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We study nuclei far from the stability line using the relativistic Hartree theory. We calculate the
properties of various elements of the Periodic Table up to the proton and neutron drip lines with several
parameter sets. After comparing the numerical results, we discuss nuclear properties near the drip lines
in detail for the parameter sets that include nonlinear terms in the sigma-meson Lagrangian.

I. INTRODUCTION

The recent experimental program using radioactive nu-
clear beams has opened for study the properties of nuclei
far from the stability line [1]. In addition to the masses,
nuclear radii, various moments, and the excitation spec-
tra can be measured [2]. The use of inverse kinematics,
in which light nuclear targets are bombarded with high-
energy heavy ions, should provide information of the
density distributions and other quantities such as the
spin-orbit potential [3].

What new phenomena might be expected? All nuclei
near the stability line have similar saturation densities.
For nuclei far from the line, the central density could
change with the neutron number (X) while the proton
number (Z) remains fixed. Or the densities could remain
almost constant with the proton and the neutron radii
becoming very different from each other. One of the ex-
citing findings in this respect was the neutron halo
around the Li core in "Li [2]. The two neutrons are dis-
tributed far from the Li core. The magic numbers could
also be different for nuclei far from the stability line, since
they are a result of the interplay between the central po-
tential and the spin-orbit interaction.

The study of nuclei far from the stability line will have
a large impact on astrophysics. The heavy elements are
produced by the s and r processes. The r process pro-
duces nuclei far from the stability line through neutron
capture. While the s process site is believed to be the
asymptotic giant branch in heavy stars, the r process site
is still under debate [4]. It could have occurred during
the big bang due to nonuniformities in the early Universe
[5]. It is also possible that it takes place in supernova ex-
plosions [6]. The equation of state of neutron-rich matter
is also much needed for the study of neutron stars and of
supernova explosions.

One of the successful theories in describing the proper-
ties of nuclei is the relativistic Hartree theory proposed
by Walecka [7]. In addition to the earlier studies [8—11),
the recent extensive study by Gambhir et al. [12] demon-
strated the good description of nuclear properties of
stable nuclei obtained in the relativistic Hartree theory.
Hence, the parameter sets fixed by the properties of

stable nuclei seem a good starting point for calculating
the properties of nuclei up to the proton and neutron drip
lines. A first step in this direction was reported by Toki
et al. [13]. However, we have to be careful to remember
that the relativistic Hartree theory is an effective theory.
The parameters of the coupling constants and the masses
could be functions of the proton and neutron numbers.
In the future, we intend to adjust the parameter sets by
performing more refined calcu1ations using the relativis-
tic Brueckner-Hartree-Fock (RBHF) [14] or the finite nu-
cleus G-matrix theory [15] for various proton and neu-
tron numbers. We are also prepared to refine the calcula-
tions with new experimental results.

We arrange this paper as follows. Section II summa-
rizes the relativistic Hartree theory used for numerical
calculations. We also discuss how the various parameter
sets are obtained. The numerical results are presented in
Sec. III, where we compare the results obtained with the
different sets. The case of a nonlinear potential for the
sigma meson (NL1 and NL2) is discussed extensively.
Section IV is devoted to the conclusions.

II. RELATIVISTIC HARTREE THEORY

We follow exactly the work of Walecka for the descrip-
tion of the relativistic Hartree theory [7]. For complete-
ness, we write the formulae necessary for numerical cal-
culations, which are well described in the work of
Gambhir et al [12]. The L.agrangian density is

I.=g[t y"d„Mjg+ ,' d„ad"o —U(c—r ) gg@—o—

,'G„',G'" —+—,'m p~'" —ggy„r'Pp"'—
(1—r3)egy„—

where g is an SU(2) baryon field of mass M (protons and
neutrons) and o., to„, and p„' are the sigma, omega, and
rho meson fields with masses m, m, and m, respec-
tively. 3„ is the photon field, which generates the
Coulomb interaction among protons with e /4~= 1/137.
The field tensors for the vector fields are given by
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H =8M

g, g, and g are the o.NN, mNN, and pe% coupling
constants. U(o. ) denotes the nonlinear potential for o. ,

