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The shift in binding energy that results from allowing one explicit A in the triton is studied using the
Hannover one-A force model. The one-A analysis extends through J <4, subject only to L(NA)<4.
Our main result is a 103-channel triton binding energy of 7.83 MeV, which corresponds to a net attrac-
tive one-A effect of 370 keV. The corresponding (repulsive) dispersive effect is found to be 600 keV, so
that the full one-A three-body-force effect is 970 keV. Appropriately restricted J <2 calculations sub-
stantiate the basic results of the original Hannover triton calculations, although differences are found.
The original J <2 figures are in good agreement with our full results and dissecting our results shows
this to be largely due to cancellations among the various truncations employed in the original calcula-
tions. A numerical correction is obtained for each truncation and these are found to be relatively in-
dependent of each other. This forms a reliable basis for subsequent AA studies. The Hannover one-A
model is also critically examined for physical consistency and the 'S, effective range is found to be about
0.1 fm too low, a defect which could be responsible for about half of the net 370-keV increase in triton
binding. The approach, methods, and numerical checks that underlie our investigations are also de-
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I. INTRODUCTION

The classical picture of the nucleus is that it is a com-
posite structure with protons and neutrons (nucleons) as
its constituent particles. Also basic to most nuclear cal-
culations is the assumption of the validity of a description
of the nucleus via the nonrelativistic Schrédinger equa-
tion. Calculations of nuclear properties then proceed on
the assumption that the nucleons interact via an instan-
taneous nucleon-nucleon (NN) potential.

The success of nuclear physics in understanding many
of the properties of nuclei—from the semiempirical mass
formula, through the shell model and rotational model
predictions of energy spectra—indicates that the picture
outlined in the preceding paragraph is a sensible one. It
is certainly, however, an oversimplified picture. The nu-
cleons themselves are known to be composite particles,
with resonant states to which they can be excited. The
NN interaction, at least its longest-range component, is
thought to be mediated via the exchange of virtual
mesons. That the presence of the virtual mesons can
significantly affect the electromagnetic properties of nu-
clei is well established [1]. A dynamical description
based on nucleons interacting via meson exchange also
implies nontrivial relativistic corrections. It is of interest
then to ask the following: At what level does the ‘“‘sim-
ple” picture of the nucleus start to deviate substantially
from reality? To what extent and at what level must sub-
nucleonic degrees of freedom be incorporated into the
model of the nucleus in order to accurately predict nu-
clear properties? What picture of nuclear dynamics best
corresponds to actual physical reality?

The solution of the many-body Schrédinger equation is
a formidable task; so much so that only the simplest of

4

nuclear systems are amenable to direct calculation. This
impedes investigations of the above questions, since
deficiencies in the model are, or could be, masked by the
approximations used to solve the numerical problem.
Here is where the three-body problem is of paramount in-
terest. The numerical difficulties of solving the three-
body Faddeev equations [2,3] have been overcome [4].
By this it is meant that, given a system of three nucleons
and the potential through which they interact, the solu-
tion of the Schrodinger equation can be found to desired
accuracy. Differences between predictions of the model
and the physical data must then be ascribed either to a
poor choice for the NN potential or to oversimplification
in the standard view of the nucleus. When one goes
beyond a purely phenomenological description of the NN
potential and attempts to describe the NN interaction
from a more fundamental viewpoint, these two possibili-
ties become entwined.

Computationally, the simplest of all three-nucleon
properties is the binding energy of the triton, E,=8.48
MeV. It is thus remarkable that calculations using the
best available ‘‘realistic” potentials consistently fail to
reproduce this number, by 0.5-1.0 MeV. A “realistic”
potential is one which fits well the deuteron properties
and the NN scattering data from threshold up to
E,,=350 MeV. Examples of “realistic” potentials
which have been used are the Reid [5], Paris [6], V14 [7],
and Bonn [8,9] potentials. If one relaxes somewhat this
definition of “realistic,” then the Bonn momentum space
one-boson-exchange potential (OBEPQ) potential [10],
which begins to deviate from the NN scattering data
above ~ 100 MeV, but predicts a triton binding energy of
8.35 MeV [11], should also be included. (See, however,
Ref. [12].) The salient fact is that one is unable to simul-
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taneously reproduce the NN data and predict the triton
binding energy. This is a clear signal of an inadequacy of
the simple picture of nuclei.

The triton binding-energy defect could be accounted
for by introduction of a three-nucleon potential into the
three-body Hamiltonian. This approach has the advan-
tage that the simple picture of the nucleus as a composite
of nucleons can be maintained. It is only necessary to
modify the interaction Hamiltonian. The existence of a
three-nucleon (NNN) force is, nonetheless, a direct conse-
quence of the underlying compositeness of the nucleon, as
well as the exchange mechanism thought to be responsi-
ble for the interaction between nucleons. A typical NNN
force is depicted in Fig. 1, in the context of time-ordered
perturbation theory (TOPT). This type of diagram, with
the exchanged particle taken to be a pion, figures in the
calculation of every NNN potential [13—15]. The corre-
sponding potential mediated through the exchange of
heavier mesons is of shorter range and is assumed to be of
less import. Triton binding calculations [16-21] using
this type of NNN potential in combination with one of
the “‘realistic”” NN potentials above show that it is always
possible to explain the discrepancy between the experi-
mental and numerical results on this basis. Unfortunate-
ly, the size of the contribution from these NNN potentials
is strongly dependent on the cutoff parameter of the
pion-nucleon form factor, and varying this parameter al-
lows one to obtain greatly varying results, including the
correct binding energy for most combinations of two- and
three-body potentials. This adds a strongly phenomeno-
logical component to the three-body system itself and de-
tracts from the status of the triton as a dynamical prov-
ing ground.

Ideally, one would explicitly treat the degrees of free-
dom which are ignored in the “nucleons-only”” approach.
While this is beyond our present capabilities, some at-
tempts in this direction have been made. These consist of
coupled-channel models which treat one of the nucleon
resonances, the A isobar, as a stable particle, which,
through a potential interaction, can make transitions to
and from the nucleon (intrinsic) state. There exist today
several potential models with this added degree of free-
dom [7,22-24]. Figure 2 schematically depicts such po-

FIG. 1. The standard example of a three-nucleon force dia-
gram. The thin lines denote nucleons, the thick lines denote a
nucleon resonance, and dashed lines denote exchanged mesons.
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FIG. 2. The diagrams which schematically represent the
two-body potentials of the coupled-channel approach. The
Hannover single-A model has only components of the first three
types.

tential models. These potentials, which are fitted to the
NN data, have so far not been used in trinuclear calcula-
tions. Use of these potentials in a coupled-channel ap-
proach to the triton, in which the nucleon and the A are
treated on an equal footing, includes naturally three-body
forces typified by the diagrams of Fig. 3. One disadvan-
tage of this method is that it ignores all but the A contri-
bution to the three-body force. Another is that it does
not allow the inclusion of all types of meson-theoretic A
diagrams of a given order on an equal basis. Only those
A diagrams which can be expressed in terms of baryons-

FIG. 3. Examples of three-body forces included in triton cal-
culations based on the coupled-channel approach. The Hann-
over one-A model includes only the first two examples.
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only states (NN, NA, NNN, NNA, NAA, etc.) and transi-
tions between them fit naturally into the coupled-channel
scheme at each order. Two- and three-body diagrams in
which a transition to a new intrinsic baryon state occurs,
but in which this new state is always accompanied by
mesons in flight, are not included explicitly by the
coupled-channel approach. For example, Fig. 4 shows
some typical two- and three-body diagrams (in TOPT)
which do not fit into the coupled-channel scheme. The
two-body diagrams of Fig. 4(a) are, at best, included in
the two- and three-body systems only implicitly through
parameter fits to the two-body data. Three-body dia-
grams of the type depicted in Fig. 4(b) are entirely omit-
ted in the coupled-channel scheme. The advantages of
the coupled-channel approach are, firstly, that it is not re-
stricted to only the long-range m-exchange contribution,
but has also the short-range p-exchange contribution to
the three-body force if this is explicitly included in the
potential model. Secondly, those NN and NNN forces
which are included are treated in a unified and consistent
manner. Such consistency is of obvious importance.
These ideas have been implemented in the pioneering
work of the Hannover group [25-27], who calculated tri-
ton properties with A degrees of freedom, although in a
model restricted to allowing only one A in the three-body
system. Due to this restriction, the Hannover group
chose not to use any of the available NN potentials which
include the A-isobar excitation, but rather to construct an
NN-NA potential and to modify the Paris [6] potential
accordingly for use as their NN-NN interaction. One of
the more important results of the Hannover calculations
was showing the significance of what they named the
“dispersive effects” of the diagram in Fig. 5. The calcula-
tions mentioned previously, which modify the three-body
interaction Hamiltonian through the addition of a three-
body force, have shown that the contribution to the tri-
ton binding energy from diagrams of the type depicted in
Fig. 1 is appreciable. The Hannover calculation showed,
in addition, that the contribution from the corresponding
dispersive diagram (Fig. 5) is repulsive and about two-

(a)

(b)

FIG. 4. Typical (a) two-body and (b) three-body A diagrams
of TOPT which do not fit into the coupled-channel scheme.

thirds the size of the three-body-force contribution of
Fig. 1, so that the two largely cancel. These dispersive
diagrams are an integral part of the NN interaction. It is
presumed in calculations which simply add together a
two- and three-body interaction that these diagrams are
sufficiently well represented in the NN interaction simply
through the process of fitting the NN data using a static
potential. To exactly what extent this is a valid assump-
tion has not been fully tested by the Hannover results due
to their method of choosing the NN-NN potential. How-
ever, it is evident that the question of the dispersive effect
can never be adequately addressed by static potential
models. This too raises serious questions about the appli-
cability of the “nucleons-only” approach to the descrip-
tion of the triton. This circumstance also underscores an
advantage of the coupled-channel approach, namely, that
particular dispersive diagrams and their three-body-force
analogs are either consistently included or neglected.

