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We have explored the sensitivity of pp-n#i isospin mixing in L =0,1 atomic states of protonium to
changes in the multipion-exchange contribution to the nucleon-antinucleon (NN) potential. The result-
ing annihilation probabilities y¢ for isospin 7 =0,1 and state a=25*L, are combined with the spin-
flavor weights for transitions NN —M M, in the 3P, model, and confronted with selected measured
branching ratios. Some problems with the phenomenology of the *P, model are identified. We compare
the *P, model with a phenomenological ansatz suggested by Klempt, in which branching ratios are writ-
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ten as a product of spin, isospin, and orbital factors, multiplified by y§.

I. INTRODUCTION

It has often been stressed, for example, by Shapiro [1],
that the nucleon-antinucleon (NN) interaction results
from a subtle interplay between long-range meson-
exchange forces and short-range absorption. The large
value of the annihilation cross section, for instance, is due
to the long-range attraction which focuses the wave func-
tion towards the annihilation region [1].

A more refined analysis shows that the medium- and
long-range forces, though attractive on the average, ex-
hibit a strong spin and isospin dependence. In some par-
tial waves, the potential is strongly attractive while it is
repulsive in other channels [2,3]. We thus expect annihi-
lation to be substantially enhanced or suppressed in some
initial states.

Protonium is the corner stone of this physics. Most
data correspond to NN annihilation at rest, i.e., from pro-
tonium levels of orbital angular momentum L=0,1.
Model calculations have shown that the distortion of the
NN wave function is dramatically spin and isospin depen-
dent in the case of protonium [4-7].

The aim of the present paper is twofold. First, we re-
turn to the calculation of the protonium wave function in
optical models and analyze how it is sensitive to the de-
tails of the input model. In particular, we wish to com-
pare models which contain only the one-pion-exchange
tail in addition to absorption with models where two-
pion-exchange effects (in particular p-meson exchange)
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are included. Second, we discuss the influence of the
spin-isospin dependence of the protonium wave function
on the phenomenology of branching ratios. This subject
has received considerable attention in recent years
[8—11]. It is still an open question whether annihilation
diagrams with planar or rearrangement topology dom-
inate, or whether there is any simple rule at all determin-
ing annihilation at the quark level.

II. INITIAL-STATE INTERACTION

The spin and isospin structure of the NN potential has
been analyzed at length in Refs. [2,3]. The dominant
feature is the strong tensor component in the isospin 7=0
potential, arising from the coherent contributions of =, p,
and o exchanges. This results in a strong repulsion in the
S=1, J =L partial waves, for example, 13P1. In contrast,
in natural parity states there is a strong mixing of the
U+12S+1y . components *(J—1); and (J +1),, result-
ing in a strong attraction for the appropriate combination
of the two partial waves [3].

The consequences of spin-isospin structure for protoni-
um have been discussed in Refs. [4—7]. First, the 'S, and
38, levels receive different energy shifts. The same is true
for the four possible 2 7L, levels for L=1. It has not
yet been possible to measure these fine-structure effects.
Second, the corresponding widths are also different. For
instance, in a typical calculation [6] of the 2P level,
['(*Py)~110 meV, while ['('P,;)=~20 meV. Finally, the
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neutron-antineutron (n#) admixture in the protonium
wave function is a quite important effect at short dis-
tances » S1 fm. It does not significantly increase the to-
tal hadronic width, except perhaps for the 3P, state, but
it dramatically affects the sharing of this width between
the I=0 and the I=1 components [6,7]. In Ref. [7] a
comparison is shown of the values obtained from the
Dover-Richard [6,12] (DR1 and DR2) and Kohno-Weise
[13] (KW) potentials: the differences are small. Furui
et al. [14] have considered a wider class of models with
somewhat larger differences. In Table I, we present the
results of a calculation with the pion exchange only in the
external part and the same cutoff procedure and annihila-
tion core as in DR2. More precisely, we consider a mod-
el