U(cr ) = —,
'm' o'+ ,'g, o'—+,'g~cr—4 . (3)

The potential V(r) contains only a timelike component
1 —~3

V(r)=g co (r)+ger p (r)+e A (r) . (6)

The spatial currents vanish due to the requirement of
spherical symmetry. Charge conservation guarantees
that only the third isotopic component of p survives. Us-
ing the eigenfunctions g;(r) obtained by solving the ei-
genvalue equation (4), the fourth component of the vector
currents and the scalar density are written as

A

p, (r)= g g, (r)g, (r),

p, (r)= g g, (r)y P, (r),

p3(r) = g g;(r)r3y g;(r),
(7)

The Euler-Lagrange equations provide a Dirac equation
for the nucleon and Klein-Gordon equations for the bo-
son fields. The static solution is obtained by solving the
stationary Dirac equation

I ia—V+PM*(r)+ V(r)] g;(r) =E;g,.(r) . (4)

The effective mass M*(r) is no longer a constant and is
written in terms of cr(r) as

M*(r)=M+g o(r) .

We subtract from the energy a center-of-mass correction,
E, =—'41A ' MeV [12]. Hence, we do not consider
a possible isotopic effect on E, , which needs a sys-
tematic study.

Other quantities can be calculated from the wave func-
tions g;, where the single-particle states are specified by
~jm in the usual notation. The ground states are as-
sumed to have nucleons filling all levels up to the Fermi
levels for neutrons and protons. The occupation proba-
bility of each state in a partially occupied single-particle
level is taken as n /(2j+.1), with n the number of parti-
cles in the level and 2j+1 its degeneracy. This prescrip-
tion corresponds to the BCS description with zero gap
energy. We may try the BCS description assuming a
fixed pairing strength, which is the subject of our future
study together with the consideration of possible defor-
mation effect.

We shall describe here how the parameters of the rela-
tivistic Hartree theory, m, m, m, g, g, and g, are
determined in each set discussed in this paper. The prin-
ciple of determining these parameters is as follows. The
nuclear matter saturation values, (E/A )„, and p„„are
used to fix the ratio g /m and g /m„. The symmetry
energy is used to determine g /m . Using the experi-
mentally known masses for m and m, g„and g are
then fixed. The sigma meson mass is unknown. Hence,
one fixes the mass m using the properties of finite nuclei
[10]. Their binding energies and radii are very sensitive
to m, as will be discussed in Sec. III. The parameters
for the nonlinear potential U(cr ), g3 and g4, are adjusted
to provide the best results for the properties of finite nu-
clei. The parameter sets NL1 and NL2 are obtained by a
least-squares fit to the masses and radii of stable nuclei
[11]. We provide a list in Table I of the parameter sets,
denoted by HS, L1, TS, NL1, and NL2, that are used in
the present study.

III. NUMERICAL RESULTS

The Klein-Gordon equations are

(
—b, +m )cr(r)= gp, (r) g3c—r (r) g~o—(r), —

( —6+m )co (r)=g p, (r),
( —b, +m )p (r)=g~p3(r),
—b. A (r)=ep~(r) .

(8)

+ ,'(Vcr) + U—(cr)

—
—,
'

I ( Vco ) +m co + ( Vp ) +m p + ( V A ) ] .

These equations have to be solved iteratively. The total
energy is calculated as

E= Jd rH(r),
with

H(r) = g g, [ i V a+13M*(r)+—V(r)]g;

We show in Fig. 1 the dependence on m of the bind-

ing energy B/3 and the root-mean-square charge radius
R, for ' O for the parameter sets in which the o. potential
is linear. The results indicate that these quantities are ex-
tremely dependent on the value of m . As m increases,
B/3 also increases while R, decreases, resulting in a sca-
lar potential which becomes narrower and deeper. The
experimental values are indicated by the arrows.
Horowitz and Serot have chosen m so as to reproduce
the charge radius [10]. This procedure provides
m =520 MeV as indicated in Fig. 1. As clearly seen,
this choice gives a binding energy smaller than the exper-
imental one. Toki et al. have chosen m =597.6 MeV so
as to reproduce 8/A [13],which is also indicated in Fig.
1. We note that this choice yields smaller nuclear radii.
We conclude that the linear parameter sets cannot repro-
duce both the binding energy and the nuclear size.

