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Multiparticle-multihole configuration mixing within the neutron-proton interacting boson model
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The method of configuration mixing within the neutron-proton interacting boson model has been ex-

panded to consider the simultaneous mixing of several multiparticle-multihole configurations, obtained

by exciting pairs of protons and/or neutrons across major shell gaps. The determination of parameters
to be employed for each configuration is discussed, along with methods for choosing the multiparticle-
multihole excitation energies. As a test, the method is applied to the nucleus ' Hg.

I. INTRODUCTION

Low-lying multiparticle-multihole configurations are
well-known features in nuclear structure, occurring all
the way from light-mass to heavy-mass nuclei. %'ork by
Zamick and co-workers [1,2] has once again called atten-
tion to this phenomenon in light-medium-mass nuclei,
where, for example, it has played an important role in
describing low-lying excited 0 states in even-even nu-
clei. Iachello [3] has emphasized its possible role in
heavy-mass nuclei, particularly regarding superdeformed
bands. Also, recent calculations by Kaup and Barrett [4]
using a schematic model have indicated that nuclear
shape coexistence may favor multiparticle-multihole exci-
tations over two-particle —two-hole excitations.

In keeping with a recent presentation by Zimick [1]
calling for a unified approach to this phenomenon and
the schematic-model results of Kaup and Barrett [4], we
present in this paper an extension of the neutron-proton
interacting boson model (also known as the IBM-2),
which consistently treats the ground-state band
configuration and several excited multiparticle-multihole
(np-mh) configurations within the same formalism. The
basic approach is one of expanding the two-
configuration-mixing method of Duval and Barrett [5]
within the IBM-2 to several configurations, where each
configuration represents a different np-mh state. The
formalism is described in Sec. II and applied, as an exam-
ple, to the nucleus ' Hg in Sec. III. Conclusions are
given in Sec. IV.

II. CONFIGURATION-MIXING FORMALISM

The purpose of this paper is to present a procedure by
which configuration mixing within the IBM-2 can be
systematically extended from two configurations to a
large number of multiparticle-multihole (np-mh)
configurations within the same formalism.

The basic IBM-2 [6—8] consists of an active model
space of s (J=O) and d (J=2) proton and neutron bo-
sons, where the number of bosons corresponds to the

number of valence nucleon pairs, counted from the
nearest closed major shell. Interactions among these
valence bosons are assumed to be responsible for produc-
ing the low-energy properties of medium-heavy-mass nu-
clei. The standard IBM-2 Hamiltonian is of the form

H= (eR' d+6'd )+tcQ .Q + V + V „+M, ,

V„= g —,'(2I +1)'"C
I.=0,2, 4 P

~ [(dtdt)(L)(dd )(L)](0)

while the Majorana term is given by

M =gz(s,d —d~ )' '(s d„d,s-
+ g g(, (d,d )'"' (d, d )'"' .

k =1,3

(3)

(4)

For a given number of valence protons and neutrons
and some appropriate values for the parameters, the
IBM-2 Hamiltonian (1) produces a nuclear spectrum,
which generally has a vibrational [U(5)-like], a rotational
[SU(3)-like], or a gamma-soft [O(6)-like] structure [6—8].
Within the IBM-2 formalism, one obtains nuclear shape
coexistence by exciting pairs of alike nucleons across the
major-shell gap, so as to increase the "effective number"
of valence nucleons and, thereby, of "bosons. *'

The original shape coexistence calculations of Duval

where e is the excitation energy of a d boson, 6'd is the
number operator for d bosons, v is the strength of the
quadrupole-quadrupole interaction between proton and
neutron bosons Vpp is the residual between alike bosons
(p=~ or v), and M is a Majorana term that separates
configurations of different neutron-proton symmetry and,
in particular, insures that the low-lying configurations are
mainly symmetric. The quadrupole operator is given by

Q =(s d+d s)' '+y (d d)' ' (2)

where p=n or v, and s, s, d, and d are spherical tensor
operators that create and annihilate s and d bosons, re-
spectively. The alike boson interaction is of the form
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and Barrett [5] considered the Hg isotopes, which have
only one-proton-boson hole, since Z =80 for Hg. Be-
cause the nuclear deformation is driven by the Q Q
term in the IBM-2 Hamiltonian (1) and its strength is
proportional to N N, the nuclear spectrum looks vibra-
tional or U(5)-like for N =1 and arbitrary values of N,
while it becomes more rotational or SU(3)-like for larger
values of N as N„ increases. (N = the number of bo-
sons of type p, where p =~ or v. )