V=V

ann

+V1T+xV21T+[u ’ (1)

where x=1 corresponds to the original DR2 model [6]
and, for x=0, only the pion tail is left. The quantities of
interest are I', the total annihilation width, and
y =TI /T’y which measures the sharing of annihilation be-
tween the /=1 and I=0 components. Remember that
y=1 would be automatic if the charge-exchange poten-
tial, which couples the pp and n# channels, is neglected.
Note that we do not introduce explicitly the coupling to
other _baryon-antibaryon configurations, such as
NA,AN,AA, etc., which could significantly contribute to
annihilation at short distances.

The first surprise in Table I is that AE, I', and y de-
pend very little on x. This deserves some explanation.
Consider for instance the 3Po state. For x=0, the poten-
tial is attractive in J=0, repulsive in /=1. Thus the radi-
al wave function u(**P,) is suppressed while u(!*P;) is
enhanced at short distances and even starts exhibiting os-
cillations. With a purely real potential and in a one-
channel situation u(!*P;) would have a node, since the
atomic state is a radial excitation of a nuclear bound
state; these oscillations are damped by absorption and
isospin mixing. Now, when p-meson exchange and other
intermediate range forces are switched on, u(33P0) is not
suppressed too much further: we are in a regime where
the wave function varies nonlinearly as a function of the
potential strength. On the other hand, the oscillations of
u(I3P0) become more pronounced as x increases, but this
does not change its width very much. This is illustrated
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FIG. 1. Annihilation density d (r) for the =0 component of
the 3P, state of protonium, with the full meson-exchange poten-
tial (x=1) or with the pion tail only (x=0). Units are fm for
the distance r and meV/fm for the density.

in Figs. 1 and 2 where we display the annihilation densi-
ties d () of 3P, and P, wave-function components for
x=0 and x=1, defined as

r= [ “d(rdr, d(r=—2lulIm) . )
0

The stability of the width ratio y with respect to x is
somewhat frustrating, if our goal is to draw some con-
clusions regarding the role of intermediate-range forces
in protonium. On the other hand, it implies that our pre-
dictions for the channel dependence of the I'’s are not
very model dependent and thus more stable than one may
have anticipated. In fact, the x dependence of the pro-
tonium wave function is more pronounced in the pp-ni
basis and it is partially canceled out when one recon-
structs the isospin states relevant for calculating annihila-
tion branching ratios. Also, the stability with respect to
x is less pronounced for models without a strong real part
in the annihilation potential, such as Ref. [13].

TABLE 1. Real part of energy shift AE, total width I'=T",+T, and ratio y =I'; /T, of annihilation
widths in I=1 and I=0 states for the 'S,, 'P,, *Py, and P, levels of protonium, as calculated from the
optical model of Dover and Richard (DR2), with variable strength x of the 27+ exchange potential.
Units of AE and T are keV for S states and meV for P states.

ISO 11)1 3P0 3P1

x AE T y AE T AE T y AE Ty

1.0 0.58 0.52 0.80 —24 14 0.61 —62 40 0.053 36 8.8 6.5
0.8 0.57 0.50 0.73 —23 14 0.62 —57 45 0.045 37 8.7 6.8
0.6 0.56 0.48 0.66 —22 15 0.65 —55 54 0.038 38 8.8 7.2
0.4 0.56 0.47 0.59 —22 15 0.67 —60 63 0.033 39 9.1 7.8
0.2 0.56 0.45 0.55 —22 15 0.64 —172 67 0.032 39 9.5 8.4
0.0 0.56 0.44 0.51 —22 14 0.58 —83 61 0.037 39 9.8 9.0
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FIG. 2. Same as Fig. 1, but for the /=1 component.

