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Nuclear structure effects are incorporated in the description of fusion reactions near the Coulomb bar-
rier using the interacting boson model. Predictions of this model are compared with the geometrical
model and with sub-barrier fusion and mean angular momentum data for the fusion of '°0 with the axi-

ally symmetric nuclei '**Sm and '*°Er.

I. INTRODUCTION

It is by now well established that heavy-ion fusion
cross sections below the Coulomb barrier are several or-
ders of magnitude larger than one would expect from a
one-dimensional barrier penetration picture [1]. After
extensive theoretical investigations [2-6], it was conclud-
ed that this enhancement can be attributed to the cou-
pling of the translational motion to an additional degree
of freedom such as nuclear and Coulomb excitation, nu-
cleon transfer, or neck formation. The resulting multidi-
mensional barrier transmission problem can be treated in
the coupled-channels formalism. Since numerical im-
plementation of a coupled-channels calculation with
many channels could be tedious, several approximate
treatments were proposed. One such approximation is
the adiabatic approximation, in which the internal degree
of freedom is assumed to have a degenerate spectrum.
Esbensen obtained an expression for the total cross sec-
tion of vibrational nuclei which is an average over proba-
bilities of penetration through one-dimensional barriers
corresponding to given values of zero-point fluctuation
amplitudes [2]. Chase et al. studied the scattering of
spherical projectiles by deformed nuclei and found that
one needs to average over planar orientations of the two
nuclei with respect to the collision axis [7]. A geometric
interpretation of the adiabatic model was given by
Nagarajan et al. when the nuclei are either rotational or
vibrational [8]. All those approximate treatments of
coupled-channel effects in sub-barrier fusion, including a
proper treatment of angular momentum coupling [9],
conclude that the fusion cross section is given by the ap-
proximate adiabatic expression

M
O total E wia(i) > (1)
i=1

where (i) is the fusion cross section in the eigenchannel
i where the real potential is Vy(R)+A,f(R), and the
weight factors w; satisfy the condition

M
> w=1. ()

i=1

S

In these equations M refers to the number of target states
included in the coupled-channel calculations [8], V(R) is
the bare potential, and A;f (R) is the coupling form fac-
tor multiplied by the eigenvalue in the channel i.

In the previous studies of sub-barrier fusion either the
geometrical model of Bohr and Mottelson [10] or its
simplifications were used to describe the nuclear struc-
ture effects. Especially in the path-integral formulation
of the problem, an algebraic nuclear structure model
would significantly simplify obtaining the solution in the
adiabatic approximation. The interacting boson model of
Arima and Iachello [11] is one such model which has
been successfully employed to describe the low-lying col-
lective states in medium heavy nuclei. In this paper the
use of the interacting boson model to describe the nuclear
structure effects in sub-barrier fusion is presented. Our
analysis is similar in spirit to the work of Ginocchio
et al. [12,13] where the interacting boson model (IBM)
was used to treat the proton scattering off heavy nuclei in
Glauber approximation.

In the next section we present the general formulation
of the problem, briefly summarizing the results of Refs.
[6] and [12] as well. In Sec. III we apply our formalism
to the description of the sub-barrier fusion of axially sym-
metric nuclei, those represented by the SU(3) symmetry
chain of IBM. Section IV includes a brief summary of
our results and directions for future work. The relation
between the “adiabatic” approximation of Sec. III and
the rotating-frame (or no-Coriolis) approximation previ-
ously discussed in the literature [8,14] is elucidated in the
Appendix.

II. FORMULATION OF THE PROBLEM

In the interacting boson model the low-lying collective
quadrupole states of medium-heavy even-even nuclei are
generated as states of a system of N bosons. These bo-
sons are considered to approximate the J"=0%1 and 2%
coherent pairs of valence nucleons. The monopole and
quadrupole boson annihilation (creation) operators are
denoted by s (s") and d (d T), respectively. In this model,
one generally assumes that the Hamiltonian H gy, which
determines energy levels and wave functions, contains
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one-boson terms, and boson-boson interaction terms.
We take the Hamiltonian describing the system of fus-
ing nuclei to be

