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We present a systematic representation of the low-energy pion-trinucleon scattering problem derived
from a reduction of the exact four-body formulation which is due to Haberzettl and Sandhas. This
method removes many of the di%culties usually associated with the assignment of the parametric energy
of pion-nucleon scattering in the pion-trinucleon center of mass which occur in the traditional optical
potential approach based on multiple-scattering theories. In the present formulation both the pion-
nucleon and nucleon-nucleon interactions provide the dynamical input and the quasideuteron mecha-
nism appears naturally as a low-order approximation in our approach.

I. INTRODUCTION

The traditional method for solving the pion-nucleus
scattering problem involves the construction of an optical
potential obtained from the Watson scattering series [1]
or, more usually, from the Kerman-McManus-Thaler
(KMT) [2] variation of the Watson formalism. Some of
the difticulties connected with the practical implementa-
tion of this approach are those associated with the
identification of the pion-nucleon center-of-mass energy
in the pion-nucleus scattering [3] and ambiguities con-
nected to the inclusion of pion absorption terms in the
optical potential [4]. For the case of pion scattering from
nuclei with mass number A )4 the optical potential
method is probably the most practical approach at this
time. However, for A =2 it has been demonstrated [5]
that the exact three-body methods of Faddeev [6] and
Lovelace [7] provide a more rigorous and systematic ap-
proach to pion-deuteron scattering to the extent that sa-
tisfactory agreement with the experimental data is ob-
tained with fewer assumptions and arbitrary parameters
than in the case of the method employing optical poten-
tials extracted from the KMT formalism [8].

In the usual application of the optical potential one
constructs an effective interaction in the form

co„=~z+m —m .2 2
(1.2)

In Eq. (1.2) m is the pion mass, M„and Ez are the nu-
clear mass and binding energy, respectively, ~ is the on-
shell pion momentum in the pion-nucleus center of mass,
and co„ is the pion kinetic energy in the same system. In

&k'iv(z)~k&= y &% „k'~t „(z)~e„k&,
i=1

where 4„ is the nuclear ground-state wave function and
t &(z) is a free pion-nucleon t matrix defined in the A nu-
cleon plus single pion ( A +1)-body space, k and k' are
the of-shell center-of-mass pion momenta, while z is the
on-shell (A +1)-body energy parameter defined by the
equation

Kz=co +
2m A

what follows amplitudes and propagators are to be
thought of as depending parametrically on z (with A =3)
except where otherwise specified. Throughout this paper
we adopt the usual convention of setting c =Pi= 1.

The optical potential, as represented by Eq. (1.1), is in-
serted in a Lippmann-Schwinger equation for the pion-
nucleus t matrix which is then solved numerically. For
many-body nuclei the wave function 0A is frequently ob-
tained from the shell model, although for the case A =3
Van Geffen et al. [9] have obtained good results using a
trinucleon wave function generated from a solution of the
Faddeev equations using a local potential to represent the
N-N interaction.

The representation of the multiple-scattering optical
potential given by Eq. (1.1) is the lowest-order approxi-
mation to the KMT theory in which the full optical po-
tential is the solution of the integral equation [4],

V(z) = V"'(z)+ V'"(z)G„(z)QV(z),

G„(z)=(z H„—K) '—, Q= 1 P, —(1.3)

where HA and K are the full nuclear Hamiltonian and
kinetic-energy operators, respectively, and P is the nu-
clear ground-state projection operator. The driving term
V"' for (1.3) is given by the pion-bound-nucleon t matrix

g

V"'(z) =( A —1)r;(z),

r;(z) =u+uGz(z)Qr;(z),
(1.4)

where u is the mN interaction potential.
The NN correlations are contained in Gz and Q so that

the solution of Eq. (1.4) represents an enormous prob-
lem, in general. However, ~; can be related to the free
~N t matrix t; if we adopt the three-body model of Ref.
[10] in which the pion scatters from nucleon i which is
bound to the (A —1) core by the potential utv. In this
model v.; can be obtained from the solution of the equa-
tion

V;=T;+Ttt

7; =G3r;G3, T; =G3ttG3,
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where G3 is the three-body (pion, nucleon, core) Green's
function

G3(z)=(z H—„,—X;—K )

and t& is the solution to the NX Lippmann-Schwinger
equation,

t~=v~+U~G3t~ .

The set of Eqs. (1.5) and (1.6) represents a procedure
for the systematic solution of the m 3 scattering problem
in which the XN correlations are accounted for via tz. In
what follows we will present an alternative procedure
which is most useful for application to elastic scattering
of pions from few-nucleon systems, but which in principle
can be generalized to describe arbitrary pion-A elastic
and charge-exchange scattering. This method uses the
approach of Haberzettl and Sandhas [11] for writing an
effective two-body Lippmann-Sch winger equation for
bound-state scattering. In spirit, the present approach is
the extension to pion-trinucleon scattering of the Fad-
deev methods of Afnan and Thomas (and others) [12],for
the description of pion-deuteron scattering.