III. TESTING ANNIHILATION MECHANISMS

For a given initial state the observed branching ratios
into two mesons also depend on the relative strengths of
the various NN — M M, transitions. The experiments at
the Low Energy Antiproton Ring (LEAR) facility at
CERN [15] have motivated a resurgence of interest in
theoretical models of the annihilation process. Statistical
models, models assuming factorization of spin and flavor
amplitudes, dominance of rearrangement diagrams with
minimal change of the initial quark content, dominance
of annihilation diagrams with planar topology, etc., have
all led to different predictions [8]. To test these models,
one would like to separate the effects of initial-state in-
teractions from the intrinsic annihilation rates.

A first idea consists of comparing channels with the
same quantum numbers. For instance, 7°7° and nm arise
from the same !*P, and 3P, channels. However, these
two decays involve quite different momentum transfers g,
and hence are sensitive to different regions of the same
NN radial wave functions u (). Since u (#) is likely to ex-
hibit a node, or, at least, sharp variations [7,16] (see Fig.
1), the ratio w7 /mm cannot be reduced to a simple prod-
uct of phase-space and Clebsch-Gordan factors.

Another strategy was recently attempted by Klempt
[17], who compared two-meson channels with about the
same g value, but different isospin. An example is the ra-
tio nw/mp. Adopting this strategy, we extend somewhat
the results of Klempt [17] to predict a number of other
ratios of two-body modes. These are compared to the
predictions of a modified version of the 3P, model [9], in
which the effects of pp-n7i mixing are included as isospin
probabilities, as in the model of Klempt [17]. In a num-
ber of cases, particularly for L=1, these two models yield
ratios which differ by an order of magnitude. We argue
that a systematic measurement of such two-body branch-
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ing ratios B for both L=0,1 will allow one to clearly dis-
tinguish between these two models. In view of the ex-
treme simplicity of this treatment of initial-state interac-
tions, we would not be surprised if more comprehensive
and precise data led to the demise of both models.

IV. TWO SIMPLE MODELS

In the approach of Klempt [17], the branching ratio B
for a transition from an NN atomic state i = {LSJ} to a
two-meson final state M| +M, (isospins I,I,) is written
as [19,20]

BiM,,M,)=(2J +1)C(I;1,1,)f (1,2)y (i) /T (i) .
(3)

Here, v,(i) is the probability that the state i has isospin I,
with normalization condition y +yi=1. The allowed
value of I is determined by G-parity conservation:
(—)E*S*=G,G,, where G; are the G parities of the
mesons. The total width of state i is given by I',,(i). For
a pure pp initial state, we have yy(i)=y,(i)=1/2. When
pp-nA mixing is included, we identify y (i) /y (i) with the
rate y =TI, /T, of total annihilation widths for state i, as
shown in Table I. For our numerical estimates, we adopt
the isospin probabilities shown in Table II. In Eq. (3),
f(1,2) is the kinematical form factor; in Ref. [17], it is as-
sumed to depend on g and the relative orbital angular
momentum / of the M, M, system. In the 3P, model [9],
f(1,2) also depends on the NN orbital angular momentum
L. Since we only form ratios of rates for transitions with
the same {L,/} values and approximately the same
q,f(1,2) cancels out, and we do not need to specify its
form here. Finally, C(I;I,I,)is a phenomenological fac-
tor, assumed to depend only on isospin, and determined
by Klempt [17] via a fit to certain branching ratios for

L=0. For instance, we have [21], assuming
[ 1S9) =T3S ), the ratios
L pt 0
c(1;01)/C(0;00)=12 Blme) 1 (42)
vi Bigw) 2
t 0 t( 0
co;11)/c (000 =211 Bmp) 3 g,
Bi(nw)Bi(m'w) 4

TABLE II. Isospin probabilities y} for L=0,1 atomic NN
states. We use the values for model DR2, with x=1, and tensor
coupling included. For y,(!S,) and 7,(3S,-*D, ), we use the no-
tation y and 7y}, respectively, in the text. T, in keV for L=0,
in meV for L=1.

