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We have explored the sensitivity of pp-nn isospin mixing in L =0, 1 atomic states of protonium to
changes in the multipion-exchange contribution to the nucleon-antinucleon |,'NN) potential. The result-

ing annihilation probabilities yz for isospin I =0, 1 and state a= +'LJ are combined with the spin-
flavor weights for transitions NN~M&M2 in the 'Po model, and confronted with selected measured
branching ratios. Some problems with the phenomenology of the Po model are identified. We compare
the Po model with a phenomenological ansatz suggested by Klempt, in which branching ratios are writ-
ten as a product of spin, isospin, and orbital factors, multiplified by yl.

I. INTRODUCTION

It has often been stressed, for example, by Shapiro [1],
that the nucleon-antinucleon (NN ) interaction results
from a subtle interplay between long-range meson-
exchange forces and short-range absorption. The large
value of the annihilation cross section, for instance, is due
to the long-range attraction which focuses the wave func-
tion towards the annihilation region [1].

A more refined analysis shows that the medium- and
long-range forces, though attractive on the average, ex-
hibit a strong spin and isospin dependence. In some par-
tial waves, the potential is strongly attractive while it is
repulsive in other channels [2,3]. We thus expect annihi-
lation to be substantially enhanced or suppressed in some
initial states.

Protonium is the corner stone of this physics. Most
data correspond to NN annihilation at rest, i.e., from pro-
tonium levels of orbital angular momentum L=0,1.
Model calculations have shown that the distortion of the
NN wave function is dramatically spin and isospin depen-
dent in the case of protonium [4—7].

The aim of the present paper is twofold. First, we re-
turn to the calculation of the protonium wave function in
optical models and analyze how it is sensitive to the de-
tails of the input model. In particular, we wish to com-
pare models which contain only the one-pion-exchange
tail in addition to absorption with models where two-
pion-exchange eFects (in particular p-meson exchange)

are included. Second, we discuss the inhuence of the
spin-isospin dependence of the protonium wave function
on the phenomenology of branching ratios. This subject
has received considerable attention in recent years
[8—11]. It is still an open question whether annihilation
diagrams with planar or rearrangement topology dom-
inate, or whether there is any simple rule at all determin-
ing annihilation at the quark level.

II. INITIAL-STATE INTERACTION

The spin and isospin structure of the NN potential has
been analyzed at length in Refs. [2,3]. The dominant
feature is the strong tensor component in the isospin I=O
potential, arising from the coherent contributions of m, p,
and co exchanges. This results in a strong repulsion in the
S= 1, J=L partial waves, for example, ' I'&. In contrast,
in natural parity states there is a strong mixing of the

+'Lz components ' (J—1)z and '(J+1)J, result-

ing in a strong attraction for the appropriate combination
of the two partial waves [3].

The consequences of spin-isospin structure for protoni-
um have been discussed in Refs. [4—7]. First, the 'So and
S& levels receive different energy shifts. The same is true

for the four possible +'Lz levels for L=1. It has not
yet been possible to measure these fine-structure effects.
Second, the corresponding widths are also different. For
instance, in a typical calculation [6] of the 2P level,
I ( Po) = 110 meV, while I ('P, ) =20 meV. Finally, the
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ing ratios B for both L=0, 1 will allow one to clearly dis-
tinguish between these two models. In view of the ex-
treme simplicity of this treatment of initial-state interac-
tions, we would not be surprised if more comprehensive
and precise data led to the demise of both models.

IV. TWO SIMPLE MODELS

In the approach of Klempt [17], the branching ratio 8
for a transition from an NN atomic state i = II.SJ] to a
two-meson final state M, +M@ (isospins I„Iz) is written
as [19,20]

8'(M„M~)=(2J+1)C(I;I,I2)f (1,2)yi(i)/I «,(i) .

0--
0

FIG. 2. Same as Fig. 1, but for the I= 1 component.

III. TESTING ANNIHILATION MECHANISMS

For a given initial state the observed branching ratios
into two mesons also depend on the relative strengths of
the various NN ~M &M& transitions. The experiments at
the Low Energy Antiproton Ring (LEAR) facility at
CERN [15] have motivated a resurgence of interest in
theoretical models of the annihilation process. Statistical
models, models assuming factorization of spin and Aavor
amplitudes, dominance of rearrangement diagrams with
minimal change of the initial quark content, dominance
of annihilation diagrams with planar topology, etc., have
all led to different predictions [8]. To test these models,
one would like to separate the effects of initial-state in-
teractions from the intrinsic annihilation rates.

A first idea consists of comparing channels with the
same quantum numbers. For instance, m ~ and gg arise
from the same Pp and ' I 2 channels. However, these
two decays involve quite different momentum transfers q,
and hence are sensitive to different regions of the same
NN radial wave functions u (r). Since u (r) is likely to ex-
hibit a node, or, at least, sharp variations [7,16] (see Fig.
1), the ratio m.m. /pe cannot be reduced to a simple prod-
uct of phase-space and Clebsch-Gordan factors.

