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Using a resonance coupled channel model that provides a good description of the experimental
data on the reaction d+ t ~ n+ n and d telast-ic scattering in the region of the resonance He(2 ),
we find the disposition of the S-matrix poles on the diR'erent Riemann sheets. An investigation of
the motion of the poles with variation of the coupling strengths reveals the structure of the resonant
state. The role of scattering and confined channels in the formation of the physical resonance is
considered with the use of the probability sum rule for the confined channel. We demonstrate that
the resonance He(2 ) proves to be a coupled channel pole associated predominantly with the d t-
system.

I. INTRODUCTION

The sH(d, n) He reaction has been studied extensively
at low energies near the J =

2 resonance. Typically
the resonance has been parametrized in terms of the usual
Breit-signer amplitude,

i[1,1,]'I'
E„—E —il /2

'

with partial widths I"q ——12 ——50 keV in the d-t and
n nchannels, r-espectively, total width 1 =100 keV, and
resonance energy E„=60 keV [1] (all energies are given
in the center-of-mass system relative to the d-t thresh-
old). This parametrization would imply a resonance pole
in the same position, Eo ——E, —iI'/2, on all. the sheets
(including the physical sheet) of the Riemann energy sur-
face. However, it is known from the general considera-
tions [2—5] of the S matrix that, resonances can occur only
on the unphysical sheets of the Riemann energy surface,
and that they can in principle have different positions on
different sheets.

The first indication that the simple Breit-signer de-

scription of the 2 resonance was inadequate came from
an R-matrix analysis [6] of the He system that included
cross-section and polarization data for all three indepen-
dent reactions involving d-t and n-n at excitation ener-
gies below 21.5 MeV. The S-matrix poles correspond-

ing to the
2

resonance in He from that analysis were
found [7] to occur on only two of the unphysical sheets
in rather different positions. The main pole, located at
EIt = (47.0 —i37.1) keV on the unphysical sheet closest
to the physical one (U(i 2) in the notation of Ref. [2]), had

the properties of a "conventional" resonance, with partial
widths that summed approximately to the total width.
The shadow pole, located at Es = (81.6—i3.6) keV on the
somewhat remote sheet U~2~, had much stranger proper-
ties. Although very close to the real axis, it produced
no narrow structure in the cross section, but was in fact
responsible, through its associated zero on the physical
sheet, for driving the cross section for the sH(d, n)4He
reaction close to its unitary maximum at the peak of the
resonance.

ln Ref. [7] it was concluded, using the arguments of
Eden and Taylor [2], that the location of the shadow pole
implied that in the absence of the coupling between d-t

and n-n channels, the 2 resonance would be entirely in
the n nchannel. -Later calculations by Pearce and Gib-
son [8] indicated that this argument is valid only when
the coupling between channels is suKciently weak that
none of the poles changes sheets as coupling strength
increases. They speculated that this might not be the
case for the coupled d-t and n-n channels, although they
did not attempt to find parameters that approximated
the physical behavior of the system near the resonance.
More recently, Karnakov et al. [9] used an effective range
expansion to analyze cross sections for the H(d, n) He
reaction and for d+t elastic scattering over the resonance.
They found, in contradiction to the result of Ref. [7], that
the shadow pole occurs on the sheet U~y~, rather than on
UC. ~) ~

In this paper we wish to use the resonance coupled
channel model (RCCM) [10], similar in some respects
to the separable-potential model of Pearce and Gibson
[8], to study specifically the coupled channel system
(d + t, n + a) near the resonance. Unlike the usual cou-
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pled channel potential model, however, the RCCM intro-
duces explicitly the resonance character of the reaction,
allowing its eA'ects to be separated from those of channel
coupling and of the Coulomb singularities. The physical
values of the model parameters have been determined by
comparing with the R-matrix amplitudes for J
The S-matrix pole structure found at physical parame-
ter values confirms that of the previous R-matrix work.
More importantly, by varying the strength of the poten-
tials coupling the channels with the He resonance away
from their physical values, we have generated the trajec-
tories of all the S-matrix poles on the complex energy
surface. These trajectories provide a definite answer to
the question about the position of the poles in the ab-
sence of channel coupling, and also give strong insight
into the dynamical origin of the d-t resonance itself. It
is found, confirming the conjecture of Pearce and Gibson
[8], that the shadow pole indeed changes sheets as the
channel coupling strengt, hs are increased to their physi-
cal values, and that the J =