The method of Duval and Barrett (hereafter referred to
as DB) considers the lowest possible excitation, that of
one proton pair across the major-shell gap, as shown in
Fig. 1 for the Hg isotopes. This leads to a 2p-4h proton
configuration (i.e., one-proton-particle boson and two-
proton-hole bosons), which is treated as being
"efFectively" three-proton-hole bosons. However, the
schematic-model calculations of Kaup and Barrett [4] in-
dicate that multiparticle-multihole excitations are ener-
getically favored. In fact, in the Kaup-Barrett model it is
the maximum allowed excitation, namely, the half filling
of the empty shell above the gap, that leads to the de-
formed configuration of lowest energy. This result
prompted these authors to call for more realistic calcula-
tions to test their finding.

The extension of the basic DB method is straightfor-
ward, namely, to consider excitations of more pairs of
protons across the major-shell gap, leading successively
to (4p-6h), (6p-8h), etc. , configurations or, equivalently,
"effective" five, seven, etc. , boson configurations. The
IBM-2 calculations for increasing effective boson number
are performed in the usual manner with appropriate
changes in the parameters based on their empirically
determined variations with N .

The more difticult problem is to mix these
multiparticle-multihole configurations. In the DB ap-
proach, only two configurations (i.e., N =1 and N„=3)
are considered for a given value of N . A general mixing
interaction of the following form is employed for con-
necting the two configurations in their effective boson
spaces:

V;„=a(s~ +s s )' '+13(dtgt+d d )' '.

(o)
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FIG. 1. (a) The single-particle proton and neutron
configurations for the even-even Hg isotopes. (b) The single-
particle proton and neutron configurations for the even-even Hg
isotopes when a proton pair has been excited across the 82 shell
gap.

The generalization of this interaction to include the mix-
ing of several configurations, all with different boson
number (i.e., N, N +2, N +4, etc.), would be extreme-
ly dificult and complicated. For simplicity, we assume
that only neighboring configurations couple strongly and
neglect any coupling between configurations that differ by
more than two protons boson (or two neutron bosons).
That is, N =1 couples with N =3, and N =3 with
N =5, etc. , but N =1 does nat couple with N =5 (all
such mixing matrix elements are assumed to be zero), etc.

A separate IBM-2 calculation is done for each value of
N, using the computer code NPBQS [9] and results for
the various configurations are then combined. The mix-
ing Hamiltonian matrix has the form

( A, , )

[ V;„(1,2)]
(0)

(0)

[ V;„(1,2)] (0)

(A,~+6,i) [V;„(2,3)]
[ V;„(2,3)] (A3+b2)

(0) [ V;„(3,4) ]

(0)

(0)

[ V;„(3,4)]
(A4+ b ~)

(6)

where A, , is the diagonal matrix of the IBM-2 (NPBos) ei-
genvalues for the normal configuration (or some subset
thereof), the A, , contain the IBM-2 eigenvalues for the ex-
cited configurations, [ V;„(i,j )] is defined by (5), and the

6, are the relevant pair-excitation energies. Diagonaliza-
tion of this matrix for each value of the angular momen-
tum leads to the eigenenergies and eigenvectors of the
mixed configurations.
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In addition to the strength parameters a and P in (5),
the mixing calculation requires 6&, 62, etc. , which
represent the energies needed to excite the pair(s) across
the gap. The simplest choice for multiple-pair excitations
would be to take multiples of 6&. 5, for 2p-2h, 2A, for
4p-4h, 36& for 6p-6h, etc. , but this would not be realistic
because the nucleus deforms with increasing particle-hole
excitations leading, in general, to a smaller shell gap and,
hence, a lower excitation energy for the next pair of nu-
cleons. Heyde et al. [10] have studied this change in b, in
some detail but have not considered the problem for
multiple-pair excitations and the mixing of several
configurations. We will use a simple scaling argument,
based on the Nilsson model, to estimate the changes in
the (np-mh) excitation energy with increasing N„. This
is discussed in more detail in Sec. III.

III. APPLICATION AND RESULTS

Because of our previous studies of configuration mixing
in the mercury isotopes [5,11] and because of Iachello's
suggestion [3] that the mixing of multiparticle-multihole
configurations in the IBM might be a useful approach to
investigating superdeformed bands in nuclei such as

Hg, we have chosen ' Hg as a test for our
multiconfiguration mixing approach in the IBM-2.