This work is the first in a series of papers which will
implement the inclusion of A degrees of freedom in
coupled-channel calculations of the triton binding energy
and other physical properties. This first paper is restrict-
ed to single-A excitation using the Hannover potential
model; this restriction is largely a tactical one and subse-
quent papers will report results from AA and AAA stud-
ies which incorporate more sophisticated NA and AA in-
teractions. The technical apparatus needed for these ex-
tensions of the present investigations is already in hand
and a few calculations allowing both A and AA excita-
tion, and using both the extended Hannover and Argonne
V-28 potential models, have, in fact, already been per-
formed. However, once the excitation of more than one
A at a time is permitted, the number of two- and three-
body channels proliferates very rapidly with increasing
angular momentum cutoff. For this reason, systematic
investigations of the full multiple-A problem are best
done by building on a careful analysis of the single-A
case. Because the previous work on single-A excitation
has been done using the Hannover potential model, it is
advantageous to begin here with this model as well. Dur-
ing the process of building up to an analysis which in-
cludes the full complexities of multiple-A excitation and
sophisticated force models, it is most efficient to focus on
one representative quantity, so that our initial investiga-

FIG. 5. The stereotypical three-body dispersive diagram.
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tions are concentrated mainly on the triton binding ener-
gy, Er.

Thus, this paper is restricted to single-A excitation and
concentrates for the most part on predictions for the tri-
ton binding energy. The main goals of this paper are (1)
to obtain an unambiguous result for the one-A contribu-
tion to the triton binding using the Hannover force mod-
el; (2) to substantiate the results obtained previously by
the Hannover group, given the limitations of their
channel-truncation scheme; (3) to gauge the accuracy and
reliability of the Hannover channel-truncation scheme
and find the necessary corrections to it, their interplay,
and correction methods which can be applied by hand;
(4) to lay the groundwork for subsequent extensions to
multiple-A excitation and more sophisticated force mod-
els by establishing a reliable channel-truncation and
correction scheme from which to begin; and (5) to criti-
cally examine the physical consistency of the two- and
three-body predictions of the Hannover one-A models.

In the next section, the required extensions of the usual
three-body Faddeev equation formalism are developed.
This provides a concise overview both of the necessary
modifications to the usual Faddeev equations and of our
methods of treating the generalization to include A de-
grees of freedom, which differ somewhat from previous
developments. Section III outlines the Hannover force
model, Sec. IV presents our results, and a brief summary
follows in Sec. V. A number of ancillary aspects of the
development are relegated to appendices. Appendix A
gives an expression for the geometrical coefficient, applic-
able to the case where any number of A’s may be present,
in the form in which we have used it. Appendix B de-
scribes the simple technique needed to deal exactly with
the NA mass difference in the coupled two- and three-
body equations. Appendix C contains a brief discussion
of our numerical methods, accuracy and other checks,
and an important error-avoidance attribute of our specific
computational scheme.

II. FORMALISM

This section defines the basis states which are used in
this work and presents the final form of the Faddeev
equations which are ultimately solved to obtain the bind-
ing energy. Although the Faddeev equations have been
presented many times [4], the inclusion of the A degrees
of freedom adds enough novel features and notational
complications that it is worthwhile to give the explicit
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forms of the equations.

Fundamental to the approach used in this work and to
the earlier Hannover calculations [25] is the treatment of
the A and the nucleon on an equal basis. Indeed, the two
particles are treated as identical fermions in the sense of
the generalized Pauli principle. To accomplish this, a
“nucleonic-spin” (n-spin) quantum number, n =1, and
its z component n, are introduced. The definition used

here is
— 21 nucleon,

1
2)
+1, delta M

n,=

Thus, a general state describing a free particle of momen-
tum k is

Ik;s(n,),s,5t(n,),t,54,n,) . ()

The spin and isospin both depend on the n, quantum
number, with the spin given by

s(nz)=l

A similar equation holds for the isospin. The mass
dependence of the states is not explicitly shown, but is
given by

s nzz_%y
L=+ ®

[N

MN’ nz:_%’
CIERES IV @

The two- and three-body basis states are built from prod-
ucts of these vectors.

The general two-body state of good total spin, isospin,
and n spin which describes particles (2,3) is

|ky,k3;SS,; TT,;NN, ), (5)
or

'p,l),SSz;TTz;NNz)l > (6)

where p and P are the relative and center-of-mass mo-
menta of the pair, respectively. The subscript on the ket
is introduced here in anticipation of the “odd-man-out”
notation which will be used for the three-body basis
states in which the spectator, or noninteracting particle,
is used to label the two-body potentials and states. The
spin, isospin, and n-spin state is given by

ISSZ;TTZ;NN2>1: 2 <%%n22n32’NNz>|%n22>|%n3z)|[s(n22)s(n32)]SSz)l[t(nZZ)t(nSZ)]TTz>‘ )

M2z:M32

Here, as in what follows, the explicit dependence of the states on the spin, isospin, and n spin of the individual particles

will be omitted whenever this causes no confusion. The quantity (1ln,,n;,|[NN,) is the standard Clebsch-Gordan

coefficient and the spin and isospin kets are just the usual ones. ’
These states are eigenstates of the free two-body Hamiltonian, A,

hZ 2 ﬁZPZ
holp,P;SS,; TT,;NN, )= |M(N,)e?+—L—+ 22
0|p z z Z> ( Z)C Z‘LL(NZ) 2M(NZ)

|p,P;SS,; TT,;NN, ) , (8)
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where M (N, ) is the mass of the pair
M(N,)=m(n,,)+m(ns,)

2MN’ Nz:_"l’
= |My+M,, N,=0, )
2M,, N,=+1,

and u(N,) is the reduced mass of the pair. Further, if the

partial-wave projection of the two-body state of relative

motion is written as
|pLM,;SS,;TT,;NN, ), , (10)

then, with E, =FE,; being the exchange operator for par-
ticles 2 and 3,

E,|pLM;;SS,;TT,;NN, ),
:(____1)(L+S+T+N+l)lpLML;SSZ;TTZ;NNZ)1 , (11)

J

lpga ) =|pg({(LS)J,[Is(n,)]j}F&F,; [ Tt(n,)]TT,;NN,,+n,)), ,

which defines the set of quantum numbers a. In Eq. (13)
the spectator, pair, and total quantum numbers are
denoted by lower-case, upper-case, and script letters, re-

spectively.
The three-body Hamiltonian H is
H=H,+V, (14)
where
V=V, +V,+V; (15)
and V; is the interaction between particles j and k
Vi=Vy, jFiFkFj . (16)

The operator H, is the free, three-body Hamiltonian.
The basis states |pga ), of Eq. (13) are eigenstates of H:

Holpga),= |[M(N,)+m(n)e*+ 24
OPq 1 z z 2m(nz)
h2q2 ﬁZPZ
+2M(Nz) +2,u(NZ) lpga), . (7)

The meanings of the various terms are self-evident. The
g%-dependent terms—the kinetic energy of the spectator
particle in the three-body center of mass, and the kinetic
energy of the motion of the pair center of mass (again in
the three-body center-of-mass system)—could obviously
be combined into one term involving the reduced mass of
the spectator-pair system. However, it proves useful to
leave Eq. (17) as it stands (see Appendix B).

The three-body Hamiltonian is fully symmetric under
exchange of any two particles. Since the nucleons-only
(NNN) states must be antisymmetric under exchange of
any two particles, the only states containing A’s which
can couple to them through the Hamiltonian are also
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which expresses the particle-exchange symmetry of the
state.

The three-body basis states are now built from the one-
and two-body states in a manner completely analogous to
that for the more familiar case where only nucleons are
allowed in the triton. All calculations are carried out in
the rest frame of the three-body system, and the internal
momenta of the states will be described by the Jacobi
variables |p,q);. For the particular case where the spec-
tator is particle 1, the Jacobi variables are

— (V) k, k;
P () mngy) |’

(12)
q:k]: _(k2+k3) .

The partial-wave basis states in the J-j coupling scheme
are abbreviated by

(13)

[
necessarily antisymmetric under two-particle exchange.
Formally, it is this fact that allows one to treat the nu-
cleon and A as identical particles within the context of
the generalized Pauli principle and to reduce the Faddeev
equations from three components to one. This is accom-
plished in the practical solution of the Faddeev equations
by restricting the two-body basis states to those for which
L+S+T+Nis even [see Eq. (11)].