2 resonance of He arises
from the singularities associated with the coupling poten-
tial, rather than those associated with the "bare" 5He'
state or with the Coulomb interaction in the d tchan--
nel. A description of the model and the way the physical
values of its parameters were determined are given in
Sec. II. Section III reviews the prescriptions for obtain-
ing S-matrix poles from the model. Section IV contains
the main results of the calculation, describing what hap-
pens as the coupling strength is varied from zero to the
strong-coupling regime. The probability sum rule is con-
sidered in Sec. V. Finally, the summary and conclusions
of the calculations are given in Sec. VI.

channel coupling switched oA'.

The scattering amplitude can easily be found by solv-
ing the Lippmann-Schwinger equation (see Ref. [10]),
giving for the S-matrix element corresponding to d ts-cat-
tering

(4)

I'i(E) = 4mi ki [ & dh, ki [Vi ~b &
~

is the width for the decay He* ~ d+ t. The reduced
mass and the relative momentum of the particles in chan-
nel 1 are mi —mdm, /(ms + m, ) and k, = (2miE)'
respectively, and ~dt, ki & is the S-wave solution of the
scattering problem for the Hamiltonian Hq, normalized
by the condition

b(k —k')
& dh, k ddt, k' &= (7)

Similar definitions hold for the width 12(E) that corre-
sponds to the decay 5He' ~ n+ n. Using the spectral
representation for the Green's operator (E —H ), one
can express the mass operators as

M, (E) =
- r.(E') „E,

El (8)

Here bo(E) is the Coulomb S-wave scattering phase shift,
mass operators Mi and M2 are defined by

M, (E) =& biVt(E —H. ) 'V, ib & (a = 1, 2),

II. THE RESONANCE COUPLED CHANNEL
MODEL

A. Model description

We consider the three-channel problem where channel
1 corresponds to the quartet (s = 2) S-wave state of the
d tsystem, channel 2-corresponds to the doublet (s = 2)
D-wave state of the n-n system, and channel 3 consists of
a single confined state, the bare resonance He', having
total angular momentum and parity J =

2 . We define3+
the Hamiltonian to be of the form [10]

0 H2 Vg

H, )
where Hi is the Coulomb Hamiltonian of the d tsystem, -
H2 is the free Hamiltonian of the n-o. system,

where the integration is performed over the contour go-
ing along the real E axis from the channel threshold
(Ei~" ——0, E2h = —Q) to infinity. For any reasonable
choice of interaction V„ the mass operator M (E) is an
analytical function of the complex variable E having no
singularities except, for the cut going along the real E axis
(E'",oo). The analytical continuation defines the multi-
sheeted structure of the mass operators and, similarly, of
the S matrix, as will be considered in more detail below.

YVe consider now the S matrix in the physical region
of the energy variable E:
Sii(E) = Sii(E+ ie), 0 & E & oo (d-t channel),

Sip(E) = Sip(E+ ie),
S22(E):S22(E + ie), —Q & E & oo (n-n channel).

Using the spectral representation for the mass operator
in Eq. (8), we can write it in the physical region in the
form

Hs ——Ei, )b && b)

is the Hamiltonian of the bare resonance, and V~ and V2
are the interactions of the two-particle channels d-t and
n-n with the confined state He*. Since the energy of
the system, E, is reckoned from the d-t threshold, the
n n —d tthreshol-d difFerence Q = -17.6 MeV is included
in Hg', Ey is the position of the bare resonance with the

M, (E+ ie) = A, (E) ——I', (E),

where the energy shift A, (E) is defined by the principal-
value integral

A, (E) = ', dE'1 I', (E')
(11)

According to Eqs. (4), (6), and (8), the coupling of the
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resonance with channels 1 and 2, which is primarily de-
scribed by the operators Vi and V2, can be defined equiv-
alently by means of the functions I'i(E) and I'z(E). We
choose the width I'i(E) to be of the form

Fi(E) = 4g'»Co'(E)(1+ E/E~) ' (12)

where g~ is the dimensionless constant of the He* —d-t
coupling, Co2(E) is the S-wave Gamow factor,

Co(E)=, rl = nmi/ki,
2xg

(13)

and the parameter Ey defines the range scale of the in-
teraction Ui.