We propose to apply the formalism to be described in
this paper to a numerical calculation of m-trinucleon elas-
tic scattering and with this end in view the nucleon-
nucleon interaction will be assumed to be nonzero in or-
bital angular momentum L =0 states only and the associ-
ated t matrix will be taken to be separable. The pion-
nucleon t matrix is assumed to be separable also and for
present purposes will be restricted to L =0 and 1 waves
alone. These partial-wave limitations can easily be re-
moved and are assumed here mainly for simplicity be-
cause the number of coupled integral equations obtained
under these restrictions leads to a tractable but realistic
numerical problem at low energy.

In Sec. II of this paper we wi11 summarize the
Haberzettl-Sandhas formalism as applied to the pion-
trinucleon scattering problem. Section III contains most
of our results and is primarily a reduction of the formal-
ism to a set of equations which can be solved numerically
to obtain the pion-trinucleon scattering observables. Sec-
tion IV contains a comparison of our approach with the
traditional optical-model approach and a discussion of
possible generalizations and extensions of the method.

~l p)= +5p T (E )G (E )~1 ),
y

(2.3)

with E being the three-body bound-state energy for sys-
tern 0..

For our purposes we find it convenient to write the
two-body t matrix in the separable form

T (z)=~g )t (z)&g I
. (2.4)

Multiplying Eq. (2.1) from the left-hand side by
( I pi GoTp and from the right-hand side by T Go~ I ~)
and using Eq. (2.4) we can write Eq. (2.1) in the compact
form

Xg=5 5p t '+ g Tp + +5,TprtyXrt'
a

In Eq. (2.1) the superscript greek letters denote the
four possible (3+ 1) partitions of the four-body system, la-
tin letters denote the three possible (2+2) partitions, and
the subscript greek notation specifies the two-body sys-
tem contained in the corresponding partition. As already
mentioned in the Introduction the four-body transition
operators U&~, the three-body transition operators U&',
as well as the two-body transition operators TI3, and
Green's functions Go, all depend on the four-body on-
shell energy parameter z. Clearly, the above equations
have decoupled the (3+1) and (2+2) partition channels
of the four-body problem. Moreover, Haberzettl and
Sandhas have shown [11] that the use of Eq. (2.1) re-
moves the necessity for finding a separable representation
for the (2+2) subsystem amplitudes Up . Thus, only the
(3+ 1) subamplitudes Up will be needed in separable
form in order to obtain a coupled set of effective two-
body equations. The reader is referred to Ref. [11]for a
more complete description of the significance of the for-
malism and detailed explanation of the notation.

The off-energy-shell amplitudes corresponding to the
scattering of particle p from the bound state of the
remaining particles leading to particle o. free are written
as [13]

a &= y (rplGpTpGpUgGpT. Gplrg), (2.2)
Pa

where the three-body form factor ~l p) is a solution of
the homogeneous AGS three-body equation

II. THK HABERZK l j.'L-SANDHAS FORMALISM +g g Tp„t„T„ t X'~
v.a yp

(2.5)

+&X Up„Go T„GoU„',GoT Go U .
70 py

(2.1)

where the complementary Kronecker delta is defined by

5 p=l —5 p.

Haberzettl and Sandhas [11]have shown that the Alt-
Grassberger-Sandhas (AGS) equations [13] for the four-
body transition amplitudes U& may be written in the
form

Ug =5.,5p.Go 'T. 'Go '

+ X Up + g 5 UprGo Tr Go Uri'
a Ty

where the various quantities are defined as follows:

Xg =&gp~G, UgG, ~g. ),
Tp' = (gp~GpUp' Go~g

(2.6)

Xg= Vg+ g Vp„'t T„'rt X'~
yp&

where the potential V&~ can be expressed as

Vp~~=5 5p„tp '+ gTp„.

(2.7)

(2.8)

Clearly Eq. (2.5) can be written in the form of a mul-
tichannel Lippmann-Schwinger equation,
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We now approximate the three-body amplitude by the
single-term separable form [11]

~„',(z)= IF„' &t'(z) &F; I,
where the IF„' & satisfy the homogeneous AGS equations

IF„' &
= & 5„y&g„lGp(E, )lgr &tr(E.)IF; &,

(2.9)

(2.10)

and we will return to the question of the representation of
the three-body propagator t' below. It should be noticed
that, unlike the solutions II)& of Eq. (2.3), the IF„'&
which solve Eq. (2.10} are functions of a single vector
variable.

From Eqs. (2.3) and (2.10) we can easily deduce the re-
lationship

&g&IGp(z)ll p &
= &5pr&gplGp(z)lgr &t„(E )IFr &

(2.11)

from which it immediately follows, using also Eq. (2.10),
that

IF &=&gplGo(E )II p& . (2.12)

Using Eq. (2.11) in (2.2) we readily see that the on-shell
(physical) scattering-amplitude components assume the
form

& «'I ~ g(z) I~ &
= &~'F

p It~(z)Xg(z)t. (z) IF'.~ &, (2.13)

where sc' and K are the final and initial on-shell pion-
trinucleon momenta. For the case of elastic scattering,
K —K .