State i Yoli) v(i) T o)
1S, 0.56 0.44 1.0

38,-*D, 0.56 0.44 0.9
P, 0.62 0.38 28.6
3P, 0.95 0.05 80.0
3p, 0.13 0.87 17.6

’p,-’F, 0.60 0.40 32.8
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3y! BS(r*ta; ) C(0;00) 10’

C(1;11)/C(0;00)=

(4c)

where the superscripts ¢ and s refer to >S,->D, and 'S, in-
itial NN states, respectively. The numerical values in
Egs. (4a)—(4c) result from using the y,(i) values in Table
II and the measured ratios [17]

Bi(7°w)
B'(7%)
(0]

t
Bp7) _6.4240.05 , (5b)

=0.57739%, (5a)

Bimr*ay)
———F——=0.34+0.07 . (5¢)
BS(7r%ay)
Note that the ratios of C’s are very different from the ra-
tios of isospin Clebsch-Gordan coefficients, which would
correspond to 1, 1/3, 1/2 for Egs. (4a)—(4c), respectively;
this latter assumption is made by Vandermeulen [22].

The second model we consider is a variant of the *P,
model [9,23], in which we write

BiM,M,)=(2J +1)
XSF(i —>M M,)f(1,2)y;(i)/T (i), (6)

where SF(i —M M) are the spin-flavor weights tabulat-
ed by Maruyama, Furui, and Faessler [9]. These weights,
unlike C(I;I,1,), depend on {LSJI}, so there is no fac-
torization of spin and isospin terms. The values of SF are
calculated from the planar diagram shown in Fig. 3
(sometimes referred to as “A42” in the literature), where
two quark-antiquark (QQ) pairs are annihilated and one
created, each vertex being described in the 3P0 model in
terms of QQ pairs with vacuum quantum numbers
[0+ +(0+ ) ]

In Eq. (6), as well as Eq. (3), the full effect of initial-
state interactions is subsumed in the isospin probability
v (i), and final-state meson-meson interactions are ig-
nored. This represents a drastic simplification of the
complicated dynamics of the NN annihilation problem.
Nevertheless, it is of interest to work out the detailed pre-
dictions of these two models, which differ qualitatively in
certain cases and are very similar in others.

My
>
N M,
FIG. 3. Planar annihilation diagram “A42” describing

nucleon-antinucleon annihilation into two mesons.
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V. CONSEQUENCES FOR S-WAVE
ANNIHILATION
In the *P, model, we obtain the equality
Bi(r°0) _ B'(qp®) _ B'pf2) _ B'map® _ 3 71
Bt('TTOPO) B'(na)) B’(a)fz) Bt(ﬂ_opo) 4 '}’(t) ’
@)

where 7,q=(u#i +dd)/V2 corresponds to ideal mixing.
For a pseudoscalar mixing angle Opg~ —20°, as in Ref.
[18], we have

B(nX)~ %B (7:X) - ®)

The equality (7) is consistent with Egs. (5a) and (5b) and

the measured ratios [17]
B(p°f,)
ZPT2 6484012,

B ((!)fz)

9)

if we choose
t
V—: ~0.63+0.07 . (10)
Yo

This is close to the ratio y=0.8 shown in Table I for the
38,-*D, state, which includes the strong effects of tensor
coupling. The equality of the ratios (7) can also be under-
stood in the model of Eq. (3) if a somewhat larger value
v /vE=1.171332 is chosen [17]. A characteristic of
model calculations which include tensor coupling is that
vi/v§<1, so that Eq. (10) seems more consistent with
theoretical expectations.