In the present investigations we are primarily interest-
ed in exploring the model and are not principally interest-
ed in obtaining agreement with experimental data. We
mainly want to see how the results change when (1) the
number of (np-mh) configurations in the calculations is
varied, and (2) different choices and/or assumptions are
made for the multipair excitation energies 5, .

Regarding the first point, we consider two cases: (1)
N =1, 3, 5, and 7, and N =7 (four configurations); (2)

= 1, 3, 5, 7, and 9, and N =7 (five configurations). In
this way we can study the effects of varying the number
of proton pairs excited. For convenience, the
configurations a,re referred to as 1~ (normal
configuration), 3m. (2p-4h), Svr (4p-6h), etc. We note that
approximating the higher excited configurations by
(n +m ) /2 proton-boson holes is a great
oversimplification, because the particles and holes are in
different major shells and because the "structure of the
bosons" will change as more and more nucleons are excit-
ed across the major-shell gap. However, we take this as-
sumption as a first approximation for testing the model,
before attempting a more complicated description.

On the second point, we consider two cases: (1)
6, =nA&, i.e., equally spaced two-particle excitation en-
ergies, and (2) b,„(nA, , for n ) 1. The latter is con-
sistent with the expectation that the energy needed to ex-
cite the second, third, etc. , pair of nucleons should be less
than the energy needed to excite the first pair, because
the nucleus has become deformed in the process.

For the second case, we estimate the energies b, „(the
energy to excite n pairs) relative to 6, from the Nilsson
diagram for protons, SO ~ Z ~ 82 [12]. For simplicity, we

consider only differences in single-particle (or quasiparti-
cle) energies and ignore pairing and other effects.

The energy to excite the first pair of protons across the
Z =82 shell gap is roughly twice the difference in energy
of the h9/2 and d3/2 levels, for zero deformation, so that
E, = 1A'coo (from the Nilsson diagram). The nucleus, with
Z=80, is now deformed and can be approximately de-
scribed by two protons in —', [532], two holes in —', +[651],
and two holes in —,'+[660], with lower orbits filled. Excit-
ing another pair of protons from —,

' [6S1] to —,
' [S30] re-

quires additional energy E2=0.4A'coo (for deformation
@=0.27), to give a 4p-6h configuration. Subsequently,
exciting a pair from —', [514] to —", [505] requires

E3 O. 6A'coo and yields a 6p-8h configuration, etc. The
phenomenological fits for the Hg chain [5,11] have em-
ployed the value h, =4 MeV to describe the pair excita-
tion energy for the 3~ configuration. If this corresponds
to E&, then we estimate the energy needed to excite two
pairs of protons to be A2 =Ei +E2 6 MeV, rounding to
the nearest MeV. Similarly, A3 =E, +E2 +E3 = 8 MeV,
etc.

Next, we discuss the determination of the IBM-2 Ham-
iltonian parameters. Finding appropriate parameters
with which to describe the excited configurations is
difficult because little, if any, data are available. One pos-
sible description employs parameter values that give
reasonable fits to known nuclei that have the same num-
ber of valence protons and neutrons, e.g. , '

Hg»2
(Z=80) ' Os»z (Z=76) ' Hf (Z=72), and '

Er96
(Z =68), for N =7 and N =1, 3, 5, and 7, respectively.
This method has been rejected because the resulting ener-
gies for the 3~ configuration are much too high, relative
to the deformed bands in ' ' Hg, for which data are
available. This poor result is not surprising, in view of
the simplistic effective boson number approximation for
the particle-plus-hole situation. Instead, we have chosen
to utilize previously determined ' Hg parameter values
for the 1n and 3m configurations, and to obtain the pa-
rameters for the other configurations either by keeping
them fixed at the 3m values or by extending the trends for
the 1m. and 3~ cases.

The parameter values of Barfield [13] are used in tact
to describe both the lvr (normal) and the 3' (2p-4h)
configurations. These parameters result from an overall
fit with the even mercury isotopes 182~ A ~ 198, which
gives a good description both for the normal vibrational-
like states and for the shape-coexisting rotational-like
band seen in the light nuclides ' ' Hg. This particular
fit for the normal configuration is characterized by

=1.0, which was shown by Semmes et al. [14] to give
better results for neighboring odd- 3 nuclei in
quasiparticle-core coupling calculations than does the
earlier parameter set [11]with y = —0.4. The y values
for the excited configurations are guided by semimicro-
scopic arguments [15] and are consistent with values pre-
viously employed to describe Z =72—78 nuclei [16—18].