Inserting Eq. (2.9) into (2.7) and multiplying from the
left-hand side by &F$ I ttt(z) and from the right-hand side
by t (z) IF' & we arrive at the coupled set of equations

&Fpltpxppt IFp &=&Fg Ital'gt IFp &+ & &Fpltpl'p„'t IF &t &Frlty&rpt (2.14)

The off-shell scattering amplitudes are Zpn gpvr+ ~ 5 —gputcrZcrn
STAT

o'

(2.19b)

A p=+ A p
pa

pa

and satisfy the equations

g CTP —g tJP + g g CT Tt T g TP

(2.15)

(2.16)

where the driving term B ~ is given by the expression

B p=5 +5tJ &F$ ItpIFp &

pa

+ 2 &F13 ltp&gplGpUp Gplg &t. lFp & . (2.17)
pa, a

g 777T —Z '1777+ Z 7T'Pit &g 7777 (2.19a}

with the driving term Z" obtained from the subsidiary
set of equations,

For a system consisting of a distinguishable particle
[the partition (n., 3N) is denoted by the superfix m]
scattering from a bound state of three identical particles
comprising the trinucleon, Eq. (2.16) can be written as a
coupled set of equations:

g m'0't 0 g tT7T
mo

(2.18)
g cT17—g 0'll'+g cT7Tt7PQ 171T+ g 5 +0Tt Tg T7I'

T

By inserting the second of the above equations in the
first recursively, we obtain the alternative set of equations
(this is entirely equivalent to the Feshbach projector for-
malism),

t'(z) = I

W, '(z) —y&F:It.(z)IF: &

' (2.20)

with

The graphical representation of Eq. (2.19b) is given in
Fig. 1. Equation (2.19a) is now a single-channel
Lippmann-Schwinger equation whose driving term is ob-
tained from the solution of Eq. (2.19b). Diagrams corre-
sponding to pion absorption are seen to be legitimately
included with the (2,2) channels in the driving terms and
correspond to the nucleon pole term in the pion-nucleon
propagator t &. Clearly, the approximation Z =8 "
gives the we11-known single-nucleon contribution to the
optical potential. Note that 8" obtained from Eq.
(2.17) contains only the second term since the first term is
not topologically possible. A single iteration of the subsi-
diary equation generates the quasideuteron contribution
in addition to others terms. However, a numerical calcu-
lation need not be restricted to the single-nucleon and
quasideuteron terms as it will become clear that the solu-
tion of the full set of equations presents a tractable nu-
merical problem.

The authors of Ref. [11]have suggested a form for the
three-body propagator which they describe as optimal to
the extent that it satisfies full off-shell unitarity in the
subspace spanned by the Faddeev wave-function com-
ponent +p and which represent the leading term in a
rigorous separable expansion of the exact three-body am-
plitude Ttt . This representation is given by Eq. (2.9),
and depicted graphically in Fig. 2, with t'(z) taking the
form
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FIG. 1. Graphical representation of the auxiliary equations for the pion-trinucleon efFective interaction. Vertex functions and
propagators from Eqs. (2.19a) and (2.19b) which comprise the potentials are explicitly displayed. The dotted line is the pion and the
solid lines are the nucleons. Vertices corresponding to the three-particle partitions (XN, N), (XX,m), and (Xa,X) are denoted by I'~,
H&, and G, respectively. The NN and N~ two-body vertices are denoted by g& and g, respectively, and the corresponding propaga-
tors by tf3 and t .
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and

(2.21)

(2.22)

&.(z) =~'.g ~.,&+:It.(E.) & g. I Go(z) lg, &t, (E, ) I+; &
principle results of Ref. [11]which we now intend to ap-
ply to the problem of pion-trinucleon scattering. Al-
though not all these equations are contained explicitly in
Ref. [11], they are implicit in the formalism contained
therein.

In the following section the equations will be reduced
to a tractable form suitable for numerical solution.

where E is the bound-state energy of the three-body sub-
system characterized by the index ~. We again refer the
reader to Ref. [11]for a discussion of the motivation for
choosing the particular form of the three-body propaga-
tor given by Eq. (2.21) and for a detailed description of
its structure.

Equations (2.19a), (2.19b), and (2.20) —(2.22) are the

III. REDUCTION OF THE EQUATIONS

Ignoring spin and isospin for the moment, it can be
shown [11] that the contribution to the interaction
represented by diagram (a) in Fig. 1 may be written ex-
plicitly in the form

«)ll &=3&g.ll '&&1lg. & f dq
Apt (z Ep 3q —/4m)—

(z Ep 3q—/4M— Ek )(z —Ep 3q—/4M— Ek)—
Imtp(x+iO)t (z —x —3q /4M)

dx
(z —x 3q /4M—Ek, )(z ——x —3q /4M Ek)—

x&F lq+ —', k'&&q+ —', &IF &, (3.1)

where we have made the static limit approximation of setting the pion mass m equal to zero in the definition of the vari-
ous Jacobi momenta for the four-body system. Analogous expressions hold for the other direct-box diagrams represent-
ed by Figs. 1(d) and 1(h).