With the C’s of Eq. (3) now determined, one can make
a number of consistency checks involving other ratios.
For instance, we predict

Bi(w*p~) _ Yori Bl(mTay)
Bimtp™)

. (11
Ivori Bimray)
Using the values BS(m'p~)=(4.6+2.0)X10"* and
B(mtp~)=(165+8) X 10~ * from Ref. [17], we obtain

BS(wtp )/BmtpT)=(2.8+1.4)X107% . (12)

The smallness of this ratio is known as the “mp puzzle,”
and represents an example of an approximate dynamical
selection rule in NN annihilation. Using the 7a, ratio of
Eq. (5¢), we find that Eq. (11) is approximately satisfied.
In the model of Eq. (3), this dynamical selection rule is a
consequence of the smallness of the ratio C(1;11)/C(0;00),
as per Eq. (4c). Note that this is the result of a fit, and is
not a dynamical prediction. If we assume the C ratios are
independent of L, as in Ref. [17], we also predict dynami-
cal selection rules for L=1; the nonappearance of these
would rule out the model of Eq. (3). The L=1 case is
treated in the next section.
In the 3P, model of Eq. (6), we predict



&

Biwtay) _ KA

BS(wtay) 7§

18.778
18

~2.5 (13)

including only the contribution **S; —7*a; (I=2) in the
numerator. The factor in parentheses arises from the SF
weights. This disagrees qualitatively with Eq. (5c). Simi-
larly, including only !3S,, we would obtain

BS(wpT) _ Y1 |3
Bi(mw™pT) 3yg |2

in disagreement with Eq. (12). Thus the simple form (6)
of the *P, model fails to reproduce the mp or ma, dynam-
ical selection rules. For the 7p case, it has been shown by
Maruyama et al. [10] that constructive interference of
13§, and *D, initial states, neglected in Eq. (14), is cru-
J

(22.61+2.3)X 1073 Bizzarri et al. [24],
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cial in understanding the “mp puzzle.” Such interference
phenomena cannot be understood in terms of isospin
probabilities alone, as postulated in Eq. (6). Each case
must be treated separately, since the interference will de-
pend on [ and g. For instance, a large destructive S ,-
3D, —ma,(I=2) interference is needed to bring Eq. (13)
in accord with Eq. (5c). However, the tensor mixing [3]
is much less significant for /=1 than for I=0, so the in-
terference is expected to be less dramatic than for mp. It
would be worthwhile to systematically investigate such
interferences in mesonic channels fed by the *S;-*D, in-
itial state; in addition to mp(I/=1), these include nw(/=1)
and 7b(1=0,2).

For L=0, there are several other ratios which involve
the same {Llg} values. These are collected in Table III.
The experimental data have large error bars and are
somewhat contradictory. We have

BYp°)=1(743)x 1073 Baltay et al. [25] , (152)
$=(1446)X10"3 Bloch et al. [26], (15b)
(1.2+1.2)X 1073 Diaz et al. [27],
B(p%p")= [(4i3)><10_3 Baltay et al. [28] (15¢)
from which we obtain the ratios
B0/ w) = io.o9ig;3; Diaz et al. [27], t6a
0.29133% Baltay et al. [28],
1.674:% Bizzarri et al. [24],
B(p°w)/Bow)= ,0.5f8;§ Baltay et al. [25] . (16b)

Using the values B(7%a9)=(132+31)X 10~ * and B*(7°f,)=(39.6+7.9) X 10~ * given by Klempt [17], we find
B(7%?)/B5(#°f,)=3.3"]3%. (17)

Comparing Egs. (16) and (17) with the predictions of Table III, we see that the P, model does not seem to be consistent
with any of the above ratios, although we must emphasize that the error bars are very large. Unfortunately, new re-
sults from LEAR experiments on pp, pw, and @ modes have not yet been published. The Klempt model may be con-
sistent with the 7a,/7f, and p’w/wo ratios, but provides no mechanism for the apparent suppression of p%°/ww.
Precise experimental data are needed to test these simple models more stringently.

VI. CONSEQUENCES FOR P-WAVE ANNIHILATION

Our two models differ rather dramatically in their dependence on the initial-state orbital angular momentum L.
Klempt [17] assumes that the Cs in Eq. (3) are independent of L. There is no motivation for this assumption except
simplicity, but it is worth testing in any case. In the *P, model, on the other hand, the factors SF on Eq. (6) depend
strongly on L for a fixed transition NN —M,;M,. We now compare transitions with approximately the same g, as be-
fore, and point out the qualitative differences between the two models.