ﬁZ
2
where R is the radial distance between the nuclei and
Hygy, is the Hamiltonian describing the collective states
in either the target or the projectile. The Hamiltonian

describing the coupling of translational motion to the ex-
citation of nuclear levels is assumed to be of the form

H, =[go(R)P+g,(R)IT?]-YP(R), @)

H=——V*+V(R)+Hpy+H,, , 3)

where g,(R) and g,(R) are the coupling form factors to
be specified, R is the vector joining the centers of mass of
two colliding nuclei, R is the angular part of this vector,
and the multipole moment operators of the nucleus are
expressed in terms of boson operators as [12]

T =[d"xd|?® (5a)

and

P,=s'd, =dls,

m=2,1,0,—1,—2. (5b)

Throughout this paper we use the notation of Ginocchio
et al. [12] to emphasize similarities between our path-
integral approach to fusion and the Glauber approxima-
tion approach to proton scattering.

In the following the IBM quantum numbers corre-
sponding to a given symmetry chain are denoted by n and
the total boson number is denoted by N. The amplitude
for transition from an initial state characterized by R;
and n; (which is taken to be the IBM ground state) to the
final state characterized by R rand n/ is [6]

K(R;,n.T;R;,n;,0)

= [DIR ()] "/PS®RDY, (R (1), T], (6

nfnl

where S (R, T) is the classical action for the translational
motion and W,,f,,_ is the transition amplitude for the

J

4
internal system
W, [R (), TI={ns|OR (1), T)In; ) , (7a)
with U satisfying the differential equation
00
ifi == (Hgy +Hiy, )0 (7b)
subject to the initial condition U(z =0)=1. The ele-
ments of the S matrix are given by
Snf,n,-(E )
~ ‘ PP, 172 ;
=— R‘T?m 3 exp Z(PfRf—P,-R,-)
Rfa) — o0
X{R,n;|G*(E)|R;,n;) , (8a)

where p is the reduced mass of the system and the classi-
cal momenta are

P,=P(R;)={2ulE —¢,—V(R;)]}'?, (8b)

with €; and €, being the initial and final excitation ener-
gies of the internal system. The G-matrix elements can
be written in terms of the transition amplitude given in
Eq. (6) as

(R;ns|GT(E)R;n;)
= [ " dT e "ET/*K (R;,n;, T;R;,n,,0) . (9)
0
The quantity of interest in sub-barrier fusion is the in-
clusive transmission probability, P(E), i.e., the total

probability that the internal system emerges in any final
state. We have

P(E)= 3 ISnf,,,i(E)IZ . (10)
"j=0

Substituting Egs. (6) and (9) into Eq. (10) one obtains

PP o,, _ o
P(E)= lim 2f f dTe(!/ﬁ)ETf dT e —(i/MET
R;—> u 0 0
Rf—>—oo

Xfi)[R(t)]ﬂ[R’(i‘)]e(i/ﬁ)[S(R,T)*S(R',T)]pM(R'(?)’T;R(z)’T) ,

where the two-time influence functional p,, is given as
pu(R(D),T;R (1),T)
=3 W,’:f’ni[ﬁ(?);T,O]wnf,,,i[R (2);T,0]. (11b)
n
!

In writing Egs. (11a) and (11b), in the spirit of the adia-
batic approximation we assumed that the energy dissipat-
ed to the internal system is small as compared to the total
energy, and took P, outside the summation over final

(11a)

states.
Since the interaction Hamiltonian, Eq. (4), was chosen
to be a linear combination of the elements of the SU(6)

algebra, if the excitation energies are neglected in Eq.
(7b),

iy = Hin,

the evolution operator is an element of the SU(6) group.
For the degenerate spectrum limit, using the complete-

o, (7b’)
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ness of final states, the two-time influence functional can
easily be shown to be the matrix element of an SU(6) ro-
tation

oK TR, T =(n{,(R,TYUR,D|n;) . (12)

Hj,, of Eq. (4) can be written as the three-dimensional ro-
tation of a reduced Hamiltonian by the angle R:

H, (R)=RRH(RRR), (13a)
where the reduced Hamiltonian is [12,13]
2
H9(R)=g,(R)Po+ S 6, (R)d, , (13b)
m=-=2
with
go(R)=(3m)!"2go(R) , (14a)
$o(R)=—(Zm)"?g,(R) , (14b)
$,(R)=(Zm)'"*g,(R) , (14¢)
#(R)=—[do(R)+d5(R)], (14d)
é_,(R)=6, (R) . (14¢)