In Eq. (3.1) k and k' are the initial and final relative momenta of the pion-trinucleon, respectively, and M is the mass
of the nucleon. Here P refers to the N Nsystem -and a to the n Nsystem. -Rp is the residue of the two-nucleon propa-

)g
'////

G ////[G &

t &g
P

///Y

rXir

(g
7

p

&g )

jg& t

(G ( ////G
t &g

p Y//~y

N a////)G

FIG. 2. (a) Graphical representation of the terms contributing to the energy-dependent pion-trinucleon interaction strength, A,(z).
(b) Graphical representation of terms contributing to the energy-independent inverse potential strength, 1/A,
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gator t& at the bound-state pole which occurs at the two-body energy E=Ez . Imt& is the imaginary part of the NX
propagator evaluated along the scattering cut. IFp) is any of the three P components of the trinucleon vertex function,
(g Ik) is the n.-S vertex function, and Ez is the pion-trinucleon relative kinetic energy which is given by the semirela-
tivistic expression

I
Ea ~a+

2M
(3.2)

Clearly, for the definition of the energy Ez given by Eq. (3.2) the static limit m =0 has been suspended.
The first iteration of Eq. (2.19b), which is represented graphically by the product of diagrams (b) and (e) in Fig. 1 and

which we shall call the quasideuteron term, has the momentum-space representation in the static limit (q.v. )

(k'IZ (b, e)lk) =3(k'IHp)(Hplk) f dq(Fplq+ —,'k')tp(z EI,. —3q /—4M)

Xt'(z 3q /4M— )tp(z —Et, —3q l4M)(q+ ,'klFp—), (3.3)

where IHp) is any of the P components of the (m, NX) vertex function obtained from the solution of Eq. (3.18) below,
and t is the three-body propagator corresponding to the md% system.

From Eq. (2.19a) of the previous section we can see that the structure of the equations to be solved takes the
Lippmann-Schwinger form

&k'I a(z) lk &
=

& k'IZ(z)lk &+ f dk" &k'IZ(z)lk" &T„(k")&k"
I
a (z)lk & . (3.4)

(3.5)

with A(z Ez ) given —by

The approximation of the driving term Z (z) of Eq. (3.4) by the sum of Eqs. (3.1) and (3.3) represents a frequently used
point of departure but in our formalism it is by no means a necessary one, though it is probably useful to make a calcu-
lation using this approximation in order to compare with similar approximations in other works [9]~ In Eq. (3.4)
T&(k" ) is the trinucleon propagator expressed by Eq. (2.20) and which, of course, corresponds to three-nucleon propa-
gation. From Eqs. (2.20) —(2.22) we can write this propagator as

T~(k )= A '(z E„)—3 f—dq(Fplq)tp(z EI, 3q /—4M—)(qlFp&

A(z E&)=6k, —f dq(Fplq)tp(z E& 3q l—4M) —f dq'tp(z Ez 3q' /4M——)
&gplq'+-, 'q& & q+-,'q'lgp &

z Ei, —(q'+ —,
'—q) /M —3q /4M

Finally, A, is given by the reciprocal of the integral term in Eq. (3.5) with k taking its on-shell value ~. Thus,

'=3 f dq(Fplq) tp( E 3q /4M—)(—qlFp),

(3.6)

(3.7)

where E3 is the trinucleon binding energy obtained from the solution of Eq. (2.10). It should be clear from Eqs. (3.5)
and (3.6) that, on the energy shell, where k =a., A( E3 ) =A, , so th—at Tz(k ) has a pole at this point.

To obtain a solution of the auxiliary Eq. (2.19b) one needs expressions for pole terms such as those represented by
Figs. 1(b), l(e), and 1(g), and crossed-box terms such as those represented by Figs. 1(c), 1(f), and 1(i). Again neglecting
spin and isospin Fig. 1(b) can be expressed by

&
k'

I
Z Ik &

=3 & Fp lk+ -,
' k'

& tp(z —(k+ -,'k')'/4M ) &
k'

I Hp &

The other pole diagrams have an analogous representation.
The crossed-box term depicted by Fig. 1(c) has the explicit representation

(3.8)

Rpt (z Ep 3q l4M)— —
& k'IZb lk& =3&g Ik'& dq&Fplq+k'/3 &

(z Ep 3q /4M E—i, .)[E—p (q k—/2) /M]— —

tp{(q—k/2) —iO)t (z —3q /4M —(q —k/2) )

z 3q l4M (q k/2) /M—EI, — — —

Imtp(x+iO)t (z —3q l4M —x )
dx

(z —x —3q~/4M Ei,, )[x —(q —k/2) /M+ —iO]

x (k —q/2lgp & & q+k/2IG (3.9)

and analogous representations for the other crossed-box diagrams, Figs. 1(f) and 1(i). In Eq (3 9) I G. & is the ~~,»«-
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tex function which is obtained from the solution of Eq. (3.18) below.
We can now introduce the spin and isospin of the nucleons by projecting Eq. (2.10) in the spin/isospin basis. Since, in

this work, we consider 5-wave S-N interactions only, the trinucleon form factor thereby obtained has two components,
corresponding to two-body isospin T =0 and 1, respectively. These satisfy the well-known set of coupled equations,