Another strategy was recently attempted by Klempt
[17], who compared two-meson channels with about the
same q value, but different isospin. An example is the ra-
tio gm/gp. Adopting this strategy, we extend somewhat
the results of Klempt [17] to predict a number of other
ratios of two-body modes. These are compared to the
predictions of a modified version of the Po model [9], in
which the effects of pp-nn mixing are included as isospin
probabilities, as in the model of Klempt [17]. In a num-
ber of cases, particularly for L= 1, these two models yield
ratios which differ by an order of magnitude. We argue
that a systematic measurement of such two-body branch-

1'o 8'
c(1;ol)/c(o;oo) =

yi 8'(geo)
(4a)

C (0; 11)/C (0;00)=
8'(rico)8'(rr co) 4

(4b)

TABLE II. Isospin probabilities y& for L=0,1 atomic NN
states. We use the values for model DR2, with x= 1, and tensor
coupling included. For yI('Sp) and yi( S&- D&), we use the no-
tation yi and yi, respectively, in the text. I «, in keV for L=O,
in meV for L=1.

State i

Sp
'S, -'D,

Ip
3p
3p

3 3p2- I'2

yp(i)

0.56
0.56
0.62
0.95
0.13
0.60

yl(i)

0.44
0.44
0.38
0.05
0.87
0.40

1.0
0.9

28.6
80.0
17.6
32.8

Here, y 1(i ) is the probability that the state i has isospin I,
with normalization condition yo+y', =1. The allowed
value of I is determined by G-parity conservation:
( —)

+ + =G, G2, where G; are the G parities of the
mesons. The total width of state i is given by I «,(i). For
a pure pP initial state, we have yo(i)=yi(i)=1/2. When

pp nrT mix-ing is included, we identify y, (i)/yo(i) with the
rate y =I, /I'o of total annihilation widths for state i, as
shown in Table I. For our numerical estimates, we adopt
the isospin probabilities shown in Table II. In Eq. (3),
f(1,2) is the kinematical form factor; in Ref. [17], it is as-
sumed to depend on q and the re1ative orbital angular
momentum I of the M, M2 system. In the Po model [9],
f(1,2) also depends on the NN orbital angular momentum
L. Since we only form ratios of rates for transitions with
the same I I., I ) values and approximately the same
q, f(1,2) cancels out, and we do not need to specify its
form here. Finally, C(I;IiI2) is a phenomenological fac-
tor, assumed to depend only on isospin, and determined
by Klempt [17] via a fit to certain branching ratios for
I.=0. For instance, we have [21], assuming
I „,('So) = I „„(S, ), the ratios
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' 8'(~+a2 ) C O;11C (1;11)/C(0;00)=
3y& Bt(~+a& ) C(0 00) 10

(4c)

where the superscripts t and s refer to S& - D
&

and 'So in-
itial NX states, respectively. The numerical values in
Eqs. (4a) —(4c) result from using the yz(i) values in Table
II and the measured ratios [17]

V. CONSEQUENCES FOR S-WAVE
ANNIHILATION

8'(~ to)
Bt( 0 0)

In the Po model, we obtain the equality

8'(~p') 8'(pf2) 8'(n;d p')
8'(geo) 8'(cof~) 8'(m. p )

3 V1

4 y

08 (7r co) +o O9

8'(m p)
gt 0

,
'"P ' =O. 42+O. O5,

8'(gto)
8'(~+a2 ) =0.34+0.07 .
8'(~+a2 )

(5a)

(5b)

(5c)

where rl;d=(uu+dd)/&2 corresponds to ideal mixing.
For a pseudoscalar mixing angle Ops ———20, as in Ref.
[18],we have

8 ( gX) = B(g;dX—) .2
3

(8)

The equality (7) is consistent with Eqs. (Sa) and (5b) and
the measured ratios [17]

Note that the ratios of C's are very different from the ra-
tios of isospin Clebsch-Gordan coefficients, which would
correspond to 1, 1/3, 1/2 for Eqs. (4a) —(4c), respectively;
this latter assumption is made by Vandermeulen [22].

The second model we consider is a variant of the Po
model [9,23], in which we write

8'(Mi, M~)=(2J+1)
X SF(i~M, M2)f(1,2)y~(i)/I „„(i), (6)

where SF(i~M&M2) are the spin-flavor weights tabulat-
ed by Maruyama, Furui, and Faessler [9]. These weights,
unlike C(I;I,I2), depend on [LSJl], so there is no fac-
torization of spin and isospin terms. The values of SF are
calculated from the planar diagram shown in Fig. 3
(sometimes referred to as "A2" in the literature), where
two quark-antiquark (QQ) pairs are annihilated and one
created, each vertex being described in the Po model in
terms of QQ pairs with vacuum quantum numbers
[()++(0+)]

In Eq. (6), as well as Eq. (3), the full effect of initial-
state interactions is subsumed in the isospin probability
y~(i), and final-state meson-meson interactions are ig-
nored. This represents a drastic simplification of the
complicated dynamics of the XX annihilation problem.
Nevertheless, it is of interest to work out the detailed pre-
dictions of these two models, which differ qualitatively in
certain cases and are very similar in others.