Note that the reduced Hamiltonian depends only on the
distance between the two nuclei, but not on the angle R.
Consequently, the solution of Eq. (7b’) can be written as a
product of a three-dimensional rotation (depending on
the angle R) and a simpler SU(6) transformation (depend-
ing on the distance between the nuclei). The influence
functional is calculated for a given path (not necessarily
the classical one), hence the evolution operator depends
on time through the time dependence of the path. In or-
der to elucidate the adiabatic nature of our approxima-
tion we introduce the reduced evolution operator

UORE))=RTR(URD)) . (15)

Substituting Egs. (13) and (15) into Eq. (7b’) one finds that
the reduced evolution operator satisfies the equation

aU(O)

U(O) .
at

it HOR () —i#RT(R(1)

AR(R(1))
ot

(16)

In addition to ignoring the excitation energies, as a
second approximation we assume that the time depen-
dence of the angle R is very slow and ignore the second
term in the above equation. As we demonstrate in the
Appendix, this approximation implies that only M =0
substates are excited in the target nucleus. A similar ap-
proximation is made when the internal motion is de-
scribed by the geometrical model by neglecting the
Coriolis term in the kinetic-energy operator [8,14-17].
This latter approximation represents fusion in the rotat-
ing frame, where the z axis points along the vector R. It
can be shown that in the rotating frame approximation
only M =0 magnetic substates are present [16]. The
physical consequences of the no-Coriolis (rotating-frame)
approximation and the approximation made in neglecting
the second term in Eq. (16) are the same since they both

lead to a coupling form factor independent of L and I [8]
and the excitation of only the M =0 substates. As a re-
sult, U'® depends only on the distance between two nu-
clei, R, and the influence functional becomes the matrix
element of the simpler SU(6) transformation depending
only on R

puR,T;R, T)=n;|UYTR,TYUR,T)|n;) . (17)

It is now straightforward to calculate the influence func-
tional for the various symmetry chains of the interacting
boson model.

III. FUSION OF AXIALLY SYMMETRIC
NUCLEIL: THE SU(3) CHAIN

In this section we concentrate on the case where either
the target or projectile nucleus is axially deformed and
can be described by the SU(3) symmetry chain of IBM. If
the interaction Hamiltonian of Eq. (13b) is assumed to be
a generator of SU(3) group [18] then one can show that
[12,13]

bo(R)=6,(R)=6 _ 1

I(R):_—go(R) ’

> (18a)

Since the nuclei are initially in their ground states, to cal-
culate the influence functional in Eq. (17) one needs to
calculate the matrix element of the SU(6) rotation
UOYR,T)UO(R,T) for the ground state. Using the
fact that the SU(3) ground-state band is generated from a
boson condensate of intrinsic bosons [19], Ginocchio
et al. calculated this matrix element [12,13]. Using their
result the two-time influence functional can easily be
written in terms of a hypergeometric function

pu(R,T;R, T)=e 2NF(—N,1;3;1—e%%) ,  (19a)
where
=L [Tgor 0t — [ Tgo(Rin)ar (196)
%) [ o Bl o B0

Since the interaction Hamiltonian, Eq. (4), was chosen to
be proportional to the quadrupole transition operator,
go(R) scales as the matrix element of this operator.
Hence we introduce the reduced form factor

f(R)
2fllgllof) -

The reduced form factor consists of nuclear and Coulomb
parts:

go(R)= (20)

f(R)=fc(R)+f,(R), (21a)
where the Coulomb part is [13,14]
2

\/20 BZ,Z,e? R3 (RZR,) (21b)
fc(R)= R?

T/ﬁﬂzlzzez-R—g (R<R,) , (1o
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and the nuclear part is [9]
172 avy

R)=— -
Sn(R) BRy, R (21d)

4
In our calculations we take Rc=R,=1.24'/3 fm. For

the SU(3) symmetry chain the reduced matrix element is

|

A et DL ' N et O i
0= 3 k1) Nk, 2, k—mim1®

(R)

where o(V(R)) is the fusion cross section calculated us-
ing the one-dimensional barrier V(R).