The energy dependence of the mass operator M2 de-
scribing the resonance coupling with the n-n channel can
be neglected if we consider a narrow region in t,he vicinity
of the d tthresh-old (E = 0 —0.3 MeV), since the distance

Q between the thresholds is large in comparison with
the characteristic scale determined by the range of the
sHe" -+ n +cr v.ertex The. refore, given the energy depen-
dence of the elastic width I'i (E), the model involves three
parameters: coupling strength g~ for the He* —d-t ver-

tex, the bare resonance position with the shift due to the
He' n ncoup—lin-g taken into account, Eo —Et, —ReM2,

and the inelastic width I'2 ———21mM2.

B. Determining the model parameters

The model parameters Eo, g~, and I'~ have been de-
termined from the best, fit of the d-4 scattering amplitude
obtained from the R-matrix parameters given in Ref. [7].
The form-factor parameter Ey has been chosen to be
Ey ——2 MeV, although reasonable fits can be obtained
for any Ey within the interval 1.6—2.4 MeV. The best fit,
was obtained for the following values of the parameters:

Eo ——3.686 MeV, p = 0.2513, I'2 ——0.5479 MeV,

which corresponds to E~ ——83 keV and E2 ——82 keV,
so that Ei ) E2, contrary to the case of Eq. (14).

Figure 1 shows the Argand diagram for the d-t nuclear
scat tering amplitude,

S„(E).-'*"«& —1

2i (16)

calculated from the parameters of Eq. (14) in compar-
ison with the results of the R-matrix analysis [7]. The
energy dependence of the astrophysical function S(E) is
shown in Fig. 2 compared with the experimental data
[11—15], the calculated value of the spin-averaged reac-
tion constant being Ao ——S(0) =11.8 MeVb. Figure 3
shows the calculation and the experimental data [16] for
the ratio

da/dA

d~/dnc-i
e=~/2

1 2 7r C= —+ —exp —2ig ln sin — ——(1 —Sii)
3 3 4 2g

(17)

of the difkrential cross section for d-t scat;tering at
8, = vr/2 to that of pure Coulomb scattering. The

0.8

of the results of the R-matrix analysis that includes data
from the three independent reactions, then two solutions
are possible. The first (which is the "best") one is rather
close to (14). The second set of parameters is

Eo = 2 363 MeV,

p = 2rnygq ——0.1602,
I 2 ——0.3738 MeV.

(14)

0.6—
Given the parameters Eo, gi, and 1'2, one can define

two parameters Eq and E2, such that

Ei —Eo —Re/Hi(Ei) = 0,

Fi(E2) = F2

Their best-fit values are Ei ——79 keV and E2 ——85 keV.
These parameters are helpful in the analysis of the S-
matrix energy dependence. In particular, at E = Ei the
d-t nuclear scattering amplitude is purely imaginary, and
if Ei Es, the diagonal S-matrix element Sii is very
close to zero at E E~ and the inelastic d-t cross section
approaches the unitary limit. The parameters Eo, Eq,
and Eq can also be used, instead of Eo, gq, and I'q, to
specify the model considered. The results used from the
R-matrix analysis allow one to define Eq and E~ with an
accuracy better than 1 keV, while the parameter Eo is
correlated with the form-factor parameter Ey.

If we perform the fit using a more limited set of data
(for example, only the d tinelastic cross -section) instead

0.06

0.2— 0.05

0 0-0.4
I

-0.2
Re T

O.O 0.2

FIG. 1. The Argand diagram for the d-f scattering ampli-
tude J =

2 (solid line —RCCM, +—the R-matrix analysis
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FIG. 2. The energy dependence of the astrophysical func-
tion S(E) compared with the experimental data of Refs. [11]
(x), [12] (A), [13] (0), [14] (C'), and [15] (&). For clarity,
the data are shown without error bars.

very good agreement of the theoretical results with the
experimental data and the R-matrix analysis shows that
the coupled channel resonance model under consideration
accounts for all the significant features of the d+t ~ n+o.
interaction in the sHe(& ) resonance region, and can
therefore be used to investigate the nature of the res-
onance in more detail.