FT(q) = —(M/2) g f dq'q' KrT (q, q')Fr'(q'), (3.10a)
0

with

fr(p')fT (p')
KTT.(q, q')=RTTtT( E3 ——3q' l4M) f dx

2 2ME3+q +q' +qq'x

and

2 i2+ ) 2+ i i2 2+ ) I2+

(3.10b)

(3.10c)

1 —3
—3 1

T, T'=0, 1, (3.10d)

where fT(p) is the NN vertex function corresponding to the isospin quantum number T and tr(E) is the propagator at
the two-body relative energy E in the same channel.

Equation (3.4) takes the form, after partial-wave projection in states of definite angular momentum and isospin,

& k'a'I & g(z) lka &
=

& k'a'IZ)(z) ka &+ g f dk "k"&k'a'IZ'i'. (z) lk "a"&T~'(k"') & k "a"
I
& g(z) lka &, (3.4')

PI

where the total angular momentum and isospin of the pion-trinucleon system is denoted by j and i, respectively, and
X=j+—, is the conserved orbital angular momentum of the pion-trinucleon relative motion. The designation n means
the total quantum numbers of the three-nucleon system, i.e., {8,7 I, so that a=a'= P, —,

' I. As a result of our use of
the single term expansion in Eq. (2.9) we also have a"= P, —,

'
I as the sole contribution to the sum in Eq. (3.4'), and with

this understanding we will drop the specification I a I in what follows.
The expression for the trinucleon propagator T~ in the partial-wave basis is easily obtained from Eq. (3.5), viz.

T&(k )= A '(z Ek) —3g—f dqq FT(q)tT(z Ek —3q l4—M) (3.&')

T

where we have dropped the a designation and FT is obtained as the solution of the bound-state equation (3.8).
A(z Ek ) is define—d by Eq. (3.6), and reduces to

A(z Ek)=6k. g RTT—, f dqq FT(q)tT(z Ek —3q /4M—) f dq'q' tr(z Ek —3q' l4M—)
0 0

1 fT(p')fT (p')
X FT (q') dx

z —E —p /M —3q /4M

(3.6')

The spin-isospin recoupling matrix RTT, is given by Eq. (3.10d) and the momenta p, p' can be found from Eq.
(3.10c).

It remains for us to express the effective interaction, &k'a'IZ(z)lka& which appears in Eq. (3.4'), in a partial-wave
basis. These terms are obtained as the solution of the auxiliary Eq. (2.19b) whose graphical representation is given in
Fig. 1. The driving terms of these equations contain pole diagrams, Figs. 1(b), 1(e), and l(g), contain direct-box dia-
grams, Figs. 1(a), l(d), and 1(h) and crossed-box diagrams, Figs. 1(c), 1(f), and l(i) examples of which are given in Eqs.
(3.8), (3.1), and (3.9), respectively. A single iteration of the auxiliary equation yields the quasideuteron term given by
Eq. (3.3) as described above. In this approximation the driving term for Eq. (2.19a) has two contributions, Z(a) arising
from the pion scattering from a single nucleon according to Fig. (la) and Z(b, e) which represents the contribution of
the pion scattering from a correlated pair of nucleons, often referred to as the quasideuteron. In what follows we will
give the partial-wave angular momentum and isospin reduction for these two terms because (i) they are representative
of the complications contained in any other term and (ii) they form a convenient starting point for a systematic compar-
ison of the numerical results of the present formalism with those of others

I 9].
The angular momentum/isospin reduction for both of these terms is quite similar. For Z(a) this projection is given

by the angular momentum/isospin sum



1318 E. HARPER

&k ~Z'j(a)~k &

g g & 8'm+. A, 'mi.
~

j'm & & l'mi. a'm ~ Q'm ~ & & J'm J&'m ~
~ jm &j fcF) fm)

X &a'm ~'m. IJ"M~-&&&mA~m. lJ"mJ" && Jm~~m, 1~m~&&imt~m. g'm, &&+my~mi. ljm, &

X & TT, tt,
~

V 7; & & «, tt,
~

T"T,"& & «, 'T'7, ~ii, & 5,„5,5«6«
z z

X f dkdk'Y, (k')Yi* (k) f dqq f tIQFr (Q')Fr(Q)