The p-meson strength is fixed by the symmetry energy.
The symmetry energy a, has been determined by Myers
and Swiatecki [16] in the liquid drop model. Using their
value, a,„=28.1 MeV, one obtains g =2.78 [13]. A
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FIG. 1. The binding energy per particle B/A and the charge
radius R, of ' 0 as a function of the sigma meson mass m . Ex-
perimental values are indicated by arrows. The choices of HS
and TS are depicted by dashed lines with HS and TS beside each
line, respectively.

larger value a, =35 MeV has been obtained by using
the droplet model with shell corrections [17], giving

g =4.04. This value is used in the set HS [10].
Reinhard et al. [11] have made a least-squares fit of all
the parameters of the Lagrangian to the binding energies
and the radii of selected stable nuclei. They found

gp 5 .507, which provides a much larger a sy~ 43 9
MeV for NL2, and g =4.975 with a, =43.5 MeV for
NL1.

The parameter sets used in this study, HS, TS, L1,
NL1, and LN2, are listed in Table I. As we have dis-

cussed, HS and TS differ in that m was chosen to repro-
duce the mean charge radius in HS, whereas in TS, it was
chosen to reproduce the binding energy. Note that the
values of g in HS and TS are thus slightly different. The
parameter sets NL1 and NL2 contain nonlinear terms for
the sigma meson field that are determined by fitting the
parameters to the binding energies and nuclear radii of
stable nuclei [11]. We also study the parameter set Ll,
which does not include an isovector term, as an example
in which the symmetry energy is small. The effective
mass and the incompressibility of symmetric nuclear
matter, M*/M and K, are also listed for each set in Table
I. The effective mass is about 0.55 —0.65 and the in-
compressibility is about 550—600 MeV for the linear o.

parametrizations. For the nonlinear ones, it is consider-
ably reduced to about 400 MeV for NL2, and about 200
MeV for NL1. Note that the symmetry energy attains its
minimum value, a, =21.7 MeV, for the set L1 and its
rnaximurnvalue of 43.9 MeV for the set NL2.

Due to the spherical model we use, we limit our study
to even-even nuclei and choose proton magic nuclei, 0,
Ca, Ni, Zr, Sn, and Pb, for the calculations. As an exam-

ple, we show in Table II the numerical results for the
various nuclear radii and the binding energy per particle
for the Ca isotopes. We define the proton and neutron
drip lines in terms of the most neutron-deficient and the
most neutron-rich nuclei, respectively. These, in turn,
are determined by the nuclei unstable to proton or neu-

tron emission, which, in our calculations, will be those
with two neutrons less than the most neutron-deficient
ones or with two neutrons more than the most neutron-
rich ones, respectively.

N
(

80

TABLE I. The parameter sets used in the present study, HS
[10],TS [13],Ll [12],NL1 [11],and NL2 [11].M, m, m, and

m are the masses of the nucleon and the sigma, omega, and rho
mesons. g, g„, and g are the coupling strengths of the sigma,
omega, and rho mesons with the nucleon. g3 and g4 are the
nonlinear coupling strengths of the sigma meson. M*, K, and

a,„are the relativistic Hartree values for the nucleon effective
mass, incompressibility, and symmetry energy at the saturation
point of symmetric nuclear matter.
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M (Mev)
m (MeV)
m (MeV)
m (MeV)

g CiJ

gp
g3 (fm ')
g4
M /M
Z (MeV)
a, (Me V)