III. THE 8-MATRIX POLES

In determining the analytical structure of the S matrix,
we have two goals: First, given the physical parameters

I I I 1

i

I I f I
t

I I I I

[
I I f4

C3
D
CD

0
b

o
O
cD

b

of the model, to find the poles that are responsible for the
observable effects, and, second, to investigate the motion
of these poles under variations of the coupling strengths.
The latter allows us to make conclusions about the struc-
ture of the states associated with the physical poles even
if the channel coupling is not weak.

For a two-channel, two-particle system, the Riemann
surface of the partial-wave 9-matrix elements considered
as a function of the energy variable E has four sheets, la-
beled in accordance with the signs of the imaginary parts
of the channel momenta ki and k2, as is shown in Table
I. Besides the kinematical cuts due to the channel thresh-
olds there may be dynamical cuts (the so-called potential
or left-hand cuts) on the unphysical Riemann sheets U.
For the resonance model under consideration, there is a
potential cut due to the Coulomb interaction in the d /-
channel which starts at the d-t threshold, as will be dis-
cussed briefly in the next section. There might also be
dynamical cuts produced by the He* —d-t and He' —n-
n coupling; however, with our choice of form factors [see
Eq. (12)], there are no other singularities of dynamical
origin besides the pole at kq

——iP, P = (2mqEy) ~.
The far-away dynamical singularities related to the n-a
channel play no role in the energy region considered and
can be neglected. The effect of the confined channel, to
which the compound (bare) state He* belongs, is to cre-
ate some additional poles on the unphysical sheets which,
in the weak-coupling limit, appear in the vicinity of the
initial pole position Ep as replicas of that on the physical
sheet.

Given the mass operator determined by formula (8),
the analytical continuation onto the unphysical sheets
can be performed as follows: Let the energy point E move
on the Riemann surface from the physical sheet P to the
sheet U across the cut lying on the real E axis. When E is
on the U sheet, one can continuously deform the contour
to avoid its passing through the singularities at E' = E
and those of I (E'). If the function I'(E) is not singular
at the point E, then the integral can be represented as
the former integral along (Eth, oo) p/us the one along
the circle centered at E, giving the following relationship
between the mass operators on different sheets:

M (E) = M (E) —il (E), (18)

where superscripts I and II denote the physical and un-
physical sheets for the two-particle channel considered.
For example, calculating the S matrix on the sheet U~z 2~,

one has to use M~&I(E) and W&I(E) in Eq. (4).

IV. RESULTS OF THE CALCULATION
A. Pole disposition

We have studied the analytical structure of the S ma-
trix near the d-t threshold and found that the resonance

0.00 0.05 0.10 0.15 0.20
E (MeV)

FIG. 3. The ratio of the diAerential elastic d-t cross sec-
tion to that of pure Coulomb scattering in comparison with
measurements by Balashko [16].

Eden and Taylor [2]
Frazer and Hendry [4]

Im kg (d-t)
Im kz (n-o)

P
I
+

U(&)
IV
+

TABLE I. The labeling of the Riemann sheets.
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pole is located at Eyt —iI R/2 = (47 —i37) keV on
the sheet U(q q) and the shadow pole at Es —iI's/2 =
(82 —i3.4) keV on the sheet U(2) (see Figs. 4 and 5), both
positions being in good agreement with the result of the
R-matrix analysis [7]. The symmetry properties of the S
matrix imply that the resonance and shadow poles have
their counterparts located symmetrically with respect to
the real E axis: One is at E~+iI'~/2 on the sheet U(q 2)
and the other at Es+i I's/2 on the sheet U(2). These two
can be considered as far-away singularities since a path
connecting any of them with some point in the physical
region near the d-t threshold goes around the distant n-n
threshold.

