —,

'
i ), but these are inter-

preted [27] as examples for other cluster structures, like
Li+ ' C.] In the right hand side of Fig. 2 we presented a

model spectrum with SU(2) XU(2) dynamical symmetry,
obtained from a fitting procedure in which the energy ex-
pression of Eq. (3.28) was used. Although the ordering of

5/2

11/2

13/2

5/2

1/2
7/2 —3/2-
3/2

7/2+

5/2+ 1/2

13/2

13/Z~ 11/2

5/2

3/2
1/2

5/2

3/2

7/2+

3/2
1/2

7/2'

13/2'

9/2+

3/2+

5/2+
1/2+

9/2
7/2

3/2
5/2

— 1/2

Exp.

3/2+
1/2+

9/2'

7/2'

— 5/2+

wl 2

/ Q

9/2

7/2

5/2

-3/2
1/2

5/2'
3/2+

1/2'

SU(3] x U(2)

1/2+ 1/2 1/2 3/2

K

1/2+ 1/2 7(6,0) 8{7,0) 8(8,1) 8(8,1) 9(8,0) 10(9,0)

n„(),g)

FIG. 2. Experimental energy spectrum of the cz-cluster states of the ' F nucleus (left panel) and the corresponding model states
with SU{3)XU(2) dynamical symmetries (right panel). The assignment of states to cluster bands in the experimental spectrum was
done following Ref. [27]. The parameters of the model spectrum (in MeV) are as follows: EO=6. 398, a~ = —3.850, y~ =0.172,
y =0.159, 5=0.032, and @=0.100 [see Eq. (3.28)]. The lowest allowed value of n is q =7 (see text for details).
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H=EO+a~n +y~(2Q~ 'Q~ '+ ,'L~ 'L—~")

(2g (2).g (2) + 3 L (1).L (1))+gL I 1).L ( &)
4

+eJ"'J"'+[rn„+~( —1) ]L"'S"', (4.2)

which differs from the Hamiltonian in Eq. (3.27) in the
last term describing parity- and band-dependent spin-
orbit coupling. [Here we used Table I to express the
Casimir operators in Eq. (3.27) in terms of physical
operators. ] More detailed investigations of this cluster
system in terms of the vibron-fermion model concerning
the electromagnetic properties will be given in a forth-
coming publication [30].

The algebraic cluster models are unable at present to
describe cluster spectroscopic factors, but work is in pro-
gress to overcome this problem [31].

Further applications of the model are possible using
pseudoshells. In this case the fermionic structure would

the levels within a band is not always satisfactory, the
basic trends of the experimental spectrum are reproduced
by this simple Gt. The results can considerably be im-
proved if we introduce symmetry-conserving third-order
terms (discussed earlier in Sec. III C) in the Hamiltonian.
These new terms can account for the band dependence of
the spin-orbit coupling, for example. In Fig. 3 we present
a spectrum which was obtained from the Hamiltonian

consist of fermionic single-particle states assigned to an
arbitrary, non-nuclear shell, similarly to the IBFM. In
this case the whole procedure could be viewed as a
mathematical tool that helps to formulate the physical
problem. We expect this approach to become important
in the case of heavier nuclei.

V. SUMMARY AND CONCLUSIONS

In this paper we have introduced an algebraic ap-
proach to cluster states of a class of nuclei in which nu-
cleonic degrees of freedom also play an important role be-
sides the relative motion of the clusters. This new model
is a natural extension of the U(3) limit of the vibron mod-
el [2,3] and it is able to handle the interplay between col-
lective (bosonic) and single-particle (fermionic) degrees of
freedom. The bosonic part accounts for the relative
motion of the clusters, while the fermionic part consists
of nucleons (or holes) occupying single-particle states
with j=—,', —'„-., n —

—,', n+ —,
' and with the same parity.

The single-particle states can be assigned to a shell with
n oscillator quanta and their angular momentum can
be decomposed into a (pseudo-)orbital part with I=n,
n —2, . . . , 1, or 0 and a (pseudo-)spin part with s= —,'.
(This oscillator shell need not be a physical one. ) The
group structure of the fermionic part contains the SU& (3)
group, so the coupling of the bosonic and fermionic sec-
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FIG. 3. The same as Fig. 2, with model states obtained from Hamiltonian (4.2) including two three-body terms describing the pari-
ty and band dependence of the spin-orbit coupling. The parameters of Hamiltonian (4.2) (in MeV) are as follows: ED=16.844,
a~ = —6.692 y~ =0.312, y =0.169, 6=1.610, e= —1.443, v.=0.461, and &&=0.385.
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tors can be established on the level of the SU(3) groups,
giving rise to the SU(3) XU(2) limit of the vibron-
fermion model. The mathematical formulation of the
model becomes more complicated as M, the number of
fermions (nucleons or holes) is increased. In the M=O
case the U(3) limit of the vibron model emerges as a spe-
cial case.

The relation of this model to other algebraic models
can be discussed from various viewpoints. Its relation to
the vibron model has already been mentioned. Similarly
to the nuclear vibron model [15] (which allows quadru-
pole collective excitations of the constituent nuclei), it
takes into account the excitations of one of the clusters.
The basic idea of the model is the same as that of the
vibron-electron model introduced recently as an algebraic
approach to molecular electronic spectra [14]. In this
latter model the other dynamical symmetry of the vibron
model [with O(4) rather than U(3) group structure] is
used, and the fermionic (electronic) single-particle states
taken into account are hydrogenic levels with a given
principal quantum number. The role of the SU(3) and
O(4) groups as the degeneracy groups of the harmonic os-
cillator and Coulomb problem in three dimensions helps
to explain why the field of application of the two dynami-
cal symmetries of the vibron model are so different.