First consider the L =1 ratios analogous to Eq. (7). We find

C(1;01)y,('P))
B('P,—>7’0) B('P,—np°) __ B('P,—p°f,) B('Pi—>np°) m)—y‘—(l—}ﬁzo.% [Eq. (3)], s8)
B(P, %) B(P,—no) B(P,—afy) B(P,—a%") e e

These ratios, which are not yet experimentally determined, are seen to be significantly different for the two models: this
is due to the marked increase in the SF ratio from 3/4 for L=0 to 2.78 for L=1 in the *P, model.

The predicted ratios for p-wave annihilation which are analogous to those shown in Table III, are displayed in Table
IV. When several initial J values contribute, we add the contributions with the statistical weight (2/+1). For example,
we write
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B(CPy, ,—7°f1(1=1))

from Eq. (3), where a;=a,(1260)[17"(17)] and
f1=11(1285)[171(0")]. Here, we define 7,(i)
=y (i) /T, (i). If two different / values occur, the corre-
sponding ratios are generally different for the *P;, model,
so we quote them separately (for L=0, the /=0 and /=2
ratios discussed previously are the same).

In Table IV, we note that the only significant difference
between the two models is in the 7°b9 /7% | ratio. In the
3P, model, the SF matrix elements for the transitions
Up, »7%9%(1=1) and 3'P,—u°h,(I=1) both vanish.
These are two examples of dynamical selection rules pre-
dicted by the 3P, model, i.e., transitions which are al-
lowed by conservation of J™(I¢) quantum numbers, but
in fact forbidden by the dynamics of the model. It will be
very interesting to see if there is any sign of these 3P,
selection rules in the L=1 data from LEAR.

In Table V, we display predicted ratios of charged to
neutral modes for the same final state M;M,. In the
Klempt model, each of these ratios is a product of
C(1;11)/C(0;11)=2/15 and a factor depending on iso-
spin probabilities. The smallness of C(1;11)/C(0;11),
which successfully describes the small ratios (5¢) and (12)
for L=0, then implies a number of approximate dynami-
cal selection rules for L=1 as indicated in Table V. In
the case of the ratios 7+ p~ /7%° or 7*a; /7%, the
predictions of the *P, model are of order unity, so the
two models are clearly distinguished. If the suppressed
ratios predicted by the Klempt model for L=1 are not
found in the data, the model can be rejected. Alternative-
ly, one could argue that the C’s could be independently fit
J

B(L=1—7"a;) [37,P;)C(0;11)+57,(*P,)C(0;11)+3%,('P,)C(1;11)] Lo

(19)

[7.CPy)+37,3P,)+57,(3P,)] C(1;01)

M
to the L=1 data, but such a model would have little con-

tent.

The annihilation process NN(L =1)—mp was studied
in detail by the ASTERIX Collaboration at LEAR (May
et al. [29]). They give

B(P,—7tp7)

B('P, 7%
which does not suggest a dynamical selection rule for the
L =1 mp system. As seen from Table V, neither the
Klempt model nor the *P, model is in agreement with
Eq. (20). Another potential difficulty for the *P, model is
seen in the ma, /7 f ratio. Klempt [17] gives

B(L=1-7%a; )=(4.5+2.4)X107%,

~0.64 (20)

(21)
B3P, —7°f,)=(18.0£2.5)X107%,
and hence
— +, -
B(L=1->m"a, )=0 25+8'%5 (22)
B (3P, —>n°f,) e

The allowed L=1 transitions are 13P1_2—>7r+a2_ and
Bp,—m"a; . Using the SF weights of Ref. [9] and iso-
spin probabilities and widths from Table II, we predict

B(L=1->7%a;)