HS

939.0
520.0
783.0
770.0

10.47
13.80
4.04

0.541
545.0
35.0

TS

939.0
597.6
783.0
770.0

11.206
12.72
2.78

0.548
547.2
28.1

938.0
550.0
783.0

10.30
12.60

0.53
626.3
21.7

NL1

938.0
492.25
795.359
763.0

10.138
13.285
4.975

—12.172
—36.265

0.57
211.7
43.5

NL2

938.0
504.89
780.0
763.0

9.111
11.493
5.507

—2.304
13.783
0.67

399.2
43.9

20—
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FIG. 2. The neutron numbers at the neutron (open circle)
and the proton (closed circle) drip lines for Ca isotopes as a
function of the rho meson strength g . These numbers are cal-
culated with the parameter sets indicated as L1, TS, HS, and
NL2 beside each circle, which have the corresponding rho
meson strength.
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We first discuss the parameter sets in which the o po-
tential is linear. For the binding energy, the TS values
are close to the NL1 and NL2 results, while the HS
values are much smaller. On the other hand, for the nu-
clear radii, the HS values are close to the NL1 and NL2
results, while the TS values are much smaller. Hence, the
sets with linear o. potentials show the same discrepancies
far from the stability line that they show for stable nuclei.

It is interesting to note that, while the proton drip line
is insensitive to differences in the parameter sets, the neu-
tron drip line changes greatly from set to set. Although
not shown in Table II, the neutron drip line extends to a
large difference in neutron and proton number for the set
L1, where the symmetry energy is minimum. This
feature is seen in Fig. 2, where the proton and the neu-
tron drip lines for the Ca isotopes are plotted against the
rho meson strength g . The neutron number of the nu-
cleus at the neutron drip line decreases from N=82 to
N =40 as a function of g . In addition, it is interesting to
note that the "last" neutron number for each parameter
set is N=82 for Ll, N= 50 for TS, and N =40 for HS
and NL2, which are all magic numbers. Qn the other
hand, the neutron number at the proton drip line is un-
changed and is N=16 for all cases except NL1. Similar
observations can be made for the other elements.

We find that the calculated results with NL1 and NL2
compare extremely well with experiment. We show in
Fig. 3 the neutron number dependence of the binding en-
ergies per particle 8/A for NL1 and NL2. It is amazing
to see how well the NL1 results agree with experiment.
The NL2 results are less satisfactory. The isovector
strength g of NL2 seems too strong. We comment here,
however, that the NL1 results become unstable for light
neutron deficient nuclei, such as ' 0 and Ca, for a
reason different from the usual one of negative separation
energy. This is a well-known result and is due to the
wrong sign of g~, which causes nuclear matter with a
density slightly higher than the normal one to be unstable
[9]. This is the reason why we cannot apply the parame-
ter set NL1 for the discussion of nuclear matter. We be-
lieve, however, that the results obtained with NL1 for nu-
clei with stable solutions are reliable, since NL1 seems to
generate the nuclear matter properties around the normal
matter density such as the saturation property and the in-
compressibility.

The good agreement with experimental data makes us
confident in using our calculations to predict the proton
and neutron radii of unstable nuclei, shown in Fig. 4.
The results with NL1 and NL2 are almost identical. The
neutron radii are found to become much larger than pro-

TABLE II. The proton, neutron, and charge radii, R~, R„, and R„and the binding energy per particle B/A for Ca isotopes be-
tween the proton and the neutron drip lines obtained using four of the parameter sets.

Nuclei Param. Rp
(fm)

R„
(fm)

R,
(fm)

B/A
(Mev)

Nuclei Pararn. Rp
(fm)

R„
(fm)

R,
(frn)

B/A
(MeV)

"Ca

Ca

"Ca

"Ca

52Ca

6OC

64C

68Ca

HS
TS
NL1
NL2
HS
TS
NL1
NL2
HS
TS
NL1
NL2
HS
TS
NL1
NL2
HS
TS
NL1
NL2
HS
TS
NL1
NL2
HS
TS
NL1
NL2
TS
TS

3.396
3.132

3.367
3.387
3.145
3.407
3.349
3.375
3.143
3.398
3.358
3.375
3.152
3.398
3.380
3.414
3.194
3.420
3.416
3.467
3.259
3.514
3.472
3.514
3.316
3.580
3.518
3.348
3.381