The 3~ value for the parameter epsilon in Eq. (1) is em-
ployed for all the excited configurations, and the values
for the quadrupole-quadrupole strength ~ are determined
by extrapolation of the 1n and 3~ values. The Majorana
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TABLE I. IBM-2 Hamiltonian parameters employed in the calculations. For all configurations,

gz =0.15 MeV, g, =g', = —0. 30 MeV (FS=0.15, FK =0). All parameters are in MeV, except for y, and

g„, which are dimensionless.

Cq

0.68
0.35
0.35
0.35
0.35

—0.165
—0.145
—0.12
—0.10
—0.08

0.4
0.4
0.4
0.4
04

1.0
—1.3
—1 ' 8
—2.0
—2.0

0.63
0.00
0.00
0.00
0.00

0.05
0.00
0.00
0.00
0.00

0.14
0.04
0.00
0.00
0.00

parameters in Eq. (4) and the values for y, in Eq. (2) are
kept the same for all configurations. The proton-proton
interaction V"" in Eq. (1) is not included for any of the
configurations, and the neutron-neutron interaction V
is dropped for the 5~ and higher configurations. The
mixing strengths in Eq. (5) are held constant and taken
from previous calculations [11],a=0. 15 MeV, P=O. 10
MeV. The IBM-2 parameter values for the various
configurations are given in Table I.

Although the mixing strengths a and P are held con-
stant, the matrix elements of V;„[Eqs. (5) and (6)] are
state dependent, increasing in magnitude with increasing
boson number. For example, for angular momentum
J=0 and the IBM-2 parameter values utilized,
V;„(1,2) = —0. 163 MeV, V;„(2,3)=0.437 MeV,
V,„(3,4)= —0.638 MeV, and V;„(4,5)= —0.856 MeV.
The magnitude of these matrix elements decreases some-
what with increasing angular momentum. (The sign of
the matrix elements depends on the phase convention
adopted for the IBM-2 eigenfunctions and is unimpor-
tant. )

As a first trial, we consider four configurations with the
successive multipair excitation energies taken to be 6,
26, and 3A, where 6=4 MeV is the value employed in
the two-configuration-mixing calculations [11]. For sim-

plicity, only the ground-state bands for each
configuration are included in the calculation, with spin
up to 20k. The results of this calculation, after mixing,
are shown in Fig. 2. The experimental yrast levels [19],
denoted as X's, are shown for reference. We note that
the calculated levels for J ~ 10 do not correspond to the
experimental levels shown because the latter states are
known to be two-quasiparticle (2qp) in nature [19] and
are outside of our model space. However, the yrast states
for J~6, which are clearly collective, are well repro-
duced by our model, as they should be. (Rotation-aligned
bands cannot be reproduced within the IBM unless 2qp
degrees of freedom are explicitly added to the model
space. )

There is very little mixing among the excited bands be-
cause of the initial, large separation energies assumed be-
tween the unmixed bands. The 3~ band, which crosses
the 1~ band between J= 8 and 10, should not be
identified with the experimental yrast states around

14
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41
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0...
0 2 6 8 10 12 14 l6 18 20 22

Angular Momentum

FIG. 2. Calculated energy levels after mixing for the ground-
state bands of the 1~, 3~, 5~, and 7m configurations of ' Hg
with multipair excitation energies b.

&
through 63=4.0, 8.0, and

12.0 MeV, respectively. The experimental yrast band, denoted

by crosses, is shown for comparison. For J) 8, these states are

2qp in nature and should not be reproduced by the calculations
because they are outside of the model space. The data are from
Ref. [19].

J ~ 10, as previously mentioned because 2qp degrees of
freedom are not included in our model space. The calcu-
lated energies of the J=2, 4, and 6 states in the 1~ band
are in good agreement with the experimental observed
energies for these levels, as expected from our previous
calculations [11].

From theoretical investigations [20] it is known that
the '"effective moment of inertia" of the ground-state
band (gsb) in IBM-2 calculations is inversely proportional
to the values of both e and ~ in Eq. (1). This effect is
clearly seen in Fig. 2 where the moment of inertia is
significantly smaller for the 1m. band than for the other
three bands because its e value is almost twice as big as
the e value for the other bands. The moments of inertia
for the excited bands are not very different, but do in-
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FIG. 3. Calculated energy levels after mixing for the same
four configurations as in Fig. 2 (1m, 3m, 5m, and 7~), with 6&

through 63=4.0, 6.0, and 8.0 MeV, respectively.

have no way of adequately predicting the changes in the
IBM-2 parameter values when increasing both the proton
and neutron boson numbers, we will not attempt the ad-
dition of excited neutron pairs to the model at this time.