=~0.7, (23)
B(33P1""7T0f2)

larger than Eq. (22). Similarly, it is difficult to explain the
observed smallness of this ratio using the model of Eq.
(3). In this case, we predict

B3P, —>7°f,)

TABLE III. Ratios of branching rates for L =0 NN
annihilation at rest. We use the standard notation
a,=a,(1320)[J"(I1%)=2%*(17)], b,=b,(1235)[17~(11)], f>
=£,(1270)[2**(0")]. As in the text, the notation B%(p°p®)
stands for B(!1S;—p%%! =1)), etc. For #°b$ and #°h,, both
[=0 and /=2 are possible, and the ratio is the same for each in
both models. The numbers in brackets are obtained using Egs.
(4a)—(4c) and Table II.

Klempt )
Ratio model [Eq. (3)] model [Eq. (6)]
Bp%°)/B(00) —gigi—&‘); (3/4] 1
B%(p°0) /B 0w) %;:g—z(l):—g(l% [0.4] 2997-2:5- [4.4]
B (7°%a3)/B(7°f,) %?%%i; [1.9] 795?% [0.5]
B(7°bY)/B"(n°hy) %’%‘:ié—i; [1.9] :—;‘;’ [1.7]

(24)

37,(°P,)C(1;01)

The results (23) and (24) are rather sensitive to how we
treat the coupled *P,-13F, partial wave. In the above,
we have attributed the entire probability y, to the *P,
component. In the tensor-coupled calculations ([7],
¥0=0.60 in Table II splits up into 0.37 for the 3P, com-
ponent and 0.23 for 1*F,. If we simply suppress the '3F,
piece, the ratios (23) and (24) become 0.56 and 0.85, re-
spectively. Finally, if we make the extreme assumption
of complete destructive interference of '*P,—ma, and
BF, —»ma, amplitudes, we would obtain 0.35 and 0.28 for
Eqgs. (23) and (24), not far from the experimental value of
Eq. (22). Clearly one should take such interferences into
account explicitly, particularly for /=0 channels.

One can also use the ratio (22) to obtain a limit on
yo(*Py)/y7,(*P,), since we have

B(L=1—7n"a;)
B(33P1—‘>7To 2)

7’0(3P1)
?’1(3P1) '

(25)

where
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TABLE IV. Predicted ratios of branching ratios B for neutral modes in NN(L =1)—M M,

annihilations.

Ratio

Klempt ’Py
model [Eq. (3)]

model [Eq. (6)]

B(*P;,,—p°p°(1=0,2))
B(*Py, —ww(l =0,2))
B(®Py,, ,—p’o(1=0,2))
B(*Py , —ww(l =0,2))
B(*P,,—»7%3(1=1))
BCP,—7°f,(1=1))
B('P,—>7°b%(1=1))
B('P, —»7°h (I=1))

0.8 1

1.0 0.7(1=0),3.2(I1=2)
0.8 0.3

2.5 Both zero

§=C(0;11)/C(1;01)=3/2
for the Klempt model and

E=SF(®P,»m%a; )/SF(¥P,—»7°f,)=1/3
for the P, model. From Eq. (22), we then obtain

y,CGPy) 6 (Klempt) ,

7P |4/3 CPy). (26)
Thus in the Klempt model, we get a clear indication that
the large value of y,(*P;)/y,(°P,) (6.7 in Table II) ex-
pected theoretically, and arising because of the repulsive
tensor potential in the '*P, channel, is indeed seen in the
data. In the 3P0 model, on the other hand, the factor § is
smaller, and the restriction (26) is much weaker. The
other dramatic prediction of the isospin mixing calcula-
tions, namely, that y,(3Py)>>y,(3P,), is difficult to
confirm based on the existing data. The problem is that
there are no transitions which are fed only by the 3P,

channel; in all cases, the *P, or *P; (or both) initial states
also contribute, and the branching ratio
NN(GP;)—>M M, is not very sensitive to the P, part,
which has the lowest statistical weight (2J+1).