Q rt~„r„(E~—3q /4M )
X

(z E~ ——3q /4M Ek, )(z—E2 —3q—/4M Ek)—2 2

1 Imtz {x+iO)tjz (z, —-x 3q /4—M)
dx

(z —x 3q~/4—M Ek. )(z——x 3q /4M —Ek )—
Xgq-z. .(k)gJ z" (k )Y ~ (k )YA (k) (3.1 1)

where & aabp~gy & is the Clebsch-Gordan coefficient and the various angular momentum quantum numbers have the
following definitions; 8=+ is the total angular momentum of the trinucleon, A, =A, ' is the orbital angular momentum of

e pion relative to the trinucleon, j=j' is the total angular momentum of the pion-trinucleon system, l and l' are the
orbital angular momenta of the uncorrelated nucleon at the initial and final vertices, s =s' is the spin of these nucleons,
&' and~' are the angular momenta resulting from the coupling of l, a and I', a'. J and J' are the total angular momenta
of the correlated nucleon pairs at the initial and final vertices, A=A is the orbital angular momentum of the ~-iV sys-
tem, and J" is the total angular momentum of this system. The isospin quantum numbers are defined analogously so
that 7 ='7 is the isospin of the trinucleon, T and T are the isospins of the correlated nucleon pair at the initial and
final vertices, t = t' is the nucleon isospin, r=r' is the pion isospin, and the notation f 8, m J means summation over all
nonconserved angular momenta and projections internal to the four-body system. The ~N vertex functions are denoted
by gzz and the vrX propagator by t~z-. The symbol j means

j=v'2j+1 .

Integrating over the angular variables and performing the summations over the magnetic quantum numbers using
methods such as those contained in Ref. [14] we arrive at the expression for the single-scattering contribution to the
effective interaction:

XrW
& k ~z ji' (a)

~
k & 3/2 y g ~@2Jii2f ii2+2

0 0 0 T

2 J
2

l
~

g
A

( k ~

)g
A

( k )( )s+ T"+I
5 p' j
A

RrtJ-r, .(z E2 3q /4M—)—fX dqq
0 (z+E2 —3q /4M Ek)(z+E2 3—q /4M Ek )— —

f dxt~ 7- (z —3q /4M —x)
0

Imtr(x +i 0)
X Iz(q, k')Iz(q, k) .

(z —x 3q /4M Ek )(z —x —3q /—4M Ek)— —
(3.12)

In Eq. (3.12) the 3-jm, 6-j, and 12-j coefficients are denoted by the symbols in parentheses and curly brackets, respec-
tively. The symbol Iz is the integral

Ir" (q, k)= f dxP„(x)F (Q), (3.13)

Q'=q'+94k +4qkx . (3.14)

In a similar way we arrive at the following expression for the quasideuteron contribution to the effective interaction:
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2 d" —,
' r j

r A 1 V' T 1 V' T'
(k'~Zj'(b e)~k) = —3k~ g gP 4 7 A , (

)i+1/2+S+S'+ T+ T'+'T
2 2

I aI rA S' A, S
J

XH (k')H (k) f dqq tz (z Ek—3q—/4M)tz(z E„—3q—/4M)T ~~(z 3q—/4M)
0

XIr" (q, k')Ir" (q, k ), (3.15)

where the (n, NN) vertex function with the indicated quantum numbers is denoted by H~(k), T &z is the m NN propaga-
tor with angular momentum 8 and isospin 'T, and a is the set of quantum numbers [(LS)J, (Aa)j,(Jj)8;(Tt )V'] of the
(n., NN) system which can couple to cF, 'T. In this work we consider n, NN propagation only in the isobaric states D
with 7 =0, 8= 1 (the deuteron channel) and '7= 1, el =0 (the singlet deuteron channel}.

The constituents of the three-body n.NN propagator in the angular momentum/isospin state cF, 7", can be obtained
from Eqs. (2.19)—(2.21). To do this we first show how Eq. (2.10) for the mNN system may be decoupled into parts whose
solution is antisyrnmetric with respect to exchange of the nucleons (taken to be particles 2 and 3) and a part whose solu-
tion is symmetric under this exchange. Explicitly these equations become

H =Z)2 t~.6, 6' '= —Zq. ~t~G' '+2Z2 ) t j H, 6'+'=Zp 3t3G (3.16)

where 2' means the state obtained from state 3 by exchange of the particles 2 and 3. The function H is the same as F,
while 6'+' and 6' ' are defined by

6'*'=F,.+F,
and the notation Z& means

Z&. =(g&IG.(E.) Ig. )

(3.17)

(3.18)

with E being the bound-state energy for the coupled set of equations in (3.16). The last uncoupled equation in this set
has no physical significance and must be excluded in the following expressions for the mNN propagators.