Equation (23), calculated using the interacting boson
model, resembles Eq. (1), calculated using the geometrical
model, as expected. In the former, however, the number
of included channels is determined by the boson number
of the target nucleus, whereas one can include an arbi-
trary number of channels in the latter. Thus using IBM
provides us a prescription to determine the number of
channels to be included. When the boson number N is 1,
the allowed values of angular momentum are L =0 and
2. In this case using IBM we get A;= —0.316, ©;=0.667
and A,=0.633, ©,=0.333 and using the geometrical
model we get A,=—0.327, ©,;=0.652 and A,=0.613,
@,=0.348. A comparison of these two models with three
channels is given in Table 1.

Except the two approximations described above
[neglecting the excitation energies and the second term in
Eq. (16)], Eq. (23) holds whatever method one uses to cal-
culate the fusion cross section for the one-dimensional
barrier. In particular, when the one-dimensional poten-
tial barrier has the same topological structure as a quad-
ratic function, the penetration probability of Eq. (11a)
can be calculated [20] in a uniform semiclassical approxi-
mation with a proper treatment of the multiple
reflections under the barrier to obtain the usual WKB ex-

pression for penetrability:
17271 1-1
H o

Py(E,V(R))

TABLE I. A comparison of the interacting boson model pre-
dictions for the weight factors and the channel eigenvalues in
Eq. (1) with the geometrical model predictions for the case of
three channels.

2
—h%[wr)—E]

1+exp

.
2frl2

Model ©; A
IBM 0.533 —0.378
0.267 0.190
0.200 0.756
Geometrical 0.468 —0.415
model 0.361 0.156
0.171 0.804

2NN+

I

given by [18]
(2illQlloy Y=V2N(N +3) . 22)

Substituting Egs. (19) through (22) into Eq. (11a) after
some steps we obtain the total fusion cross section to be

N_3m_rry|, 23)

—

Equation (24) is valid uniformly from below to above the
barrier. In this paper we will calculate the fusion cross
section within this approximation. We take a Woods-
Saxon form for the nuclear part of the potential

Vy(R)=—V,/[1+exp(R —R,)/a] . (25)

In Fig. 1 we exhibit the schematic behavior of the fusion
cross section, Eq. (23), for different values of the boson
number N. In this figure the cross section is plotted for
the system of '°0 and !**Sm. The dotted line is for N =0
(bare potential). The dashed line is for N =1 and the
solid line is for N =11 (the actual boson number of
1548m). In calculating these cross sections we used the
values V=68 MeV, R;=8.9 fm, @ =0.95 fm for the nu-
clear part of the heavy-ion interaction potential and
B,=0.35 for the deformation parameter for 154Sm. This
value of the deformation parameter 3, is the one deduced
from B(E2) values by Raman et al. [21] In this figure

1000

100

10

c (mb)

0.1 3

0.01 59 64 69

E (MeV)

FIG. 1. The interacting boson model predictions of the
fusion cross section for the system of '°O and '**Sm for different
values of boson number, N. The dotted line is for N =0 (bare
potential). The dashed line is for N =1 and the solid line is for
N =11 (the actual boson number of **Sm). In calculating these
cross sections Eq. (25) was used to describe the nuclear part of
the heavy-ion interaction potential with the parameter values
V,=68 MeV, R,=8.9 fm, a=0.95 fm, and 3, X R =0.35X6.43
fm for '*Sm. The data are from Ref. [22]. The arrow indicates
the position of the barrier maximum.
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the experimental data, indicated by black dots, are taken
from Stokstad et al. [22] and the position of the barrier
maximum energy of 58.2 MeV is indicated by an arrow.
A salient feature of Fig. 1 is the quick convergence of the
cross section as N (or the number of channels) increases.
N =1 and the large values of N yield the same cross sec-
tion. Since different symmetry chains of IBM give the
same result for the transition probabilities when N =1, it
would be desirable to find a quantity which depends on N
in a more sensitive manner. One possibility is the average
angular momentum