3.158
2.945

3.153
3.332
3.091
3.360
3.309
3.477
3.215
3.522
3.481
3.588
3.309
3.648
3.625
3.8S4
3.607
3.867
3.894
3.993
3.690
4.067
4.027
4.144
3.822
4.247
4.196
3.878
3.929

3.491
3.235

3.463
3.483
3.247
3.502
3.446
3.470
3.246
3.493
3.454
3.471
3.254
3.493
3.476
3.508
3.295
3.514
3.511
3.560
3.358
3.606
3.565
3.606
3.413
3.671
3.610
3.445
3.477

—5.78
—7.33

—7.57
—6.51
—8.08
—8.56
—8.60
—6.66
—8.27
—8.57
—8.56
—6.86
—8.60
—8.60
—8.50
—6.61
—8.10
—8.36
—8.10
—6.25
—7.72
—7.96
—7.72
—6.05
—7.47
—7.71
—7.40
—7.12
—6.88

Ca

Ca

46Ca

"Ca

'4Ca

"Ca

62( a

Ca
Ca

HS
TS
NL1
NL2
HS
TS
NL1
NL2
HS
TS
NL1
NL2
HS
TS
NL1
NL2
HS
TS
NL1
NL2
HS
TS
NL1
NL2
HS
TS
NL1
NL2
TS
TS

3.386
3.133
3.393
3.352
3.379
3.142
3.401
3.352
3.374
3.146
3.397
3.368
3.394
3 ~ 171
3.411
3.399
3.440
3.225
3.467
3.444
3.495
3.292
3.560
3.501

3.254
3.027
3.260
3.235
3.410
3.158
3.477
3.399
3.535
3.265
3.359
3.555
3.733
3.487
3.769
3.765
3.929
3.651
3.974
3.962
4.048
3.725
4.150
4.088

3.482
3.236
3.488
3.499
3.474
3.245
3.496
3.448
3.470
3.249
3.492
3.464
3.490
3.273
3.506
3.494
3.534
3.326
3.560
3.538
3.588
3.391
3.651
3.593

3 ~ 365
3.398

3.904
3.953

3.461
3.493

3.332 3.851 3.429

—6.14
—7.68
—8.20
—8.12
—6.58
—8.15
—8.56
—8.58
—6.76
—8.42
—8.58
—8.54
—6.72
—8.32
—8.47
—8.30
—6.42
—7.88
—8.15
—7.90
—6.13
—7.62
—7.81
—7.56

—7.28

—6.98
—6.81



RELATIVISTIC HARTREE THEORY FOR NUCLEI FAR FROM. . . 1471

ton radii as the nuclei become distant from the stability
line. Both NL1 and NL2 provide very good results for
stable nuclei, whose values are known experimentally.
Using the set NL1, we find for the neutron radii of stable
nuclei, R„=3.65 fm ( Ca) 4.34 fm ( Zr), and 5.79 fm
( Pb), as compared to the proton radii, R =3.40 fm
( Ca), 4.20 fm ( Zr), and 5.47 fm ( Pb) with similar
values for NL2. Although most microscopic models pro-
vide differences between the proton and neutron radii
similar to the present ones, these large differences contra-
dict the common notion that such differences are less
than 0.1 fm for stable nuclei [18,19]. We note that the
difference between proton and neutron radii does not de-
pend very much on the rho meson coupling strength and

hence the asymmetry energy as discussed already in Toki
et al. [13].

Another interesting feature seen in Fig. 4 is the smooth
increase of the radius R„with the neutron number N.
The proton radius R also increases with X, but cannot
follow the increase of R„. We usually find that R„ in-
creases more rapidly than the systematics as the neutron
drip line is approached. Though slight, R shows a simi-
lar tendency to increase suddenly near the neutron drip
line. It would be interesting to obtain more experimental
information on the radii of unstable nuc1ei.

As an example, we show in Figs. 5 and 6 the proton
and neutron density distributions of the Zr isotopes cal-
culated with the NL2 set. We see a gradual change of the

B/A
[Mev]
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X; ]
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FIG. 3. Binding energy per particle 8/A for 0, Ca, Ni, Zr,
Sn, and Pb isotopes as a function of the neutron number calcu-
lated with the parameter sets (a) NL1 and (b) NL2. Experimen-
tal values are shown by closed circles.