The propagator of the nNN system for the state of total angular momentum 8 and isospin V' is obtained from Eq.
(2.20),

T~ivy(z) = [A@+z) L+~(z)]—
where now z means the three-body subenergy, and

L&7(z)= g f dqq [H (q)tr(z q /4M —co )+ ,'G—(q)tzz(z —q /M)]-
a

and

(3.19)

(3.20)

Adgz)=kdv g g I dqq f dq'q'[H (q)tr(z co~ q—'/4M), (fq—a~GO(z)~g'q'a)ztjr (z q' /M)G .—(q')

G (q)tJT(z q /M)2(gqalG—O(z)~fq'a') itJ r. (z —q' /M)G .(q')

+G (q)tjr(z q!M )z(gqa ~
Go—(z)

~

fq'a' ),tz"(z co q' /4M—)H .—(q') ],

(3.21)

where the (N, ~N) vertex function with the quantum numbers [a] is represented by function G (k) and Ad& is given by
L~7 (z) at the on-shell point, z =E . In Eq. (3.20) the minus superscript of G has been dropped, as has the prime in the
2 subscript, since no ambiguity can exist.

The couplings involved in the efFective four-body interaction strength Ad, gz) are depicted graphically in Fig, 2. The
recoupling coefficients;( fqa~GO(z}~ f'q'a') . can be calculated using the methods of Ref. [15] for the summation over
magnetic quantum numbers. The result for the general coefBcient is given by
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! ~ r i 1 wt p I W i x2(J'+J+'7)+a+j'+ J'+L'+L+t" +t'+S' —T
g+q(x) G0/z) (+ g cx / - ( )

' 1/2
2L +1

2A,

l r 1'
jr+A. ' I A+A' ~ J2fI2f II2

0 0 0 0
r

i JJIj~j'IggIff Ii i Ig pl ~ 'g A+I/ ( )7+kQA+kdA
2 t" t' T'

- j)(.A, 'r

1/22L'+ 1 r f'
0 0

0 0 0 ' 0 0 0 j S'

S 1' L f"
. 1'

L' A,
' f

A' A, 1

f' A L

with

p„(x)/ (p)/' (p')
p'p' [z «p) —«q)]— (3.22)

p =a q+ bq', p' =cq+ d q', (3.23)

and where / /' can be a NN vertex fr, or a mN vertex gPz. In practice, only the cases (a) i =2, j=3, /=gzz. , /'=gj, „,
(b) i =2, j= 1, /=gzz, /'=fr", (c) i =1, j=2, /=fr, /'=gj T. can arise. In the static limit we have for case (a)
a =b = —1, c =d =1, for case (b) a =0, b =1, c =1, d =—, and for case (c) a =—„b=1, c = —1, d =0. These assign-
ments can be inferred from an examination of the diagrams displayed in Fig. 2(a). The expressions for the intermediate
free energies E(p) and E(q) can also be found by referring to Fig. 2 for the three cases (a), (b), and (c), viz.

E(p)=co +p /2M, E(q)=q /M [case (a)],
E(p)=co +p /2M, E(q)=q /M [case (b)],
E(p)=p /M, E(q)=co +q /4M [case (c)] .

The binomial coefficients appearing in Eq. (3.19) are defined by

2L+1
A=L —A, .

A !(2A, )!
(3.24)

k3 k4 x

J4 J2 14

The 12-j and 15-j symbols appearing in Eq. (3.19) may be expressed as sums of products of the more readily available
6-j and 9-j symbols [15]by means of the following expressions:

T

I

k2 k1 x J3 J1 x k2 k1 x
4 ' ~ ' i k k 1

' i (3.25)
J1 J3 1 3 4 2 J2 J4 3

k, k2 k3 k4

k1 k1 k k' k2

J J2

k2

J2

k
y ~2( )x+p —j—k'

J
x k

kp ~k1 J1P
k2 j2

k'

P1 ~ t k1

j' x
~ p

J1 P1

k2 J2 P2

(3.26)

The (NN, n. ) system has only one bound state with el=1, 7 =0, the deuteron. We will approximate the antibound
state with quantum numbers 8'=0, 7= 1 by a bound state with zero binding energy. The various configurations H
and G contributing to each of these three-body states are given in Table I. From this table we see that the deuteron
D ' is obtained from the solution of a coupled set of five equations and the singlet deuteron D' is obtained from the
solution of a coupled set of four equations. These equations are the symmetrized partial-wave projections of Eq. (2.10)
and may be written in the form [16]

H (q)= g f dq'q', (fqa!Go(E )~gq'a')2& &(E~—q' /M)G~(q'),
0

G (q)= g f dq'q' [2(gqa~GO(E )~gq'a')3r Q(E q' /M)G (q')—
0

+22(gqa~GO(E )~fq'a'), tNN(E co . q'2/4M)H —.(q'—)], (3.27)
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TABLE I. N1V, m (H ) and Nn. ,X (6 ) configurations con-
tributing to (a) the deuteron (D ') three-body bound states and
(b) the antibound (D '

) three-body state.

(L,S)J (Z,&)g' (J,g')cP {T, t)'7

H
6

(0,1)1 (1,1)0

H
G

(0.1)1
{0 2)2

1)1
1)3

(1,1)0 (0, 1)1

where E is the bound-state energy in the channel de-
fined by the quantum numbers 8 and V; i.e.,
for (8=1,7=0}E = —2.225 MeV and for
(8'=0, T= 1 )E =0. The recoupling coefficients
;(qa~GO( E)~g'q—'a')~ are given by Eq. (3.19) with z
replaced by —E and a defined by the set of quantum
numbers [(LS)J, (1&)&, ( J& )'8m:'(Tt )'TV; ].