VII. CONCLUSIONS

The problem of initial- and final-state interactions in
NN annihilation is a very complicated one. It is clear
from various estimates that such interactions strongly
distort predictions for relative branching ratios based on
the Born approximation. What is not clear is how to in-
corporate these interactions in a quantitative way. In the
present paper, we compare two models in which the effect
of initial-state interactions in the NN atom is expressed in
terms of probabilities ¢ that states i = {LSJ} have iso-
spin components 1=0,1. These ¥} depend very strongly
on i, particularly for L=1 initial states. The dominant
effect at work here is the =0 tensor force, which is
coherently attractive for L =Jx1 and repulsive for

TABLE V. Predicted ratios of charged to neutral modes for NN(L=1) annihilations.

Ratio

model [Eq. (3)]

Klempt *Py
model [Eq. (6)]

B(CP, -7 p~(1=0))
B('P,—7%%1=0))
B(CP,,—»7mtp (1=2))
B('P, —»7%%1=2))
B(1P1—>p+p_(l=O))
B(*Py,—p°p°(1=0))
B('P,—ptp (1=2))
B(JPo,z‘*POPO(l:z))
B(P,—>7mta; (I=1))
B(3P0,1,2—>7r°a?(l=1))
B('P,>7ta; (I1=1))
B3P, —»7%a3(I=1))

03 6.3
0.4 3.9
0.05 0.17
0.05 0.25
0.04 0.07
0.05 08
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L =J. We have investigated the sensitivity of ¥} to
modifications for the vector meson contribution to the
tensor potential. Our conclusion is that the dramatic
effects of short-range pp-nfi mixing already occur when
only single pion exchange is included, and that there is no
qualitative modification of ¢} from (p,w) exchange.

The two models that we study, in addition to y%, in-
corporate a channel-dependent spin-flavor factor. In the
first model, due to Klempt [17], this factor is assumed to
depend only on isospins, whereas in the second model, we
use the 3P, spin-flavor recoupling factors. Both of these
models can be adjusted to produce a number of relative
branching ratios for L=0. However, they give dramati-
cally different predictions for certain transitions from ini-
tial L =1 NN states. Data which will become available
from experiments at the LEAR facility at CERN should
clearly distinguish between the two models considered
here, enabling us to reject one, or more likely both, of
them.

We have identified some problems with both the
Klempt [17] and *P, models, based on the existing data.
Note that we have considered only one form of the *P,
model, with the planar 42 topology of Fig. 3. Some ad-
mixture of rearrangement amplitudes [9] may improve
the situation. However, there are a number of conceptual
problems with such simple models. The use of isospin
probabilities 7} clearly does not take into account the in-
terferences which are likely to be strong for tensor-
coupled partial waves, particularly 135,-*D; and “P,-
BF,. Maruyama et al. [10] have shown that *S,-1*D,

C. B. DOVER, J.-M. RICHARD, AND J. CARBONELL 44

constructive interference is very important for an under-
standing of the “mp puzzle.” There is another potentially
serious problem with the use of probabilities. These re-
sult from an average over the annihilation region, in the
context of an optical model calculation of NN wave func-
tions. Inspection of these wave functions reveals that the
I=1 to I=0 ratio depends sensitively on the distance r.
When one isospin component dominates, the effect is
most pronounced at short distances, in the region which
is relevant for the sizable g values characteristic of two-
body final states. Thus, the branching ratios may not
reflect the average values y;. Further, our estimates of
1/5 have been obtained by assuming a local and channel-
independent annihilation potential W (r). In microscopic
models, W is nonlocal and spin-isospin dependent, so our
assumption is clearly an oversimplification. Nevertheless,
we still find it useful to investigate simple treatments of
initial-state interactions, in order to see where they break
down. This may provide some hints as to how to proceed
to a more refined picture of the low-energy NN annihila-
tion process.
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