As a general feature of the results, we note that in-
creasing the number of excited pairs does increase the
effective moment of inertia, so that the band with the
largest number of excited pairs does possess the largest
moment of inertia. On the other hand, none of the bands
obtained (Figs. 2 —4) has an effective moment of inertia
large enough to correspond to that of a superdeformed
(SD) band, as recently observed in ' Hg [21,22].

The results shown have included only one state per
spin for each of the configurations. Calculations with
several basis states for each configuration give somewhat
different values for the eigenvalues and eigenfunctions
after mixing, but do not change the overall results in any
substantial way.

IV. DISCUSSION AND CONCLUSIONS

12—

10 7T
37'
77T
57T

p
0)

LU

4

0„
0 2 4 6 8 10 12 14 16 18 20 22

Angular Momentum

FICx. 4. Calculated energy levels after mixing for five
configurations (1m, 3m, 5m, 7~, and 9m). The multipair excita-
tion energies 6& through h4 are 4.0, 6.0, 8.0, and 10.0 MeV, re-
spectively.

crease with N„, as K decreases.
Figure 3 shows results after mixing for the same four

configurations, with the multipair excitation energies
A, =4 MeV, 62=6 MeV, and 63=8 MeV, as estimated
from the Nilsson diagram. There is now considerable
mixing among the excited configurations, even for spin
J=0. Adding the 9~,7v configuration, with h4 = 10
MeV, lowers the energy of the 7~ band somewhat, as
shown in Fig. 4, and again the band associated with the
most excited pairs has the largest moment of inertia.

It is reasonable to assume that neutron pairs can be ex-
cited across the N=126 shell gap. However, because we

The IBM-2 configuration mixing method of Duval and
Barrett [5] has been generalized from two to several
configurations, each corresponding to a different (np-
mh) excitation of the nucleus. This was done by assum-
ing that only "nearest-neighbor" configurations, defined
as X and X +2, etc. (or X and X,+2, . . . ), mixstrong-
ly. The generalization of the existing mixing codes from
two to several configurations is straightforward, the main
problem being the choice of the IBM-2 parameter values
to use with each multiparticle-multihole configuration in-
cluded in the calculation. It is assumed that the excita-
tion energy of the first pair of nucleons across the shell
gap is larger, in general, than the energy needed to excite
subsequent pairs.

As a test, the generalized configuration method is ap-
plied to the nucleus ' Hg. Up to five configurations are
considered, including the normal N = 1, N =7
configuration. Four excited proton configurations are in-
cluded, with effective proton boson numbers of 3, 5, 7,
and 9. The IBM-2 parameters for the first two
configurations are taken from two-configuration-mixing
calculations for ' Hg. The parameters for the other
configurations are estimated from trends for the first two,
and from semimicroscopic considerations.

Two different assumptions for the multipair excitation
energies are considered. While no significant mixing of
the excited bands occurs when equally spaced excitation
energies are employed for each multiparticle-multihole
state, decreasing the multipair energies relative to the
one-pair excitation energy results in significant mixing at
low spin. For the parameters employed, the effective mo-
rnent of inertia of the bands increases with the number of
excited pairs. In spite of this, we obtain no results resem-
bling a superdeformed band for the mixing of five
configurations and for the present parameters, indicating
that an SD band must correspond to a rather large num-
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ber of proton and neutron pairs.
To summarize, in this study we have expanded the

Duval-Barrett IBM-2 configuration-mixing approach in a
straightforward manner and demonstrated the feasibility
of extending the method to five or more np-mh states.
Our test calculations produce encouraging trends for the
e6'ective moments of inertia of the excited bands, which
should stimulate future investigations involving large
numbers of excited proton and neutron pairs.

ACKNOWLEDGMENTS

We would like to thank Jolie Cizewski and E. David
Davis for helpful discussions. One of us (B.R.B.) would
like to thank Bruce H. J. McKellar and Iain Morrison
for their hospitality and that of the University of Mel-
bourne, Australia, where part of this work was per-
formed. This work was supported in part by NSF Grants
PHY8723182 and INT8913306.

'Permanent address: Department of Physics, Bldg. 81,
University of Arizona, Tucson, AZ 85721.