If we look for the poles using the set of parameters (15)
corresponding to the limited data fit, then the resonance
pole is found at almost the same position Eyt —ii'n/2 =
(47 —i38) keV on the sheet U(q q), but the shadow pole
appears on the sheet U(q) at Es —il s/2 = (82 —i0.3)
keV, rather than on the sheet U~~~. The position of the
shadow pole on the sheet U(q) (I's value) is clearly sensi-
tive to the particular selection of the data on the inelastic
cross section involved in the fit. Thus, the contradiction
between the results of Refs. [7] and [9] concerning the
location of the shadow pole can be due to the fact that
diferent sets of data have been used to determine the
model parameters.

Besides the pairs of resonance and shadow poles, there
is also the set of poles produced by the Coulomb inter-
action between d and t (antibound states) near the d t-
threshold (see Fig. 4). A detailed discussion of these
singularities will be given elsewhere (see also Ref. [9]).

B. Pole trajectories

In order to investigate the origin of the resonance
sHe(z ) we have traced the motion of the S-matrix poles
as the parameters p and I'2, which describe the coupling
of the d-t and n-n channels with the bare He* state,
are varied. The trajectories of the resonance and shadow
poles are shown in Figs. 4 and 5. As I'q decreases from its
physical value to zero, the resonance pole moves towards
the physical region remaining on the sheet U~q 2~ while
the shadow pole crosses the real E axis moving from the
sheet U~2~ onto the sheet U~q~. At I'2 ——0, the resonance
and shadow poles lie symmetrically with respect to the
real E axis at E&~ + il'&o/2 = (61 + i19) keV. Because
of unitarity constraints [2], any S-matrix pole located at
some point E on the sheet U~&~ or U~2~ is accompanied
by a zero of the diagonal matrix element S at the same
value of E on the sheet U~~ 2~ or P, respectively. There-
fore, the existence of a shadow pole close to the real E
axis results in the striking observable eKect of the inelas-
tic cross section approaching its unitary limit a = vr jk,
despite the fact that the shadow pole can be reached from
the physical region only along a path going around the
d tthresho-ld (see also Refs. [7] and [8]).

Although the inelastic cross section is large, the res-
onance coupling to the n-n channel can be character-
ized as weak because the resulting pole shift (E~-
iI'~/2) —(E&~ —iI'~&/2) = (—14 —i18) keV is small in
comparison with the characteristic nuclear scale Ey and
the distance between the thresholds Q. However, since
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FIG. 4. The trajectories of the resonance pole on the sheet
U(q 2~. curve 1—the parameter I'2 is varied at the physical
value of the He' —d tcoupling strength -p [() —the pole
location in the physical case, (O)—I'2 ——0]; curve 2—p is
varied at I'2 ——0; curve 3—the same as 2, but for the physical
value of I'2, curve 4 shows the motion of the Coulomb pole
corresponding to the antibound 1S state; curve 5—the motion
of the zero of the diagonal matrix element S& z by varying I'2 at
the physical value of p [(+)—the physical case, (&)—I'2 = 0].

I i I ~ I i I i I I

0.000.02 0.04 0.06 0.08 0.30 0.'12 0.14
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FIG. 5. The trajectories of the shadow pole on the sheets
U~z~ and U(2~. curve 1—the parameter I 2 is varied at the
physical value of the He' —d tcoupling streng-th p [(+) is
the pole location in the physical case]; curve 2—p is varied at
the physical value of I 2.
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the shadow pole is located very close to the d-t thresh-
old, it can change sheets at rather small displacement
(Es —il s/2) —(E~o+ tI'~o/2) = (21 —i22) keV.

The motion of the poles with varying the He* —d-t
coupling strength p is shown in Figs. 4—6. As p decreases
from the physical value to zero, the pole associated with
the resonance He(2 ) goes on the sheet U(i 2) along the
trajectory ending at the point E = —Eg, which corre-
sponds to the singularity of the form factor [see Eq. (6)].
The pole trajectory starting at p = 0 from the posi-
tion Et, of the bare ~He* state moves from the physical
region to the lower half-plane of the sheet U(i 2) (Fig.
6). Thus, the physical resonance He(- ) appears as the
coupled channel pole in the regime of the strong cou-
pling between the d-t channel and the bare He* state.
[Coupled-channel (CC) poles [17] usually appear as a re-
sult of the strong coupling between two-particle (many-
particle) channels. In our case their existence near the
d-t threshold results from the strong coupling to the con-
fined channel. ] Because the pole originating from the
bare state moves away from the resonance region, one
can conclude that the physical resonance is the state as-
sociated predominantly with the d-t system. The quanti-
tative description of the relative contribution of difI'erent
configurations in the physical resonance can be obtained
by using the probability sum rule.