(L)= [%LGL]/U, (26)

which can be determined reasonably accurately from the
gamma-ray multiplicities data [23,24]. In Fig. 2 we
present the average angular momentum for the system
160 and '**Sm calculated with N =0 (the dotted line),
with N =1 (the dashed line), and with N =11 (the solid
line). The same potential parameters as in Fig. 1 are
used. Once again one observes that the average angular
momentum converges rather quickly. Our analysis
confirms the results of Ref. [25], where it was shown that
it is sufficient to include a small number of channels in
the coupled-channel calculations to obtain the correct
distribution of potential barriers. One generally expects,
in a rather model-independent way, the coupled-channel
calculations to converge rapidly as the basis size is in-
creased. Vandenbosch and his collaborators recently
determined mean angular momenta for this reaction by
two different techniques. They either observed low-lying
gamma transitions in the evaporation residues or detect-
ed the residues directly by exploiting an electrostatic
detector [24]. The first method has been applied with
higher sensitivity than previously and the second method
enables measurements at a lower energy than is possible

20

<L>

E (MeV)

FIG. 2. The average angular momentum for the system '°O
and '®*Sm calculated with N =0 (the dotted line), with N =1
(the dashed line), and with N =11 (the solid line). The data are
taken from Ref. [24] and the same potential parameters as in
Fig. 1 are used. The circles represent data determined from Ge-
tagged multiplicities and the squares those determined from the
deflector-tagged multiplicities. The dot-dashed line is the full
coupled-channels calculation reported in Ref. [24]. The arrow
indicates the position of the barrier maximum.

with gamma-ray tagging techniques. The mean L values
they deduced from these recent measurements are sub-
stantially higher than their previous data [23] and display
prominently the mean-spin barrier bump. We exhibit the
data from Ref. [24] in Fig. 2. Also shown is a full
coupled-channels calculation (the dash-dotted line), re-
ported in Ref. [24], using the coupled-channels code
CC DEF [26] including quadrupole and hexadecapole de-
formations and octupole vibrations. One observes that
the full coupled-channels calculation is in better agree-
ment with experiment, but, like our calculation, it still
underestimates the (L ) values near the maximum bar-
rier energy, indicated by an arrow. The difference be-
tween the CC DEF result and our calculation is easier to
understand. In addition to neglecting the excitation ener-
gies, assuming the exact SU(3) limit we neglected hexade-
capole deformations. Similarly excluded in the simplest
version of IBM are the octupole vibrations. To describe
octupole collectivity in IBM necessitates the introduction
of an f(L =3) boson [15]. It is also interesting to note
that the N =1 calculation seems to approximate the data
better than the N =11 calculation. We should remind
the reader that for N =1 only the excitation of the first
2% state is included in the channel coupling [cf. the dis-
cussion following Eq. (23)], whereas N =11 includes the
entire ground-state band.

Recently the fusion excitation function [27] and the
gamma-ray multiplicities for the 160+ 1%6Er system were
measured and the average angular momenta were de-
duced [28]. In Fig. 3 we compare our calculation for this
cross section (the solid line) with the data of Ref. [27]
(black dots). Again Eq. (25) was used to describe the nu-
clear interaction with ¥;,=80 MeV, R,=8.55 fm,
a=1.15 fm with the deformation parameter [21]
B,=0.341. Also plotted is the result of the full coupled-
channels calculation cC DEF (the dash-dotted line), in-
cluding quadrupole and hexadecapole deformations and
octupole vibrations, reported in Ref. [28]. In Fig. 4, IBM
predictions for the average angular momenta are com-

1000 —————
’ ®
100} o ’
o
) d" 16 166
E 10 ) O+ Er
o
1 L/
0.1

63 68 73 78 83
E (MeV)

FIG. 3. Fusion cross section for the %0+ *Er system calcu-
lated as described in the text. The data (black dots) are from
Ref. [27]. The solid line is the IBM prediction and the dot-
dashed line is the full coupled-channels calculation reported in
Ref. [28]. The arrow indicates the position of the barrier max-
imum.
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<L>

E (MeV)

FIG. 4. IBM predictions (dashed line with N =1 and the
solid line with N =15) for the average angular momenta for the
160+ 15Er system calculated as described in the text. The data
are from Ref. [28]. The dot-dashed line is the full coupled-
channels calculation reported in Ref. [28]. The arrow indicates
the position of the barrier maximum.