The formal Faddeev equation for the bound state of
three identical particles can then be written succinctly as

W), =t,(EXP,+P,)Go(E)|¥),, (18)

where |¥ ), is the Faddeev amplitude for the case where
particle 1 is the spectator, and is related to the full three-
body bound-state wave function by

| Wy ) =Gy(E)e+P,+P,)|¥), . (19)

The three-body operators e, P., and P, are the identity,
the cyclic permutation, and the anticyclic permutation
operators, respectively. The free, three-body Green’s
function has its usual definition

1

_ —————— > 20
F (20)

Gy(E)
and the operator ¢,(E) is a two-body ¢ matrix embedded
in the three-body space; ¢, (E) is defined as the solution of
the Lippmann-Schwinger equation

tH(E)=V +V Go(E)t(E) . 21
The operator ¢,(E) is discussed in more detail in Appen-
dix B. The parametric energy E which appears in Eqgs.
(18)—-(21) is the energy of the three-body bound state,
which in the three-body center of mass is simply the
rest-mass energy of the triton,
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E=Myc? (22)
=3Myc*—E;, (23)

where the last equation defines the binding energy E;.
Since all the particles are being treated as identical, the
subscript on the basis states, Faddeev amplitudes, etc., is

|

®© ’ ’ 1 ’
Y(pga)=3 3 fo dq'q 2f_1dx 7 (p.pi;E.q,n;)
7
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unnecessary and can be dropped.
Taking the projection of the Faddeev amplitude onto
the three-body basis states

Y(pga)={pga|¥) (24)

leads to the coupled set of integral equations

aw(@:9,x W(pyq',a’)

X
E—[m(n))+M(N})]c?>—[#2q'*/2m(n))]—[#*q' */2M(N})]1—[#*p3 /2u(N])]

where
x=99 (26)
qq
The notation here is
y={LSNN,} , 27)
y={LSNN,} , (28)
a=({(LS)J,[Is(n,)1j}#d,;[ Tt(n,)]TT,;NN,, 1n,).
(29)

Note that & differs from a only through the substitution
of the quantum numbers ¥ for y. The quantity
Ga’a,(q,q’,x') is just the usual geometrical coefficient,
generalized to allow any number of A’s, and is given in
Appendix A. The variables p, and p, which appear in
Eq. (25) are given by
2

2 m(nz') 2_|_ 12_+_2 m(nz’) 1 (30)
= = q = qq9 x
Y= v 1 M(N,)
and
m(n,) |* m(n,)
2_ .2 z 12 2 1ot
= —_— x", (31
P2 v M) |1

respectively. One important complication in Eq. (25) is
the dependence of the variable p; on n,, the spectator
quantum number associated with the Faddeev com-
ponent on the right-hand side of this equation. This is
the only dependence of the ¢ matrices on the a’ quantum
numbers. However, the operator ¢,(E) of Eq. (21) does
depend in a nontrivial way on the spectator quantum

T
Vip.p )LSN(NZ=0);L’S’(N'=1)(Nz'=*1)

, (25)

number n,, through the m(n,) which appears in the spec-
tator kinetic-energy operator in Gy(E). This leads, in the
case where the spectator is a A, to a shift in the energy
available to the pair by an amount proportional to the
NA mass difference (see Appendix B). Equation (25) is
the Faddeev equation which is solved for the triton bind-
ing energy E .

For the purpose of classifying three-body calculations,
it has become customary to refer to the number of three-
body “channels,” where a ‘“‘channel” corresponds to a
unique set of quantum numbers a [see Eq. (13)]. In this
work, it is useful to distinguish between two-body “chan-
nels” and two-body ‘“amplitudes.” In what follows, a
two-body ‘“‘channel” shall be determined by the unique
set of two-body quantum numbers {J,T,y}, ie.,
{J,T,L,S,N,N,}, while reference to a two-body “ampli-
tude” shall always imply a unique set of quantum num-
bers {J,T,v,y'}.

III. FORCE MODEL

In this section, the potential used in the three-body
Hamiltonian, Eq. (14), is given. To fully identify a given
partial-wave amplitude of a two-body potential in the no-
tation introduced in the preceding section, one writes
V{,’Tyl with y defined in Eq. (27). Because the use of N
spin is unfamiliar in the present context, the potential
matrix element V3", for the transition potential from an
NN state to an NA state is expressed here in terms of
(particle-label) unsymmetrized NA states, through the
use of Egs. (7) and (11):

1
=775 CPULGDSWUTHAN)IVIp'([L'(4,1)S UT}HNN))

(=D {[L(LISUTHNMIVIp'{[L'(L,1)S'JT}NN)))

=v2{p{[L(3,

1
2

)S T HAN)|VIp'{[L'(L,1)S'WT}(NN)) . (32)
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The NA states which appear on the right-hand side of
this equation are not symmetrized, and the particle or-
dering is therefore relevant. The NN states in the n-spin
notation are exactly the same as in the more conventional
notation, and so the potential amplitudes for NN-NN
transitions are just the usual ones. One should note that
the quantum numbers denoted by ¥ are just those which
are not conserved by the potential. Thus, N (as well as
N,) need not be conserved. To simplify the discussion in
the remainder of this section, all quantum numbers other

than N, will be suppressed, and the notation ¥V, " SN is in-

troduced. The superscript identifies the nucleomc state
of the “spectator” particle, i.e., the particle in the triton
which is not participating in the interaction. The reason
for this unusual notation will be made evident shortly.

The force models used in this work are based on those
defined by the Hannover group [25]:

V_i -1, NN-NN,
VNz’Nzlz V_10  NN-NA, (33)
Vo,—1» NA-NN.

The potential ¥, (both direct and exchange terms), as
well as all potentials with more than one A in either the
initial or final state, are defined to be zero. The NN-NN
potential is defined in terms of the NN-NA potential via
the equation

Vo, -1=Vp=V_1080E Vo 1 . 34)

Here V; denotes the Paris [6] NN potential, and g is the
two-body Green’s function

1
E—'ho )

golE)= (35)
This choice of the NN-NN potential ensures that the re-
sulting NN-NN ¢t matrix will agree exactly with the Paris
NN t matrix at the “renormalization” energy, E,.
Specifically, the NN-NN t matrices of the Hannover mod-
els are identical to those which result from the NN-NN
energy-dependent effective potential
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and no explicit coupling between NN and NA channels.
In Ref. [25], E, is chosen such that the relative energy in
the two-nucleon center-of-mass system is zero. With the
definition of 4, in Eq. (8), the corresponding E, is given
here by twice the nucleon rest-mass energy, 2M ch.

There are two conceivable, alternative definitions for
the NN-N A potential Vn_z]’o. The first, more convention-
al, choice is independent of the state of the spectator par-
ticle, and leads to

n
z —_—
Vi,—1=V_oi-1s

(37
~1 0o=V_10>
for both n, =+. A second alternative is to define
n Voo ™=~
Z1,0= 0, ny=+1, (38)

so that the NN-NN potential which follows from Eq. (34)
is

VP_‘V_lyogo(Er)Vo’_l, nz:.__%’

VP? n.= -+ % (39)

z

n
z —
Vi,—1=

This second alternative effectively restricts the three-body
Hilbert space to the nucleons-only states plus those
three-body states with only one A. When the spectator
particle is a A, then the pair (which must be nucleons) is
never able to make a transition to a NA state due to the
fact that Vl/ 2 =0. The first alternative, on the other
hand, allows mtermediate one-A states in the two-body
system to influence the NN-NN ¢ matrices even when the
spectator is a A, since V' 12’0 =V _, . For either alterna-
tive, the three-body channels which actually appear in
the Faddeev equation, Eq. (25), are those that contain, at
most, one A. Both alternatives will be considered in the
present work [28]. The first definition will be called the
‘“Hannover” (H) model, and the second will be referred
to as the “Hannover*” (H*) model. The H and H*
models are discussed in more detail in Sec. IV.

The transition potential ¥, _; contains contributions
from both 7 and p exchanges. In momentum and coordi-

VealE)=V_1 1TV _1,080(E)Vo - nate space, these contributions in terms of unsym-
=Vp+V_,olg8o(E)—go(E, )]V, (36) metrized NA states [see Eq. (32)] are
J
(pVyany(mm)lp’)=— (Z;ﬁ)z fﬂivnN;ZNA A;\j_‘(‘pmj:‘:z - 302-(ch_zli()zs—'—(szzp') ’ 40)
{plVa wvlp.m)lp ) == (21r1h)3 fﬂ:i";;“ A;\w:—p—p’)zq-z.”r:‘[02 - :’21](1[,_1)’)1; = ’ “n
(r|VNA,NN(w,m)]r'>=83(r—r’)1'2-T3f::j;sziA iz::;ﬁz {302 S; |m3cty —':;—r —A33Y |5 H
+%s23 T | 2Er | —A%T ——r” l 42)




1366 A. PICKLESIMER, R. A. RICE, AND R. BRANDENBURG 4
'y g3 , SonnSona A2—mpc® |2 3.6y | MC 33y | A
(r|Vyannlpsm)lr’ ) =8(r—r")7,-T, PRI Ry E— 302~S3 m3cty | —/r | =AY i
p
— L imiesT | e  — 2T | Ar | L, @)
3 #i
where
S23=302'?S3'?_02'S3 N (44)
e_x
Y(x)= X’ (45)
_ 3 3
T(x)=|[1+—+— |Y(x) . (46)
X x2

Also, in Egs. (40)-(43), o; (7;) is the spin (isospin) operator in the spin-1 representation, and 8; (T;) is the 1 to 2 spin
(isospin) transition operator. The matrix elements of the coordinate-space operators appearing in Egs. (42) and (43) can
be evaluated using standard angular momentum techniques [29] with the results [7], using Edmond’s convention [30,31]
for the reduced matrix elements,

S3

’ ’ SI
((5,55)8S,]0,-85](s555)8"S. )y =(—1)2 "3 5, l .

)
s,3l(s2l|azl|s'2)(s3l|53|]S'3) , @7

({L(5,53)8 T[S {L (53558} ) =(—=1)ST[30(2L +1)(2L"+1)(2S +1)(258'+1)]'?

J S L

X1 L s

with an expression similar to Eq. (47) for the isospin. In
Egs. (47) and (48), the reduced matrix elements are
(1]lo]|$)=Vv6 and (3||S||L)=2. Table I summarizes the
physical constants used in the evaluation of the potential,
which have been chosen for compatibility with those em-
ployed in Refs. [25] and [27]. The N and A masses used
are 938.93 and 1236 MeV, respectively.