FIG. 4. Proton and neutron root-mean-square radii R~ and
R„ for 0, Ca, Ni, Sn, Zr, and Pb isotopes as a function of the
neutron number calculated with the parameter sets (a) NL1 and
(b) NL2.
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FIG. 5. Proton density distributions for various Zr isotopes
as a function of the radial coordinate r calculated with the set
NL2.

FIG. 7. Neutron density distributions for various Zr isotopes
on a logarithmic scale as a function of the radial coordinate r
calculated with the set NL2.

density distributions with the neutron number. We also
show in Fig. 7 the neutron density distributions of the Zr
isotopes on a logarithmic scale so that their asymptotic
behavior can be better seen. The tails of the neutron dis-
tributions extend further as the nuclei approach the neu-
tron drip line. The central part of the proton distribution
decreases with N while its radius increases so as to keep
the proton number fixed. The central part of the neutron
distribution increases only slightly, whereas its radius in-
crease greatly with N. In the logarithmic plot, we clearly
see the tails of the neutron distributions. At the neutron
drip line, the neutron binding energy becomes small and
the neutron distribution extends to large distances.

We show in Fig. 8 the neutron and the proton drip
lines in the Z-X plane for NL1 and NL2. Both parameter

sets provide similar lines. The area between the drip lines
is much smaller than the generally accepted one, which is
obtained using the mass formula [20]. The area depends
strongly on the symmetry energy and the latter attain
their largest values, a,ym 45 MeV, for the sets NL1 and
NL2. This result, together with the large difference be-
tween the proton and neutron radii, will have a large
effect on the r-process of nucleosynthesis.

An interesting problem we would like to address here
is the magic number of nuclei far from the stability line.
Since the magic numbers are a consequence of the central
and spin-orbit potentials, it could happen that the num-

80—
~ 82

p. , 0.10
lfm '] ~%** Zz'

09&&0 Zz

0.08
60—

+- 50

0.06— 40— ~ 40

0.04—
20—

~28

~ 20

0.02—

0.00
0 8

r lt'm]

0
0 50 100 150

FIG. 6. Neutron density distributions for various Zr isotopes
as a function of the radial coordinate r calculated with the set
NL2.

FIG. 8. The proton and neutron drip lines calculated with
the sets NL1 (solid line) and NL2 (dashed line) in the Z-N plane.
The numbers shown on the right-hand side of the figure are the
proton numbers of the magic proton nuclei that are calculated.
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bers change with distance from the line. In particular,
the sequence of magic numbers at N =20, 28, 40, 50 etc.,
due to the lowering of the energies of high-spin single-
particle levels of higher principal shells, could be
modified. We want to study this problem in the present
framework, since the central potential and the spin-orbit
interaction are completely correlated in the relativistic
theory. There is some experimental evidence of a change
in magic number at N=20 for Z —11 [21], which was
called an "island of inversion" [22]. Hence, we want to
study the single-particle spectra around N =20.

We plot in Figs. 9 and 10 the single-particle spectra for
protons and neutrons of nuclei with N=20 and Z rang-
ing from 10 to 26, obtained by using the set NL2. In gen-
eral, as Z increases, the single-particle energies for pro-
tons go up in energy, while those for neutrons come
down. This behavior is caused by the isovector interac-
tion, i.e., the rho meson. The energy gap at N =20,
which is the separation between the f7/2 and s, /z or d3/2
levels, does not become smaller when Z is very different
from X. This finding completely agrees with those of
Warburton et al. [23] and of Campi et al. [24], obtained
in shell-model and nonrelativistic Hartree-Fock calcula-

tions, respectively. We can conclude that the magic
number at N =20 does not disappear within the present
framework. The "disappearance of the magic number"
at N =20, instead, seems to be caused by the onset of de-
formation. Since both protons and neutrons are at the
beginning of a major shell, the addition of neutrons in the
f shell favors prolate deformation which is further
favored by the promotion of protons to the same shell.
We also note that the pairing correlations for nucleons in
high-j shells are quite large and act to decrease the magic
number effect [23].