From the mathematical point of view the SU(3) XU(2)
limit of the vibron-fermion model and the vibron-electron
model [with O(4)XU(2) group structure] can be related
to various dynamical symmetries of the IBFM [9—13].
Here we followed the presentation of the corresponding

SU(3) X (2) limit of the IBFM, using the similar
mathematical structure given by Bijker and Kota [12].
Similarities between the dynamical symmetries of the
vibron-fermion problem and the IBFM originate from
the similar group structure of the vibron model and the
IBM-1.

We have examined the coupled boson-fermion basis
states associated with the dynamical symmetries of the
model and determined the structure of the corresponding
energy spectra. The study of other physical quantities
(such as electromagnetic transitions, etc. ) in terms of this
model will be done in the following paper [30].

We proposed certain light nuclear cluster systems as
possible subjects of investigations in terms of the
SU(3) XU(2) limit of the vibron-fermion model. Among
these examples the e-cluster states of the ' F nucleus
(with both positive and negative parity) seem to be the
most promising. Our investigations show that three-body
operators are required to give a realistic description of
this system.

We discussed the physical interpretation of this
phenomenologic model and also studied its relation to a
few existing models of cluster structure of light nuclei. It
turned out that our model shows some similarity with the
local potential cluster model of Buck et al. [21].

Having established our model, we can proceed further
in several directions. We can investigate light cluster sys-
tems in terms of the vibron-fermion model in either the
case of dynamical symmetries or introducing symmetry-
breaking-interaction terms in the Hamiltonian.

[1]F. Iachello and A. Arima, The Interacting Boson Model
(Cambridge University Press, Cambridge, England, 1987).

[2] F. Iachello, Phys. Rev. C 23, 2778 (1981).
[3] F. Iachello and R. D. Levine, J. Chem. Phys. 77, 3046

(1982).
[4] O. S. van Roosmalen, R. D. Levine, and A. E. L. Dieper-

ink, J. Chem. Phys. 79, 2515 (1983).
[5] F. Iachello, Chem. Phys. Lett. 78, 581 (1981); L. S. van

Roosmalen and A. E. L. Dieperink, Chem. Phys. Lett. 85,
32 (1982).

[6] K. A. Erb and D. A. Bromley, Phys. Rev. C 23, 2781
(1981);J. Cseh, ibid. 31, 692 (1985); H. J. Daley and B. R.
Barret, Nucl. Phys. 4449, 256 (1986).

[7] J. Cseh and G. Levai, Phys. Rev. C 38, 972 (1988).
[8] J. Cseh, J. Phys. Soc. Jpn. Suppl. 58, 604 (1989).
[9] F. Iachello and S. Kuyucak, Ann. Phys. (N.Y.) 136, 19

(1981).
[10] R. Bijker and V. K. B. Kota, Ann. Phys. (N.Y.) 156, 110

{1984).
[11]R. Bijker and F. Iachello, Ann. Phys. (N.Y.) 161, 360

(1985).
[12]R. Bijker and V. K. B. Kota, Ann. Phys. (N.Y.) 187, 148

(1988).
[13]R. Bijker, Ph. D. thesis, University of CJroningen, 1984.
[14]A. Frank, R. Lemus, and F. Iachello, J. Chem. Phys. 91,

29 (1989)~

[15] H. J. Daley and F. Iachello, Ann. Phys. (N.Y.) 167, 73

(1986).
[16]A. Frank, F. Iachello, and R. Lemus, Chem. Phys. Lett.

131, 380 (1986).
[17]J. P. Elliott, Proc. R. Soc. London 245, 128 (1958); 245,

562 (1958).
[18]J. D. Vergados, Nucl. Phys. A111, 681 (1968).
[19]Y. Akiyama and J. P. Draayer, Comput. Phys. Commun.

5, 405 (1973).
[20] B. G. Wybourne, CIassical Groups for Physicists (Wiley,

New York, 1974).
[21] B. Buck, C. B. Dover, and J. P. Vary, Phys. Rev. C 11,

1803 (1975).
[22] K. Wildermuth and Th. Kanellopoulos, Nucl. Phys. 7, 150

(1958).
[23] Y. Fujiwara, H. Horiuchi, K. Ikeda, M. Kamimura, K.

Kato, Y. Suzuki, and E. Uegaki, Prog. Theor. Phys. Suppl.
68, 29 (1980).

[24] H. Furutani, H. Kanada, T. Kaneko, S. Nagata, H.
Nishioka, S. Okabe, S. Saito, T. Sakuda, and M. Seya,
Prog. Theor. Phys. Suppl. 68, 193 (1980); B. Buck, in
Proceedings of the Fourth International Conference on
Clustering Aspects of Nuclear Structure and Nuclear Reac
tions, Chester, 1984, edited by J. S. Lilley and M. A.
Nagarajan {Riedel, Dordrecht, 1985), p. 71.

[25] B. Buck and A. A. Pilt, Nucl. Phys. A280, 133 (1977).
[26] T. Sakuda and F. Nemoto, Prog. Theor. Phys. 62, 1274

(1979);62, 1606 (1979).



ALGEBRAIC APPROACH TO CLUSTER. . . . I. 165

[27] P. Descouvemont and D. Baye, Nucl. Phys. A463, 629
(1987).

[28] A. C. Merchant, Nucl. Phys. A417, 109 (1984).
[29] A. Arima, H. Horiuchi, K. Kubodera, and N. Takigawa,

in AdUances in Nuclear Physics, edited by M. Baranger and

E. Vogt (Plenum, New York, 1972), Vol. 5, p. 345.
[30] G. Levai and J. Cseh, Phys. Rev. C 44, 166 (1991),the fol-

lowing paper.
[31]J. Cseh, G. Levai, and K. Kato, Phys. Rev. C 43, 165

(1991).