Two different forms for the NN-NA potential are
defined in Ref. [25] and shall be labeled as H1 and H2.
Potential H1 is given by

Vo,-1= X Vo,—1la,m,) . (49)
a=1m,p
The second potential, H2, is
Vo-1=% 2 [Vo,—i1la,m,)

a=mp

+ Vo,_l(a,\/ma(ma-!-MA—MN))] .
(50)
il

k cotd, —k cotdp = —%‘zi 7 dr op NV = Voo, ()

L 2 L'
00 O

5, s5 1
1 (sylolls2)(s3IS5]1s3) (48)
S S 2

53 83

[

Of importance in assessing the physical relevance of
the Hannover one-A models is their performance in
describing the low-energy scattering parameters of the
two-body system. First, the characterization of the
Hannover H1 and H2 models as summarized in Ref. [25]
is that the 'S, scattering length and effective range differ
from those of the Paris potential by less than 0.1 fm and
by less than 0.01 fm, respectively, and that all phase
shifts are within 1° of the Paris potential values from
threshold to E,, =100 MeV. Our own investigations
differ with each of these characterizations. For the
scattering length we find that the H1, H2, and Paris
values are identical (—17.55 fm for np scattering). In
fact, the equality of the scattering lengths can be demon-
strated analytically by an effective-range-type analysis
based on the potentials ¥V, and V. Labeling quantities
which correspond to ¥V and V4 by subscripts P and e,
respectively, and writing for the 'S, scattering wave func-
tions Y=v/r, with v asymptotic to sin(kr+8)/sin(d),
one finds

=2 [ dr vp (0 V- olg0 BV =go(E)IWo, 1 Joe(r) 51
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TABLE 1. Values of the potential parameters as used in this
work.

Parameter Value

f%rNN /477' 0.08

Sfana/4m 0.35

f ,Z)NN /4m 5.20

Sona /4w 22.8
m,c? 138.0 MeV
mc? 760.0 MeV

Ac 1.2 GeV

Since the lowest-order term of the right-hand side of Eq.
(51) is O(k?), while the left-hand side can be rewritten
directly in terms of the effective-range expansions for
k cotd, and k cotdp, the equality of the two scattering
lengths is immediate. For the effective range we find
(again for the np case) the values 2.86, 2.75, and 2.76 fm
for the Paris, H1, and H2 models, respectively. That the
effective ranges of the Hannover models lie below the
Paris value also follows from Eq. (51). Our results for the
Paris potential are in good agreement with those given in
Ref. [32], while our differences with Ref. [25] regarding
the comparison of the Paris and H'1 scattering lengths
and effective ranges are in accord with similar discrepan-
cies noted in Ref. [27]. The deviation of the effective
ranges in the Hannover models from the Paris value is
substantial both relative to the accuracy with which this
parameter is known and relative to the scale set by its im-
pact on the triton, the triton binding being much more
sensitive to variation of the effective range than to varia-
tion of the scattering length [33,34]. In fact, using the
scale set by Refs. [33] and [34], the decreased effective
range of the Hannover models corresponds to an unwar-
ranted increase in the triton binding of about 200 keV.
Finally, we are in agreement with the phase-shift charac-
terization of Ref. [25] for all channels except the 'S,.
For this channel, however, we find substantially larger
phase shifts for the Hannover models than for the Paris
potential, with the phase shifts differing by about 1.5° and
3° at E,, =25 and 100 MeV, respectively. The enhanced
ISO phase shifts of the Hannover models are, of course,
consistent with their reduced 'S, effective ranges.

The differences found between the 'S, predictions of
the Paris and Hannover models, and to a lesser extent
phase-shift differences observed in the three *P channels
below E;,, =100 MeV, are substantial and must be re-
garded as defects of the Hannover one-A models. This is
especially true of the 'S, discrepancies, since this channel
plays such an important role in the triton. In fact, the es-
timated 200 keV increase in triton binding ‘that goes
along with the unwarranted reduction of the 'S, effective
range in the Hannover models represents a large fraction
of the net effect ultimately attributed to the A degrees of
freedom in these models [25].

Second, the renormalization and its associated energy,
E,, clearly play an important role in the Hannover mod-
els. In fact, the triton calculations of Ref. [25] found a
large, repulsive contribution to the triton binding energy
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from dispersive effects associated directly with the energy
dependence of V4. This can be understood using a sim-
ple, schematic examination of the second term of Eq.
(36). This term can be approximated as
—V_1o(E—E,)Vy _/( AM )%, where AM represents the
A-nucleon mass difference. For V_, , of order 50 MeV
and AM of order 300 MeV, this becomes simply
(E,—E)/36. Taking E, to be at threshold implies that
this term makes no contribution to the potential at
threshold. However, taking the average energy relevant
to triton calculations to be 20 MeV below threshold (see
Ref. [11]) then yields a repulsive contribution of about
555 keV, very close to what is found from a detailed
three-body calculation (see Ref. [25] or Sec. IV). Within
this schematic picture, the cogency of which is borne out
by actual triton calculations varying E,, it is clear that
the dispersive effect seen in the triton binding is very sen-
sitive to the value of E,.

Since the dispersive effect is large, and since it is sensi-
tive to the energy E, at which the subtraction in Eq. (36)
is made, it is crucial to the physical relevance of the
Hannover models that E, be closely determined by some
aspect of the two-body scattering data. This consistency
criterion turns out to be nicely fulfilled: although the
effective range is relatively insensitive to the choice of E,,
the scattering length varies rapidly with changing E,,
both of which are expected on the basis of the simple
schematic picture. For the H1 model, the scattering
length at E,—ZMNc2=—4.O, —1.0, 0.0, 1.0, and 4.0
MeVis —19.13, —17.93, —17.55, —17.19, and —16.18
fm. The behavior of the H2 model is similar. From this
we conclude that in the Hannover one-A models the
value of E,, and thus the size of the repulsive dispersive
effect, is strongly constrained by the necessity to leave the
1S, scattering length unchanged. Thus, the Hannover
one-A models are well motivated in those aspects related
to the 'S, scattering length, whereas energy-dependent
effects, most notably those related to the 'S, effective
range, are more problematical.

IV. RESULTS

The two-body channels which form the basis for the
calculations reported in this paper are those which con-
tain, at most, one A resonance and have total angular
momentum J <4. Channels containing a A are also re-
stricted to have total orbital angular momentum
L(NA)=4. The corresponding three-body channels are
all of those that can be built from these two-body chan-
nels and contain at most one A. Because the Hannover
potential model has no interaction between nucleon-delta
(NA) states, those NA states which decouple from the
NN sector have vanishing two-body amplitudes (¢ ma-
trices) and are thus eliminated from the list of two-body
channels and from the construction of the three-body
channels. These include all (NA) states with (J=1,
T=1, w=+) or (J=3, T=1, m=+), where 7 signifies
parity. In addition, since the tensor force allows no spin-
singlet to spin-triplet transitions, the *D, and *G, NA
states also decouple from the NN sector and are eliminat-
ed.
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Although there is no force connecting N A states in the
Hannover potential model, two-body amplitudes between
N A states need not be neglected (set to zero) in the solu-
tion of the three-body bound-state problem. Nonzero
two-body amplitudes between N A states arise from the
solution of the two-body Lippmann-Schwinger equation,
and these amplitudes can be included in the solution of
the Faddeev equation. Consistent with the above restric-
tions on the two-body channels, there are a total of 129
nonzero two-body transition amplitudes between 37 dis-
tinct two-body channels, from which 103 three-body
channels containing, at most, a single A can be construct-
ed.

This represents a formidable nuclear three-body prob-
lem, far more extensive than has previously been solved.
It is thus useful, both technically and in the interest of
sorting out the contributions of various physical com-
ponents, to subdivide the problem and build up the full
analysis from its component parts. This allows close con-
tact with the previous work and provides better insight
into the implications of the full solution, as well as prov-
ing useful as a matter of economy. The two-body chan-
nels can be divided into 22 channels with J <2 and 15
channels with J =3,4. For J <2, the 22 channels can be
further divided into two sets, the 4 channels involving an
NA state with L(NA)= 3 and the remaining 18 channels.
These 18 two-body channels have J <2, at most one A,
and do not involve an NA pair with L(NA) = 3; i.e., they
are the channels used in the original Hannover calcula-
tions. It is convenient to similarly divide the J =3 two-
body channels into two sets, the 5 channels involving an
NA state with L(NA) =3 and the remaining 10. The 10-
channel set is the natural extension of the Hannover trun-
cation scheme from J <2 to J <4.

The three-body channels are also subdivided in a
manner which allows close contact with the original
Hannover calculations. First, the 103 three-body chan-
nels are divided into two groups, 57 channels with J <2

A. PICKLESIMER, R. A. RICE, AND R. BRANDENBURG

44

and 46 channels with J=3,4. Each of these groups is
then divided into three sets of channels: one set consists
of those channels containing an N A pair with L(NA)= 3,
one set consists of all those channels which have a A
spectator and a nucleon pair in a state other than 'S,
and the third set contains the remaining channels. For
J =2 this yields 8, 16, and 33 channels, respectively. The
33-channel set is just the set originally employed in the
Hannover calculations. For J=3,4 the three sets contain
10, 16, and 20 channels, respectively. The 20-channel set
is the natural extension of the Hannover three-body trun-
cation scheme from (pair) J <2 to J < 4.

For ease of reference the two- and three-body channels
are collected in Tables II-VIII. Tables II-IV display the
two-body channels; Tables V-VIII hold the three-body
channels. Table II contains the set of 18 two-body chan-
nels of the original Hannover calculation, while Table III
contains the remaining 4 two-body channels present for
J =2. Table IV contains the J =3,4 channels, subdivided
as described above. Table V contains the 33 three-body
channels of the original Hannover calculation, while
Table VI contains the remaining 24 J <2 three-body
channels, subdivided as described above. Table VII holds
the 20 three-body channels which extend the Hannover
scheme to J =4, and Table VIII contains the remaining
26 three-body channels, also subdivided as described
above.