IV. CONCLUSION

In the foregoing sections we have outlined in some de-
tail a formalism for the calculation of the low-energy
pion-trinucleon scattering problem. The methods are
essentially the extension to the four-body domain of those
used by Afnan and Thomas [5] for the solution of the
low-energy pion-deuteron scattering problem. The
straightforward extension of the approach of Afnan and
Thomas to the four-body sector has been considerably fa-
cilitated by our adoption of the device of Haberzettl and
Sandhas (HS) whereby one obtains effective two-body
equations from the exact four-body formalism in which
the (2+2) subamplitudes are not required in a separable
form but are incorporated in the effective potentials ex-
actly. Thus one needs only the (3+1) subamplitudes in
separable form and for these we exploit the suggestion of
HS for the representation of the propagators of the asso-
ciated three-body isobars. In order to simplify our pro-
posed numerical solution of the pion-trinucleon scatter-
ing problem we have adopted a separable representation
of all two-body t matrices and confine ourselves to S-
wave XN interactions and S- and P-wave pion-nucleon in-
teractions. This is probably not an unreasonable ap-
proach at low energies and moreover is a restriction that
can be systematically eased if the necessity for doing so
should arise. For instance, this can be accomplished by
writing unitary pole expansions for both the three-body
and the two-body t matrices in place of Eqs. (2.9) and
(2.4), respectively.

The HS formalism results in a coupled set of effective
two-body equations the potentials and propagators of
which are expressed in terms of the two-body vertex

functions used for the representation of the two-body in-
teractions and also three-body vertices of the systems
(NN, N), (NN, n ), and (Nm, N) which must be obtained
from the solution of coupled sets of bound-state equa-
tions. These are by no means new and in the case of the
(NN, N) system are familiar since the seminal paper of
Lovelace [7]. The equations in the partial-wave projec-
tion have been included here to elucidate the connection
to the present problem. With the limitations we have
placed on the two-body partial waves we find that the
deuteron sector of the +AN problem requires the solution
of a coupled set of five equations and the singlet deuteron
requires the solution of a coupled set of four equations.
This task does not present an insuperable obstacle with
the computing facilities available today.

In our representation of the effective potentials extract-
ed from the HS formalism we have obtained a single-
channel Lippmann-Schwinger equation with an effective
interaction which is obtained as the solution of a subsidi-
ary set of integral equations which contain all the com-
plexities of the XN as well as the m.N interaction. A low-
order approximation to this effective optical potential re-
sults from a single iteration of the auxiliary equations and
contains two terms one of which corresponds to the pion
scattering from a single nucleon and another correspond-
ing to pion scattering from a correlated pair within the
trinucleon, easily identifiable as the quasideuteron rnecha-
nism. The remaining terms involve higher orders of mul-
tiple scattering and will be included in a future calcula-
tion. In addition, we do not consider intermediate trinu-
cleon propagation in states other than /=V'= —,'. This
does not mean that we neglect intermediate nuclear exci-
tation entirely, merely that we are restricting the inter-
mediate states to these quantum numbers. This latter ap-
proximation can be eased at the cost of a considerable in-
crease in the algebraic complexity of the final equations
and a concomitant increase in the computer time and
storage required for accurate solutions.

We believe that the present approach may represent an
improvement over the application of the optical-potential
treatment of multiple-scattering theories to pion-
trinucleon scattering to the extent that the exact dynam-
ics are treated more systematically, that it is subject to
systematic improvement, and is perhaps even more tract-
able numerically. The advantages of the present ap-
proach can be seen from Eq. (3.4}which is an equation of
the Lippman-Schwinger type. The dynamical input is
embodied in the effective potentials defined according to
equations such as (3.1) and (3.3} and the propagator
defined by Eq. (3.5) preserves the exact four-body dy-
namics. The failure to incorporate the latter requirement
is a serious shortcoming of the optical-potential approach
but which is perhaps unavoidable for nuclei with A &4.
The implementation of the program for solution of the
m A scattering problem based on multiple scattering and
embodied in Eqs. (1.3}—(1.5) plus the solution of the
Lippmann-Schwinger equation driven by V(z) is possible
in principle, though, in practice, it has been necessary to
make physically reasonable approximations [17] such as
the neglect of intermediate nuclear excitation. This latter
effect is well accounted for in the region of the 5 reso-
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nance by other formulations such as the b-hole model
[18].

Finally, it should be noted that it is possible in princi-
ple to extend the present treatment to higher mass nuclei,
but the advantages mentioned above for this case appear
to be more problematic.

We are applying the formalism described above to the
problem of pion elastic scattering from the bound trinu-
clei in the energy region below E =400 MeV, and the re-

suits of this study will appear in a future paper.
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