pared with the data of Ref. [28]. In this figure the dashed
line is the calculation with N =1 and the solid line with
N =15 (the actual boson number of !®Er). The dash-
dotted line is the full coupled-channel calculation men-
tioned above. One observes that our model predicts (L )
reasonably well except for the barrier bump, where it un-
derestimates the data. This failure seems to be a common
feature of a large class of models [24]. Indeed when the
coupling gets stronger the barrier bump gets stronger.
To demonstrate this behavior in Fig. 5 we present the
average angular momentum for three different values of
B,R: O (the dashed line), 0.1286 fm (the dotted line), and
0.2572 fm (the solid line). Figure 4, like Fig. 2, also re-
veals that the N =1 calculation is actually a better ap-
proximation to the mean angular momentum bump than
N =15 calculation; averaging over many channels seem
to smear the mean-spin bump. A very pronounced
broadening of the (L ) distribution can thus be a signa-

E (MeV)

FIG. 5. Average angular momentum calculated using the
IBM based model (with N =1) for the 'O+ !**Er system using
B,R: 0 (the dotted line), 0.1286 fm (the dashed line), and 0.2572
fm (the solid line).

ture of exciting only few low-lying states as well as the in-
creased strength of the coupling.

IV. SUMMARY

We have discussed the inclusion of nuclear structure
effects in fusion reactions below the Coulomb barrier us-
ing the interacting boson model and given simple approx-
imate expressions for the fusion cross section and the
mean angular momentum. We employed the simplest
version of IBM, the so-called IBM-1 ignoring the mixed-
symmetry states and octupole collectivity. Mixed sym-
metry states [29,30] are unimportant in low-energy fusion
since they have relatively high excitation energies (~3
MeV). In contrast, the octupole and higher multipole vi-
brations contribute significantly to sub-barrier fusion as
we demonstrated in Sec. III. Although we only focused
on the fusion of axially symmetric [i.e., SU(3)] nuclei in
this paper, our technique can easily be applied to the vi-
brational [SU(5)] or gamma-unstable [SO(6)] nuclei, as we
shall present in future publications.

Following the algebraic treatment in Ref. [12] of
medium-energy proton-nucleus scattering, Amado and
collaborators formulated the inelastic scattering of elec-
trons off molecules [31] algebraically using the vibron
model [32]. An application of the techniques developed
in our paper to inelastic nuclear scattering was given in
Ref. [16]. It is similarly possible to utilize the formalism
of Amado and his collaborators within the path integral
description developed in this paper to describe inelastic
molecule-molecule scattering, as will be reported else-
where.
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APPENDIX: “ROTATING-FRAME”
APPROXIMATION IN THE INFLUENCE
' FUNCTIONAL

In this appendix we wish to elucidate the physical
meaning of the approximation done in the text following
Eq. (16). The time derivative in the second term of this
equation can easily be evaluated resulting in an expres-
sion of the form
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R1A ! dR(1)
j = |[H'R (1)) —i# ~——|L, |U?
if o1 (R (1)) zuzla# it w (U
(A1)
where L, are the angular momentum operators. The

dependence of the functions a, on d R(1)/dt can be cal-
culated as well, but for the following argument it is
sufficient to note that the former goes to zero as the latter
vanishes. Let us assume that initially we are in the
ground state of the target nucleus with angular momen-
tum L =0. The state of the nucleus after time 7T is given
by

U(R())[0)=R(R(£))UO(R(1))]0) . (A2)

Solving Eq. (A1) in first-order perturbation theory we find
this state to be

R(R(t))exp( —iH'OT /#)]

X

1+ [ dtexpiHOT /WIS @ L, l0) . (A3

One observes that the first term which contains the term
exp(—iH'"T /%), where H'” is given by Eq. (13b), ex-
cites solely the M =0 substates due to the tensorial struc-
ture of H'?, whereas the second term would excite those
substates with M0. Upon substituting Eq, (A3) into
the influence functional, Eq. (12), the term R(R(t)) drops
out due to unitarity. Consequently, if a, [or equivalently
dR(?)/dt] vanish, only the M =0 magnetic substates con-
tribute to the influence functional as in the rotating-frame
approximation of Ref. [16].
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