This division of the two- and three-body channels cor-
responds to the pattern of our investigation of the full
one-A problem. Restricting the included channels to
J =2, we first examine the problem within the context of
the original Hannover channel-truncation scheme, i.e.,
within the confines of the 18 two-body channels of Table
IT and the 33 three-body channels of Table V. Because of
its importance, this part of the problem is examined in
considerable detail. Then, the effect of the 16 A-spectator
channels of Table VI is determined by a 49-channel cal-
culation. Finally, the L(NA)=3 channels of Tables III

TABLE II. The 18 two-body channels of the original Hannover calculation.

No. J T L s N N,
1 0 1 0 0 1 -1
2 0 1 2 2 1 0
3 0 1 1 1 1 -1
4 0 1 1 1 1 0
5 1 0 0 1 1 -1
6 1 0 2 1 1 -1
7 1 0 1 0 1 -1
8 1 1 1 1 1 -1
9 1 1 1 1 1 0
10 1 1 1 2 0 0
11 2 0 2 1 1 -1
12 2 1 2 0 1 -1
13 2 1 0 2 1 0
14 2 1 2 2 1 0
15 2 1 1 1 1 -1
16 2 1 3 1 1 -1
17 2 1 1 1 1 0
18 2 1 1 2 0 0
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TABLE III. The four additional two-body channels for J <2.

No. J T L S N N,
1 1 1 3 2 0 0
2 2 1 4 2 1 0
3 2 1 3 1 1 0
4 2 1 3 2 0 0

and VI are incorporated, yielding a total of 57 three-body
channels.

Next, an analogous development is used to treat the
channels with J=3,4. Allowing all the nucleons-only
channels but only those A channels with either
L(NA)<2 or a spectator A coupled to the 'S (NN) state
yields the natural extension of the Hannover truncation
scheme to J=4. This system encompasses the
(18+10=28) two-body channels of Tables II and IV, and
the (33+20=53) three-body channels of Tables V and
VII. Subsequently, the 32 A-spectator channels of Tables
VI and VIII are included to form an 85-channel three-
body system. Finally, the L(NA) =3 channels of Tables
IIT and IV, and Tables VI and VIII, are incorporated to
complete the full set of 103 channels.

The Faddeev calculations reported in this paper fall
broadly into four distinct dynamical categories: (1) Stan-
dard nucleons-only calculations based on the Paris NN
potential, denoted “Paris”; (2) calculations which use the
Hannover H1 or H2 force models in the two-body sys-
tem, with the three-body channels being those (with at
most one A) built from the employed two-body channels.
This category is further divided into calculations of two
types, those which neglect two-body amplitudes between
N A channels, denoted HA 1 or HA2 (or generically H A),
and those which do not, denoted HB 1 or HB?2 (or generi-
cally HB); (3) a variation on the preceding category in
which the Hannover H1 or H2 two-body amplitudes are
replaced (in the Faddeev calculation) by the analogous
Paris amplitudes when the spectator particle is a A,

denoted HA1* or HA2*, or generically HA* (or HB1*,
HB2*, or generically HB*, depending on the neglect or
inclusion of two-body amplitudes between N A channels);
(4) calculations using the Hannover H1 or H2 force mod-
els to determine the two-body amplitudes, but then allow-
ing only nucleons (and hence using only NN-NN two-
body amplitudes) in the three-body system, termed
“dispersive” and denoted DISP. Dispersive results, of
course, depend on the NA channels allowed to contribute
to the determination of the NN-NN amplitudes. All re-
sults denoted DISP, or referred to as ‘“dispersive,”
without qualification, restrict L(NA)=<2. Dispersive re-
sults which incorporate L(NA)=3,4 are also important
and will be explicitly identified when needed.

The calculations of categories (1)—(3) maintain a spe-
cial consistency between the truncation schemes used in
the two- and three-body systems, in that all of the chan-
nels included in the solution of the two-body Lippmann-
Schwinger equation also appear explicitly in the three-
body channels included in the solution of the Faddeev
equation, subject only to the restriction that the three-
body channels contain at most one A. Thus, two-body
dispersive and three-body-force effects are included on
the same footing. This is important because these two
effects were found in [25] to be large but opposite in sign
and largely offsetting. An inconsistent channel-
truncation scheme prejudices the result by emphasizing
one type of effect over the other.

The calculations of category (3) take the foregoing con-
sistency a step further than those of category (2) by

TABLE IV. The 15 two-body channels for J =3,4: first the 10-channel extension of the Hannover
truncation scheme, then the 5 channels involving L(NA) > 3.

No. J T L s N N,
1 3 0 2 1 1 -1
2 3 0 4 1 1 —1
3 3 0 3 0 1 -1
4 3 1 3 1 1 ~1
5 3 1 1 2 0 0
6 4 0 4 1 1 -1
7 4 1 4 0 1 -1
8 4 1 2 2 1 0
9 4 1 3 1 1 -1
10 4 1 5 1 1 —1
1 3 1 3 1 1 0
2 3 1 3 2 0 0
3 4 1 4 2 1 0
4 4 1 3 1 1 0
5 4 1 3 2 0 0
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TABLE V. The 33 three-body channels of the original Hannover calculation.

No. J T L S N N, I j n,
1 0 1 0 0 1 -1 0 1 -1
2 0 1 0 0 1 —1 2 1 T
3 0 1 2 2 1 0 0 1 -1
4 0 1 1 1 1 -1 1 1 -1
5 0 1 1 1 1 0 1 T -1
6 1 0 0 1 1 -1 0 1 -1
7 1 0 0 1 1 -1 2 3 -1
8 1 0 2 1 1 -1 0 1 -1
9 1 0 2 1 1 -1 2 3 -1
10 1 0 1 0 1 -1 1 T -1
11 1 0 1 0 1 -1 1 3 -1
12 1 1 1 1 1 —1 1 1 -4
13 1 1 1 1 1 -1 1 3 -4
14 1 1 1 1 1 0 1 1 -1
15 1 1 1 1 1 0 1 3 -1
16 1 1 1 2 0 0 1 T -4
17 1 1 1 2 0 0 1 3 -1
18 2 0 2 1 1 -1 2 3 -1
19 2 0 2 1 1 —1 2 2 -1
20 2 1 2 0 1 -1 2 3 -1
21 2 1 2 0 1 —1 2 3 -1
22 2 1 0 2 1 0 2 2 -1
23 2 1 0 2 1 0 2 2 -4
24 2 1 2 2 1 0 2 3 -1
25 2 1 2 2 1 0 2 3 -1
26 2 1 1 1 1 -1 1 3 -1
27 2 1 1 1 1 -1 3 3 -1
28 2 1 3 1 1 -1 1 3 -4
29 2 1 3 1 1 -1 3 3 -1
30 2 1 1 1 1 0 1 3 -1
31 2 1 1 1 1 0 3 3 -1
32 2 1 1 2 0 0 1 3 -1
33 2 1 1 2 0 0 3 3 -1

effectively restricting the Hilbert space of the three-body
problem to the NNN and NNA subspaces. Because the
three-body channels may contain, at most, one A, it is
slightly inconsistent to allow coupling to NA states to
influence the two-body amplitudes (dispersive effect)
when the spectator particle is a A. This allows states con-
taining two A’s to contribute a dispersive effect to the
three-body system. Keeping the dispersive and three-
body-force effects of the channels on a strictly equal foot-
ing would thus require the introduction of three-body
channels containing two A’s. As shown shortly, the
difference in the binding energies of categories (2) and (3)
is small, so that the correction of category (3) is not an
essential one. The calculations of category (4) are, of
course, designed solely for the purpose of isolating the
dispersive effect, the qualitative features of which follow
from the effective potential of Eq. (36) and the simple

schematic picture of Sec. III.

Three-body calculations which include the two-body
amplitudes between NA channels (types HB or HB*) are
motivated by the fact that these amplitudes arise natural-
ly from the adopted force model and also with an eye to
future comparisons with results from more sophisticated
models. Planned comparisons with force models which
include coupling to AA channels and/or coupling be-
tween NA channels more cleanly isolate the added so-
phistications if the present calculations incorporate the
amplitudes between NA channels. On the other hand,
the amplitudes between NA channels produced by the
present force model are doubtless a poor approximation
to reality, in any sense. After all, the leading (Born) term
in the Lippmann-Schwinger equation for these ampli-
tudes has been completely neglected. From this point of
view, it seems preferable to discard these questionable
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TABLE VI. The remaining 24 three-body channels for J <2: first the 8 channels which involve

L(NA)=3, then the 16 additional A-spectator channels.
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TABLE VII. The 20 three-body channels which extend the Hannover truncation scheme to J <4.
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TABLE VIII. The remaining 26 three-body channels for J <4: first the 10 channels which involve
L(NA) =3, then the 16 additional A-spectator channels.

No. J T L S N N, l j n,
1 3 1 3 1 1 0 3 3 -1
2 3 1 3 1 1 0 3 1 -1
3 3 1 3 2 0 0 3 3 -1
4 3 1 3 2 0 0 3 7 -4
5 4 1 4 2 1 0 4 7 -1
6 4 1 4 2 1 0 4 3 -1
7 4 1 3 1 1 0 3 z -1
8 4 1 3 1 1 0 5 5 -3
9 4 1 3 2 0 0 3 7 -1
10 4 1 3 2 0 0 5 2 -1
1 3 1 3 1 1 -1 1 3 1
2 3 1 3 1 1 -1 3 3 1
3 3 1 3 1 1 -1 3 1 1
4 3 1 3 1 1 -1 5 : 1
5 4 1 4 0 1 -1 2 7 1
6 4 1 4 0 1 -1 4 z 1
7 4 1 4 0 1 -1 4 3 1
8 4 1 4 0 1 -1 6 3 1
9 4 1 3 1 1 -1 3 7 1
10 4 1 3 1 1 -1 5 7 1
11 4 1 3 1 1 -1 3 3 1
12 4 1 3 1 1 -1 5 3 1
13 4 1 5 1 1 -1 3 7 1
14 4 1 5 1 1 -1 5 7 1
15 4 1 5 1 1 -1 3 2 1
16 4 1 5 1 1 -1 5 2 1

amplitudes (as in calculations HA or HA*) and restrict
the retained amplitudes to those that may more nearly
reflect the actual physics present in the more realistic
models. Since each type of calculation offers advantages,
both have been included in this investigation. As seen
shortly, it turns out that the two-body amplitudes con-
necting N A channels yield a small but significant increase
in the triton binding energy.