V. THE PROBABILITY SUM RULE

In this section we present the derivation of the formula
that allows one to calculate the probability of finding the

confinement channel configuration within the resonance
region. The starting point is the renormalized bare reso-
nance propagator, which has the form

g(E) = fb )& 6/

E —Ei, —Wi(E) —M2(E)
'

Since there are no singularities except for possible bound
states and the kinematical right-hand cuts on the physi-
cal sheet, Cauchy's integral formula gives

Trg(E)dE = 0

OQ

2x [Trg(E + i0) —Trg(E —i0)]dE

= I — . ) Res Trg(E). (21)
1

bound
states

The integrand in the left-hand side of Eq. (21) gives
the probability of finding the bare SHe' state in the en-
ergy interval dE Since th. ere are no bound states in our
model, the right-hand side of Eq. (21) is equal to 1. For-
mula (21) can also be interpreted as the projection of the
closure relation onto the confined channel subspace. The
energy region 0—0.2 MeV we have considered contributes
only 12' of the normalization condition for the bare s He'
state, confirming our conclusion about the predominant
cluster nature of the resonance He(2 ).3+

if the contour C is taken as shown in Fig. 7. Assum-
ing that the mass operators vanish at infinity (which is
valid for any reasonable choice of the widths), we get the
probability sum rule

l
(

i
I

i
(

l
J

I VI. CONC'LUSION

Within the framework of the RCCM we have investi-
gated the pole structure of the J =

&
resonance invr 3+

0

0.05 "
)&ImE

U(1,2)

Re E

~3-3 -2
I

0 1 2
Re E (Mev)

3 4 5

FIG. 6. The trajectories of the bare-state pole (1) and the
resonance (CC) pole (2) on the sheet U~i 2l, the He' —dt-
coupling strength p being varied at I'2 ——0. FIG. 7. Contour C for the integral in Eq. (20).
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He, which dominates the sH(d, n) He reaction at low

energies. The pole trajectories that result from vary-
ing the coupling strengths of the model potentials allow
us to explore the dynamical origin of the resonance by
extrapolating from the physical values back to the zero-
coupling limit. In this way, the original structure of the
resonance can be determined unambiguously within this
model, since the physical disposition of the poles is in-
dicative only in the weak-coupling regime.

We find that the physical sHe(z ) resonance pole
structure is well defined if one uses data from all three
independent reactions near the d-t threshold, and is prac-
tically independent of the model used to obtain it. We
have also seen that some ambiguities occur if a more lim-
ited data set is chosen, which could account for the dif-
ferences in the location of the shadow pole found in Refs.
[7] and [9]. From the pole trajectories and the probability
sum rule, we have learned that the physical resonance is
predominantly associated with the d-t channel. Further,
we have found that the main and shadow poles respon-
sible for the resonance arise from the singularity asso-
ciated with the d-t channel coupling, rather than those
associated with the bare 5He* resonant state, or with the
Coulomb singularities near the d tthresho-ld. At physical
values, the n-a coupling is suKciently strong to move the
shadow pole from the sheet U(ql, on which it originates,
to the sheet V~2~, but not strong enough to move it away

from the d-t threshold.
The bare state 5He* is essential in building up the

physical resonance, but not in determining its proper-
ties as it approaches the region of the d-t threshold. This
situation is typical for the strong-coupling regime in the
case of spectrum rearrangement when the bare state (the
"primitive") vanishes and leaves behind, like the grin of
the Cheshire cat, the coupled channel state that deter-
mines the observable effects.

Our analysis also supports the approach to the inves-
tigation of the strong interaction effects in the

dt's

mesic
molecule developed in Ref. [18] within the framework
of the (d t, n--o. ) coupled channel model where the res-

onance sHe(z ) was treated as being predominantly of
d-t nature.
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