We would now like to discuss the role of the rho
meson, which becomes progressively more important for
N »Z. For this purpose, we show in Fig. 11(a) the sca-
lar, vector, and isovector-vector potentials for Z = 12 and
N=20 for the NL2 set. Rejecting the large difference
between the proton and the neutron distribution, the
isovector-vector potential g p behaves as expected. Its
magnitude is, however, much smaller than that of the
other potentials even though the g of NL2 is larger than
that of the other parameter sets. Although it is small, the
isovector part contributes appreciably to the central po-
tential, since the latter is only weakly negative due to
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FICx. 9. Proton single-particle spectra of N=20 isotones be-
tween the neutron and the proton drip lines as a function of the
proton number Z calculated with the set NL2.

FICx. 10. Neutron single-particle spectra of N =20 isotones
between the neutron and the proton drip lines as a function of
the proton number Z calculated with the set NL2.
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cancellation between the strongly attractive g o and the
strongly repulsive g co . The net potentials for protons
and for neutrons are depicted in Fig. 1?(b}. The large
difference between the potentials for protons and neu-
trons makes their single-particle energies quite different.
However, the isovector contribution to the spin-orbit po-
tential is negligibly small since the isoscalar fields o. and
co add to provide an extremely large spin-orbit potential.
This is the reason the magic numbers are not influenced,
even when the proton number differs greatly from the
neutron number and the isovector term contributes its
most.

IV. CONCLUSIONS
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We have studied the properties of nuclei far from the
stability line in the relativistic Hartree theory. As exam-
ples, we have chosen the isotopes of the proton magic
even-even nuclei 0, Ca, Ni, Zr, Sn, and Pb and five pa-
rameter sets, HS, Ll, TS, NL1, and NL2. The choice of

set NL2 in addition to NL1 is due to its positive g4,
which permits its application to nuclear matter. We have
found that the neutron drip line depends strongly on the
symmetry energy, while the proton drip line is rather in-
sensitive to the parameter sets. The neutron radii become
much larger than the proton ones as the difference be-
tween the neutron number N and the proton number Z
becomes large. This should have a large effect on neutron
capture rates and beta-decay strengths for nuclei far from
the stability line. The spherical relativistic Hartree
theory does not change the magic numbers. Instead, the
disappearance of the magic number at N =20 with
Z —ll would seem to be caused by deformation. We
plan to study this in more detail in the near future.

The nonlinear o. potential terms are necessary to pro-
vide a good account of both the binding energies and the
nuclear radii [12]. The present study has shown that the
set NL1, determined by a least-squares fit to the experi-
mental data for stable nuclei, provides the best results for
nuclei far from the stability line. The set NL2, deter-
mined in the same manner, yields slightly less satisfactory
results. The p meson strength, which becomes progres-
sively more important as N deviates from Z, seems to be
too large in the set NL2. This statement is based on the
comparison with experimental binding energies shown in
Fig. 3 [25]. It would be very interesting to see if a read-
justment of the p meson strength would improve the
agreement with the binding energies of unstable nuclei
without losing the quality of fit obtained for stable nuclei.
The known proton drip line is already consistent with the
calculations made using the set NL2 [26].

It is extremely important to continue to study nuclei
off the stability line, both experimentally and theoretical-
ly, before reaching definite conclusions on nuclear prop-
erties far from the stability line. It would be very useful
to make RBHF calculations [14], although they are ex-
tremely time consuming, for a few typical nuclei to check
the predictions of the relativistic Hartree theory. In this
respect, the RBHF results for nuclear matter properties
are extremely encouraging. Analyzing the vector-type
potential of the RBHF results as a function of the matter
density, we clearly see the necessity of also introducing
nonlinear terms for vector potential (co and/or p}. The
introduction of such a nonlinear potentials may remove
the difficulty of the negative g4 encountered in the set
NLl. A search for a better parameter set is in progress.
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