Tables IX and X display results from 18-channel (18-
ch) and 33-ch calculations in comparison with the corre-
sponding values from Ref. [25]. Table IX holds binding-
energy results, while Table X shows results for various
components of the corresponding triton wave functions.

Several notable results are evident from Tables IX and
X. The first one is our independent confirmation of the
essential findings of the original Hannover J <2 calcula-

tions [25]. Focusing on the triton binding, our values for
the 18-ch DISP case are in substantial accord with those
of Ref. [25], at least on the scale set by the size of the
DISP effect itself. Similarly, our 33-ch HB* results are
close to the 33-ch results of Ref. [25]. The differences be-
tween our results and those of Ref. [25] are clearly incon-
sequential relative to assessing the basic physical implica-
tions of the one-A model, so that in this important regard
our calculations confirm the earlier results of Ref. [25].
However, our differences with Ref. [25] are both numeri-
cally significant and non-negligible. We have gone to
great lengths to ensure the reliability of our results; our
efforts in this regard are summarized in Appendix C.
Our numerical findings for the two-body scattering pre-
dictions of the Hannover one-A models are supported by
the analytical effective range results of Sec. III, by their

TABLE IX. Selected results for the triton binding energy (MeV). Results from Ref. [25] are shown
parenthetically. The 18-channel and 33-channel results are for J <2, m==.

Force DISP (18-ch) HA (33-ch) HB (33-ch) HA* (33-ch) HB* (33-ch)
H1 6.83 (6.80) 7.70 7.77 7.74 7.82 (7.77)
H2 6.87 (6.80) 7.68 7.74 7.72 7.78 (7.72)
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TABLE X. Wave-function probabilities for the Faddeev solutions corresponding to the calculations
of Table IX. P, denotes the A probability. Pg, Pp, and P, denote S-, P-, and D-state probabilities, re-
spectively, in the nucleons-only sector. Results from Ref. [25] are shown parenthetically for compar-

ison.

Calculation P, (%) P (%) Py (%) Py (%)
DISP (H1) 91.68 0.06 8.26
DISP (H2) 91.67 0.06 8.27
HA1 (33-ch) 2.21 88.95 0.10 8.74
HA?2 (33-ch) 2.00 89.22 0.09 8.68
HA1* (33-ch) 2.23 88.91 0.10 8.76
HA2* (33-ch) 2.02 89.19 0.10 8.70
HB1 (33-ch) 2.34 88.81 0.10 8.75
HB2 (33-ch) 2.11 89.10 0.10 8.70
HB1* (33-ch) 2.37 (2.31) 88.76 (88.87) 0.10 (0.09) 8.77 (8.73)
HB2* (33-ch) 2.14 (2.33) 89.06 (88.92) 0.10 (0.09) 8.71 (8.66)

own internal consistency, and by the similar findings of
Ref. [27], whereas the corresponding characterizations of
Ref. [25] are at variance with these (see Sec. III). This is
important because our disagreements with the three-body
results of Ref. [25] are typified by the differences between
the 18-ch DISP results, and these differences can only be
due to disparity at the two-body level (because our three-
body calculations for the 18-ch binding using the Paris
potential agree with those of Ref. [25]). For these reasons
we are confident of the accuracy and reliability of our
numerics; this issue is especially important to us because
of the extensions which are to be built on the present
work. However, we emphasize that, non-negligible
differences notwithstanding, our three-body results
confirm the essential findings of the original Hannover
three-body calculations.

Also evident from Tables IX and X is the fact that the
difference between HA (HB) and HA* (HB*) results is
very minor (40-50 keV for the binding energies), as
might be expected since it depends for its existence on
both a relatively small two-body dispersive effect and a
small A-spectator component in the three-body wave
function. This is important in that it indicates that our
one-A results are not so fragile in regard to the neglect of
two-A states as to be uninterpretable and because it en-
ables us to restrict ourselves entirely to the more con-
sistent HA* and HB* calculations in what follows.
Similarly, comparison of the results for the H1 and H2
force models in Tables IX and X indicates that the two
models are, for our purposes, equivalent. Thus, we need
only consider one of the models in our further investiga-
tions. This is also evident in the results displayed in
Table XI, which also shows some results from one-A cal-

culations more restricted in nature than the full 33-
channel one-A calculations. From this point on we con-
sider exclusively the H1 force model, this choice being
made because it is the H1 model which was previously
extended to investigate two-A effects in the triton [26].

Finally, the large increase in binding energy evident in
Table XI as the number of channels is increased, especial-
ly the increase in E4 in going from J =1 (17-ch) to J =2
(33-ch), suggests the need to examine contributions from
J 23, to find whether truncation at 33 channels is war-
ranted or not.

The central results of our investigations are collected
in Table XII. The main result is the 103-ch HB1* value
for the triton binding energy, E;=7.83 MeV. Compar-
ing this figure with the J <4 Paris prediction, E;=7.46
MeV, gives the full one-A contribution to E; as 370 keV.
This number includes all one-A contributions with
L(NA)=<4, ie., all the two-body channels of Tables
II-IV and all the three-body channels of Tables V-VIII.
Dispersive calculations which include the effect of the
L(NA)=3,4 channels (not shown in Table XII) yield
E;=6.86, 6.79, 6.92, and 6.63 MeV for the 34-, 18-, 9-,
and 10-channel analogs of the DISP results of Table XII;
comparing these figures to the corresponding values
based on the Paris potential identifies the net repulsive
effect as 600, 590, 490, and 470 keV. Thus, including the
compensation of the 600 keV dispersive binding-energy
loss, the net one-A three-body-force effect in the 103-ch
result is about 970 keV.

One striking feature of Table XII is the near equality of
the full 103-ch HB1* value for the triton binding,
E;=7.83 MeV, and the corresponding 33-ch HB1*

TABLE XI. Selected results for the triton binding energy. The 18-channel and 33-channel results
are for J <2, m==. The 17-channel and 7-channel results are for J <1, and for 7=+ and 7=+, re-

spectively.

Force (18-ch) (7-ch) (17-ch) (33-ch)

model DISP HA* HB* HA* HB* HA* HB*
H1 6.83 6.81 6.81 7.13 7.16 7.74 7.82
H2 6.87 6.87 6.87 7.11 7.14 7.72 7.78
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TABLE XII. Binding-energy results for the HB1* model. The last two columns show the accumula-
tive effects of adding consecutively the extra A-spectator channels and the NA channels with 2 <L <4,
respectively, to the Hannover truncation scheme (see text). The Paris and dispersive (DISP) contribu-
tions are given for completeness. The number of channels is indicated in parentheses.

Channels Paris DISP HB1* ASPEC 2<L(NA)=4
J=4, == 7.46 (34) 6.90 (34) 7.96 (53) 7.89 (85) 7.83 (103)
J=2, =% 7.38 (18) 6.83 (18) 7.82 (33) 7.75 (49) 7.69 (57)
J=2, m=+ 7.41 (9) 6.93 (9) 7.01 (15) 7.02 (19) 7.03 (21)
J=1, r==% 7.10 (10) 6.64 (10) 7.16 (17) 7.06 (21) 7.02 (23)
J=1, 7=+ 7.30 (5) 6.85 (5) 6.81 (7)

value, E;=7.82 MeV. The top two rows of Table XII
indicate why the 33-ch HB1* result is in such good ac-
cord with the full 103-ch result. Starting with the second
row of Table XII, the J <2 corrections to the HB1* 33-
ch binding energy yield a loss of about 130 keV of bind-
ing, of which about half comes from the additional A-
spectator channels and half from the inclusion of
L(NA)=3 channels. Comparison of the dispersive re-
sults which include the L(NA)=3,4 channels with the
corresponding DISP results in Table XII indicates that
most of the L(NA) =3 contribution actually comes from
the associated dispersive effect. Turning to the J =3,4
corrections, the J <4 HB1* 53-ch generalization of the
Hannover truncation scheme adds about 140 keV to the
HB1* 33-ch binding; relative to the 80-keV increase in
the Paris nucleons-only binding (7.46 MeV) this corre-
sponds to an additional one-A contribution of about 60
keV. In fact, a 49-ch calculation (not shown) in which
just the J =3,4 nucleons-only channels are added to the
standard HB1* 33-ch calculation yields E;=7.91 MeV,
which differs from the 53-ch result, E;=7.96 MeV, by a
50-keV effect attributable to the additional one-A chan-
nels in the 53-ch calculation. The J =3,4 nucleons-only
channels’ contribution of 90 keV in this 49-ch calculation
differs from that of the purely Paris calculation by only
about 10 keV. Because the additional A-spectator and
2<L(NA)=4 channels with J =3,4 make essentially no
contribution [the A-spectator and L(NA)=3 corrections
for J =4 are virtually identical to those of J <2], the
140-keV increase in binding represents the net effect of
the J =3,4 channels. The near cancellation of the 140-
keV J=3,4 enhancement against the 130-keV loss in
binding from the J <2 corrections is responsible for the
near equality of the 103-ch and 33-ch HB1* results for
E;.