[1] L. Zamick, in Contributed Papers Symposium in Honor of
Akito Arima: Nucl. Phys. 1990s, Santa Fe, 1990, edited
by J. N. Ginocchio and D. D. Strottman (LANL, Los
Alamos, 1990), p. 42.

[2] H. Liu and L. Zamick, Phys. Rev. C 29, 1040 (1984); H.
Liu, L. Zamick, and H. Jaqaman, ibid. 31, 2251 {1985);D.
C. Zheng, D. Berdichevsky, and L. Zamick, ibid. 38, 437
(1988).

[3] F. Iachello, in Proceedings of the Symposium in Honor of
Akito Arima: Nucl. Phys. 1990s, Santa Fe, 1990, edited by
D. H. Feng, J. N. Ginocchio, T. Otsuka, and D. D. Strott-
man (North-Holland, Amsterdam, 1991),p. 83c. [Reprint-
ed from Nucl. Phys. A522, (1991)].

[4] U. Kaup and B. R. Barrett, Phys. Rev. C 42, 981 (1980).
[5] P. D. Duval and B. R. Barrett, Nucl. Phys. A376, 213

(1982); Phys. Lett. 100B,223 (1981).
[6] A. Arima and F. Iachello, in Advances in Nuclear Physics,

edited by J. W. Negele and E. Vogt (Plenum, New York,
1984), Vol ~ 13.

[7] F. Iachello and A. Arima, The Interacting Boson Model
(Cambridge University, London, 1987).

[8] D. Bonatsos, Interacting Boson Models of Nuclear Struc
ture, Studies in Nuclear Physics (Oxford University, Ox-
ford, 1988), No. 10.

[9] T. Otsuka and O. Scholten, KVI Internal Report No. 253,
1979.

[10] K. Heyde, J. Jolie, J. Moreau, J. Ryckebush, M. Waro-
quier, P. Van Duppen, M. Huyse, and J. L. Wood, Nucl.
Phys. A466, 189 (1987); K. Heyde, J. Jolie, J. Moreau, J.
Ryckebush, M. Waroquier, and J. L. Wood, Phys. Lett.

176B, 255 (1986); K. Heyde, P. Van Isacker, R. F. Casten,
and J. L. Wood, ibid. 155B, 303 {1985).

[ll] A. F. Barfield, B. R. Barrett, K. A. Sage, and P. D. Duval,
Z. Phys. A 311, 205 (1983); A. F. Barfield, Ph. D. disserta-
tion, University of Arizona, 1986.

[12] Table of Isotopes, 7th ed. , edited by C. M. Lederer and V.
S. Shirley (Wiley, New York, 1978).

[13]A. F. Barfield, Contributed Papers to the International
Conference on Contemporary Topics in Nuclear Structure
Physics, Cocoyoc, 1987 (unpublished).

[14] P. B. Semmes, A. F. Barfield, B. R. Barrett, and J. L.
Wood, Phys. Rev. C 35, 844 (1987).

[15]C. H. Druce, S. Pittel, B. R. Barrett, and P. D. Duval,
Ann. Phys. (NY) 176, 114 (1987), and references therein.

[16]R. Bijker, A. E. L. Dieperink, and O. Scholten, Nucl.
Phys. A344, 207 (1980).

[17]P. D. Duval and B. R. Barrett, Phys. Rev. C 23, 492
(1981).

[18]H. J. Daley, B. R. Barrett, and K. A. Sage, Bull. Am.
Phys. Soc. 26, 481 (1981).

[19]H. Hiibel, A. P. Byrne, S. Ogaza, A. E. Stuchbery, and O.
D. Dracoulis, Nucl. Phys. A453, 316 (1986).

[20] S. Kuyucak and I. Morrison, Ann. Phys. (NY) 195, 126
(1989).

[21]J. A. Becker, N. Roy, E. A. Henry, M. A. Deleplanque, C.
W. Beausang, R. M. Diamond, J. E. Draper, F. S.
Stephens, J. A. Cizewski, and M. J. Brinkman, Phys. Rev.
C 41, 9 (1990).

[22] D. Ye, R. V. F. Janssens, M. P. Carpenter, E. F. Moore,
R. R. Chasman, I. Ahmad, K. B. Beard, Ph. Benet, M. W.
Drigert, P. B. Fernandez, U. Garg, T. L. Khoo, S. L. Rid-
ley, and F. L. H. Wolfs, Phys. Rev. C 41, 13 {1990).