However, in terms of a net one-A effect, the 33-ch
HB1* result implies a net increase in binding of 440 keV,
which exceeds the 103-ch figure by about 70 keV. This
difference is due to the fact that, while the binding ener-
gies of the two cases are nearly identical, in the 103-ch
case the nucleons-only contribution is about 80 keV
larger. Thus, in comparison, the 103-ch HB 1* result cor-
responds to a net one-A effect of 370 keV, a dispersive
effect of 600 keV, and a total three-body-force effect of
970 keV, while the corresponding numbers for the 33-ch
HB1* result are 440, 550, and 990 keV, respectively.
These 33-ch figures are close to the original Hannover

33-ch results which are, from Table IX, 390, 580, and 970
keV, respectively. Coincidentally, and partly due to the
discrepancy between our 33-ch HB 1* results and those of
Ref. [25], the original Hannover 33-ch results are also
quite close to our full 103-ch HB1* results. The compli-
cated set of cancellations just sketched, which is responsi-
ble for the near equality of our HB1* 33-ch and HB1*
103-ch results for the net one-A effect, the appropriate
dispersive effect, and the total three-body-force effect,
also underlies this coincidence.

Also evident from Table XII is that the dispersive
two-body effect grows only slowly from its 5-ch (J <1,
7= ) value of 450 keV to its full 34-ch (J <4, m7==)
value of 560 keV. The 450-keV effect is entirely due to
coupling to the SD,(NA) channel, so that this channel
contributes the bulk of the dispersive effect. From Table
XII, the next largest contribution to the dispersive effect
is the 60 keV from the (J =2, 7= —) channels. The J <4
result is, in fact, virtually the same as the J <2 result, and
this remains true when the L(NA)=3,4 channels are in-
cluded. From this it is clear that the one-A dispersive
effect is already well represented for J <2. The fact that
the J=3,4 dispersive and net contributions of the
L(NA)=3,4 channels are both negligible implies that the
insignificance of these channels is not just due to a cancel-
lation of dispersive and three-body-force contributions.
Thus, it is clear that the L(NA)=3,4 and A-spectator
channels with J =3,4 are entirely negligible so that the
L(NA)=3,4 and A-spectator channels are also well
represented by J=2. Table XII then shows that the
main contribution of the L(NA)=3,4 channels originates
with the odd-parity sector (see also Table VI in this
respect). In fact, the net contribution of the L(NA)=3,4
and A-spectator channels is already largely in place for
J=1. Finally, the full contribution of the J=3,4
nucleons-only channels is given (to within about 10 keV)
by the difference between the Paris J <4 and J <2 re-
sults, i.e., about 80 keV, while the J =3,4 correction due
to L(NA) <2 is about 50 keV. The net J =3,4 correction
of 130—140 keV can thus be included to good approxima-
tion by simply adding this correction (by hand) to J <2
calculations. This is made evident by the top two rows of
Table XII and the special 49-ch (E=7.91 MeV) calcula-
tion mentioned earlier, which together show that the
J =3,4 contribution is insensitive to variations in the
J =2 channels included.

The next paper in this series presents a nonperturbative
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investigation of the effects of AA degrees of freedom in
the trinuclei, again using the Hannover force model (but
now with AA’s included). In the AA case, the number of
two- and three-body channels proliferates too rapidly to
allow complete calculations beyond J =1. It is therefore
necessary to start from ‘““core” one-A results and investi-
gate AA effects using an aufbau method which adds and
examines the contributions of and correlations between
subsets of channels, discarding those which are inessen-
tial. The foregoing one-A results provide a sound basis
upon which to build such AA investigations. Clearly the
neglect of J =3,4 channels is likely to be a good approxi-
mation, especially given the leading correction to it de-
scribed above. The neglect of J =<2 channels with
L(NA)=3 at least in the initial stages of the AA investi-
gations also seems warranted and, to a lesser extent, the
neglect of A-spectator channels with J =2 also appears
useful. This forms the basis for a realistic investigation of
AA effects in the trinuclei.

V. SUMMARY

The main result of this paper is the 103-ch result for
the triton binding energy using the Hannover one-A (H1)
force model: E;=7.83 MeV. This result includes all
two- and three-body channels with J <4, subject only to
the restrictions that the channels contain at most one A
and have L(NA)=<4. Compared to the purely Paris
nucleons-only figure, E;+=7.46 MeV, this corresponds to
a net one-A contribution to the binding energy of about
370 keV. The J =4 one-A dispersive effect is found to be
600 keV, implying a full one-A three-body-force effect of
970 keV.

This 370-keV result is dissected into contributions
from channels of various types. The contribution from
channels with J =3,4, which have either a A spectator or
L(NA)=3, is found to be negligible. The remaining
J =3,4 channels contribute about 140 keV, of which
about 90 keV derives from inclusion of the nucleons-only
channels and about 50 keV from the L(NA) <2 channels.
This 140-keV figure is found to be insensitive to varia-
tions in the J =2 channels included in the three-body cal-
culations, so that it can be simply added by hand as a
correction to J =2 calculations. Similarly, the J =<2
channels with either L(NA)=3 or a A spectator coupled
to an NN state other than 'S, are found to reduce the
binding by about 130 keV, about half of which comes
from the L(NA)=3 channels and half from the A-
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spectator channels. The near cancellation of the 140- and
—130-keV corrections implies the essential, though basi-
cally accidental, correctness of J =2 binding-energy cal-
culations which allow only those one-A channels with
L(NA)<2 or with a A spectator coupled to the 'Sy(NN)
state. Thus, our calculations, which largely confirm the
33-ch results of the original Hannover one-A calcula-
tions, also validate (albeit only in this specific case) the
33-ch truncation scheme used to obtain them. Our re-
sults resolve any uncertainty concerning one-A contribu-
tions to the triton binding in the Hannover force model.
However, the 'S, effective range of the Hannover one-A
model is found to be about 0.1 fm too low and this defect
could be responsible for about half of the observed 370-
keV increase in the triton binding. Finally, several ancil-
lary issues are also addressed in Sec. IV.

The result E;-=7.83 MeV is reasonably close to repro-
ducing the actual value E;=8.48 MeV. Because the
Paris potential is fitted to proton-proton 'S, scattering
parameters, a charge-dependent correction of about 0.3
MeV must be added to the value E;=7.83 MeV, yielding
E,=8.13 MeV, which is not too far removed from the
actual value. Unfortunately, AA effects investigated per-
turbatively in the original Hannover work reduce the
binding by more than 1 MeV and spoil this picture.

Thus, the sequel to this paper investigates trinuclear
AA effects nonperturbatively. With the inclusion of AA
channels, the number of two- and three-body channels
proliferates too rapidly to permit complete calculations
beyond J =1. Thus, AA effects must be sorted out using
a variety of incomplete calculations to determine the im-
portant channels. The results of the present paper pro-
vide a sound basis on which to build such an analysis.
Clearly, the neglect of J =3,4 channels is called for and
can be partly compensated for by hand. The neglect of
J =2 channels with L(NA)=3 also seems warranted, at
least initially, and to a lesser extent the neglect of A-
spectator channels with J =2 also appears useful. This
reduces the number of three-body channels with fewer
than two A’s and provides a manageable point of depar-
ture for a nonperturbative study of AA effects in the
trinuclei.
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APPENDIX A: GEOMETRICAL COEFFICIENT

The matrix element

(pgal|(P,+P,)|p'q'a’)

(A1)

is needed in the derivation of the Faddeev integral equations. While this work is primarily done using J-j coupling, the
calculation of this matrix element is more easily done in the .£-& coupling scheme, using the basis vectors

lpgB) =|pg; ({(L).L,[Ss(n,) 18} F&F,;[ Tt(n,)]TT,;N.

an,))

(A2)

The transformation from one scheme to the other is simply that for recoupling four angular momentum vectors [29],

which, in terms of the 9-j symbol, is
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L !l L
lpga)=T] S LSS s(n,) & lpgB) , (A3)
Sl A T
where X =V'2x + 1. Since the basis states are restricted such that
E,lpgB)=—1pgB) , (A4)
(pgBIP,Ip'q'B')={pqBIP.Ip'q'B') , (A5)

it is only necessary to calculate the matrix element of one of the permutation operators.
The method used to calculate the geometrical coefficient in this work is an extension of that of Gléckle [35]. The
final form for the matrix element is

(pgBlI(P,+P.)Ip'q'B') :54,4'5(;2,4;57, T’STZ,ﬂSL’L'B&v@’B(NﬁnZ LN +n)

8(p—p,(q,q9',x)) 8(p'—p,lq,q',x))
x [ *lax L P Gpplang'sx) (A6)
-1 p p
where
( , )_ m(nz,) + , A7
pi\q,q9,x)= M(Nz)q q ’ ( )
(g,9",x)=|q+ mirs) (A8)
pP2\q9,q9 ,x q M(Nz,)q )
x=949 (A9)
q9
and
Gﬂ,ﬂ'(q’q"x)zn— 2 <%%nzﬁle,Nzl><%%nz,ﬁz|NNz>G&(B7B’)G‘T(ﬁ?B,)G[(Byﬁ’;q)q’,x) . (Alo)

z

The Kronecker &’s in Eq. (A6) just reflect the fact that permutations can change neither the values of the total quantum
numbers nor the numbers of nucleons and A’s present. Unless the quantum number 7, simultaneously satisfies

—_— —_— ’
nz_Nz n,

=N,—n (Al1)

z

both of the Clebsch-Gordan coefficients in Eq. (A10) vanish. The spin piece of the geometrical coefficient has the struc-
ture

s(n,) s(m,) S’

s(n,) & S|° (A12)

Gs(B,B)=85"

and there is a strictly analogous equation for the isospin piece. The triton is assumed to have T=1. The orbital piece
is given by

Py Py AN AN, /l ’ /
LZL :21[: fran 4w (20 172 2L’ 172 m(nz) m(nz)
G_L(37B';q)q’7x)=_—-——7‘_ 2 2 ql nq " [ ’ ] B
PIPY  o<r<L o<i<r 20 20 M(N)) M(N,)
n=L—¢ M=L'—C
. SOV P v X0 B P B W B LA S W B P A
X2 (KPP Z (Ao 0 0lo 0 0]jo 0 0floo o
n ¢ L' ||ln € L||n k X\

In Eqgs. (A12) and (A13), the symbols in curly brackets are 6-j symbols, while the symbols with three columns enclosed
by parentheses are 3-j symbols [29]. The function P, (x) is the usual Legendre polynomial, and the symbols with a sin-
gle column enclosed by parentheses are binomial coefficients.

The geometrical coefficient which appears in Eq. (25) is then given by
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L 1 cL||L ' L
Gowlq,q,x)=T777" 3L SIS s(n,) &S s(n)) §|Ggplg,q'x). (A14)
LS

J j  F||

v

When written out fully using the equations above, the geometrical coefficient G, ,(g,g’,x) is fully symmetric under the

interchange of primed and unprimed quantities.

APPENDIX B: TWO-BODY t MATRICES

The operator ¢(E) which satisfies Eq. (21), although similar in form to a two-body ¢ matrix, is actually a three-body
operator due to the presence of the three-body Green’s-function operator, G,(E), of Eq. (20). The matrix elements of
the potential in the three-body basis of Eq. (13) can be written as

{pgalVip'q'a’s=58; 8,18, ,0,,87.18548, ybr.78¢ 7 g2

Ba—g) yir (pp1), (B1)

where y is defined in Eq. (27). The first three Kronecker 8’s in Eq. (B1) simply reflect the fact that the two-body in-
teraction cannot change the spectator quantum numbers; it is also assumed that the potential is charge independent.

Defining, similarly, the function
t‘?l’,TV'(P’PI;E’qZ’nz) ’
Eq. (21) can be reduced to

T

This is simply the two-body ¢ matrix evaluated at the
shifted energy

h2q2

P — 2—
E,=E-—m(n,)c 2m(n,)

) (B4)

where the energy E is defined in Eq. (23). The energy E,
is just the energy available to the pair as measured in the
three-body center-of-mass reference frame and the solu-
tion of Eq. (B3) is the two-body ¢ matrix in that frame.
Unlike its analog in the nucleons-only case, however, this
¢t matrix is not equivalent to the ¢ matrix in the pair rest
frame evaluated at the shifted energy E, —K_ , where
K ... is the energy associated with the motion of the pair
center of mass. The #°q%/2M(N,’) term in Eq. (B3) pre-
cludes this connection due to the variability of M(N,’).
The root reason for this is the breaking of Galilean in-
variance due to the nonconservation of mass in a nonrela-
tivistic framework. Equations (B3) and (B4) deal exactly
with the NA mass difference within the context of the
model and they represent the closest connection to the ¢
matrix in the pair rest frame.

The practical significance of non-Galilean effects can
be gauged by comparing model-exact results based on Eq.
(B3) to Galilean invariant results based on a modified ver-
sion of Eq. (B3) in which M(N,') in the term
#2q*/2M(N),’') is replaced by 2My, independent of N,’.
Specifically, for the 18-channel H2 dispersive case and
the 33-channel HB1* case non-Galilean effects increase
the triton binding by about 14 and 18 keV, respectively.

t{/,Y'(p’p’;E’qz’nz)':Vﬁ“}"(p’p,)-l_ 2 fowdp"p”2V-}1,?;”(p,pN)
Y

(B2)

t{f,y,(p”,p';E,qz,nz)
E,—M(N]" )c*—[#q*/2M(N,")]—[#*p"" 2 /2u(N.)]

(B3)

APPENDIX C: NUMERICAL CHECKS

Any extensive computational undertaking such as the
one reported in this paper is fraught with the possibility
for logical or numerical error. Such errors are not un-
known in the previous history of the three-body problem
and must be especially carefully guarded against in the
present series because its scope represents so substantial
an extension beyond well-established computational
ground. Thus, this work would be remiss if it did not
provide the reader with some indication of the means
used to ensure its reliability. Since it is impractical to
provide complete details, this appendix summarizes the
checking and error-avoidance methods used to ensure the
correctness of our results.

The first level of checking involves the basic design of
the computational scheme and the direct checks made by
the authors. The computational stream of the calcula-
tions uses two computer codes for the two-body problem
and two codes for the three-body problem. The two-body
codes are a potential code which produces the partial-
wave-decomposed momentum-space potential and a #-
matrix code which produces the corresponding two-body
amplitudes at the parametric energies required for the tri-
ton calculation. The three-body codes are setup codes
which tabulate needed geometrical factors, etc., and the
Faddeev code itself. Every part of the coding was
checked and cross checked for logic and implementation
at least twice by at least two of the authors.

There is one feature of the basic design which is impor-
tant because it severely restricts the possibilities for error
in the programs, both in their logic and in their usage.
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Much of the coding implements coupled-channel calcula-
tions which need not depend explicitly on the specific na-
ture of individual channels. Thus, it was largely possible
to design the codes so that they treat the channels generi-
cally, without the need for special branching depending
on the A content of the channels (the main counterexam-
ple being the construction of the Hannover potential,
with its a priori distinction between NN and NA chan-
nels). Since channels containing different numbers of A’s
are treated largely in the same way, with the introduction
and use of the “n-spin” quantum number it is only neces-
sary to specify and keep track of the quantum numbers of
the two-body amplitudes and the three-body channels.
This information is stored in two character arrays which
link together and completely control all four of the main
computer codes. The four codes accept and process these
arrays independently of the A content of individual chan-
nels. Specification of these two arrays is all that is re-
quired to define and vary the physical circumstance of in-
terest. Thus, most of the computational machinery is ac-
tually “blind” to the distinction between nucleons and
A’s, and is fully validated by checks of the nucleons-only
problem.

At the second level, many numerical evaluations of
representative values of quantities or of limiting cases
were used to check specific sections of the computer
codes. Virtually every part of the coding which could not
be checked either by such devices or by direct compar-
ison with well-known results was validated by performing
tasks in two independent ways. Often this involved re-
placing sets of subroutines with those relevant to the al-
ternative approach. The most extensive example of such
checking by duplication was our construction of the
Hannover-model partial-wave potentials using indepen-
dent r-space and k-space approaches.

On the third level were comprehensive checks of the
entire computational system utilizing known results from
the two- and three-body problems. In the nucleons-only
case, the full stream was checked by verifying consistency
with known two- and three-body results for the Paris and
Bonn potentials. Given this check, it was then possible to
fully check the dispersive NA case. Having checked the
construction of the potential by duplication and the
nucleons-only three-body calculation using known Paris
and Bonn results, all that was required was to check the
implementation of the Hannover renormalization scheme
and the handling of NA channels by the #-matrix code.
These were checked in two ways. First, as noted in the
text, the Hannover potential model is designed so that
the NN-sector ¢ matrices precisely reproduce the Paris ¢
matrices at the renormalization energy E,. This property
was confirmed for our calculations (for several different
values of E,), implying consistency between the f-matrix
code and the implementation of the Hannover-model re-
normalization scheme by the potential code. Second, in
the NA dispersive case, the same triton binding, and, in
fact, the same NN-sector ¢ matrices, must result from the
direct calculation and from an alternative calculation
which uses no explicit NN-NA coupling but uses, in the
NN sector, the effective potential of Eq. (36). This was
verified for our calculations, validating the handling of
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TABLE XIII. Numerical stability of the binding energy for
the HA2 model. The first two columns show the number of
quadrature points and the cutoff for the ¢’ integration, respec-
tively. The third column contains the number of quadrature
points for the x’ integration, and the last column shows the
binding-energy result.

N, C, (fm™1) N, Er (MeV)
10 2.8 , 10 6.762
10 3.0 10 6.792
10 32 10 6.818
12 32 10 6.821
12 3.4 10 6.842
12 3.6 10 6.858
12 4.0 10 6.874
12 40 12 6.874
14 5.5 10 6.874
16 5.5 10 6.874
24 6.0 10 6.876

NA channels by the t-matrix code (note that the direct
calculation involves NA channels in the z-matrix code,
whereas the calculation using V4 does not).

This concludes the summary of our checking methods.
Although the three-body codes are largely blind to the A
content of the channels, and are therefore largely checked
by the nucleons-only checks, it would be preferable to
have a definitive test using a previous result. The one-A
results reported in the text are very close to the results of
Ref. [25], and the differences are probably irrelevant from
a physical point of view. However, the differences are
numerically significant and are not at the level of compu-
tational noise. The fact that our results differ most from
those of Ref. [25] for the dispersive case unfortunately
precludes a clear check of the handling of one-A channels
by our three-body codes.

Finally, the numerical discretizations used to approxi-
mate the continuous variables present in the calculations
(p, q', and x') were tested for stability. The discretization
of the variable p is important only in the solution of the
two-body Lippmann-Schwinger equation, and presents no
difficulties. The solution of Eq. (25) uses the standard
iteration technique first applied to this problem by
Malfliet and Tjon [36,37]. The infinite integral over the
spectator momentum ¢’ is approximated by a finite in-
tegral from zero to a cutoff momentum C,. This and the
x' integral are then approximated by a Gauss-Legendre
quadrature. The numerical accuracy of these approxima-
tions was tested by solving Eq. (25) for increasing values
of the cutoff momentum and the number of quadrature
points. The stability of the binding energy to the numeri-
cal approximations is summarized in Table XIII for the
specific case of the Hannover H2 dispersive calculation.
The values N,=14, C,=5.5 fm~!, and N, =10 have
been taken as the standard choices throughout this work.
The quoted binding-energy results, aside from Table
X111, have been rounded off to the nearest 10 keV, and it
is felt that these results are numerically stable to within
+10 keV.
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