Bt( 0
) =0.48+0. 12,8'(~f2)

gt 0' "P ' =O.28+O. O3
t( rr0p0 )

if we choose

71
, =0.63+0.07 .

'Yo
(10)

This is close to the ratio y=0.8 shown in Table I for the
S,- D, state, which includes the strong effects of tensor

coupling. The equality of the ratios (7) can also be under-
stood in the model of Eq. (3) if a somewhat larger value
y', /yo=1. 17+ozs is chosen [17]. A characteristic of
model calculations which include tensor coupling is that
y', /yo& 1, so that Eq. (10) seems more consistent with
theoretical expectations.

With the C's of Eq. (3) now determined, one can make
a number of consistency checks involving other ratios.
For instance, we predict

8'(m. +p ) yoy &

8'(~+p ) 9yoy', 8'(m. aq )

Using the values 8'(rt+p ) = (4.6+2.0) X 10 and
8'(rt+p )=(165+8)X 10 . from Ref. [17],we obtain

8'(~+p )/8'(m+p ) =(2. 8. +1.4) X 10 (12)

M2

FICx. 3. Planar annihilation diagram "A2" describing
nucleon-antinucleon annihilation into two mesons.

The smallness of this ratio is known as the "mp puzzle, "
and represents an example of an approximate dynamical
selection rule in NX annihilation. Using the ma2 ratio of
Eq. (5c), we find that Eq. (11) is approximately satisfied.
In the model of Eq. (3), this dynamical selection rule is a
consequence of the smallness of the ratio C(1;11)/C(0;00),
as per Eq. (4c). Note that this is the result of a fit, and is
not a dynamical prediction. If we assume the C ratios are
independent of L, as in Ref. [17],we also predict dynami-
cal selection rules for L=1; the nonappearance of these
would rule out the model of Eq. (3). The L= 1 case is
treated in the next section.

In the I'o model of Eq. (6), we predict
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18.778 =2.5
8'(m. +a~ ) yp

including only the contribution S,~++a@ (1=2) in the
numerator. The factor in parentheses arises from the SF
weights. This disagrees qualitatively with Eq. (Sc). Simi-
larly, including only '

S&, we would obtain

(13)

8'(n+p .
)

8'(m+p ).

V1 3 ~O 4
Xo

(14)

in disagreement with Eq. (12). Thus the simple form (6)
of the Po model fails to reproduce the mp or vra2 dynam-
ical selection rules. For the mp case, it has been shown by
Maruyama et al. [10] that constructiue interference of
' S, and ' D, initial states, neglected in Eq. (14), is cru-

I

cial in understanding the "mp puzzle. " Such interference
phenomena cannot be understood in terms of isospin
probabilities alone, as postulated in Eq. (6). Each case
must be treated separately, since the interference will de-
pend on l and q. For instance, a large destructive S,-

D, ~ma2(i=2) interference is needed to bring Eq. (13)
in accord with Eq. (Sc). However, the tensor mixing [3]
is much less significant for I=1 than for I=O, so the in-
terference is expected to be less dramatic than for mp. It
would be worthwhile to systematically investigate such
interferences in mesonic channels fed by the ' S&-' D, in-
itial state; in addition to mp(i= 1), these include rico(/= 1)
and m.b

&
(l=0,2).

For L=O, there are several other ratios which involve
the same [Llq j values. These are collected in Table III.
The experimental data have large error bars and are
somewhat contradictory. We have

8'(p co)= '

(1.2+1.2)X10 Diaz et al. [27],
Bs( P P)

(4+3) X 10 3 Baltay et ctl. [28]

(22.6+2.3) X 10 Bizzarri et al. [24],
(7+3)X10 Baltay et al. [25],

8'=(14+6)X 10 Bloch et al. [26],
T

(15a)

{15b)

(15c)

from which we obtain the ratios

8'(p co)/8'(coco) = '

0, 09+p'p9 Diaz et al. [27]

0 29+ ' Baltay et ctl. [28),
1.6+p 6 Bizzarri et al. [24],
0. 5+pp s3Baltay et al. [25] .

(16a)

{16b)

Using the values 8'(n. az)=(132+31)X10 and 8'(n fz)=(39.6+7.9) X10 given by Klempt [17),we find

8'(~ a )/8'(n. f )=3 3+' (17)

Comparing Eqs. (16) and (17) with the predictions of Table III, we see that the Pp model does not seem to be consistent
with any of the above ratios, although we must emphasize that the error bars are very large. Unfortunately, new re-
sults from LEAR experiments on pp, pcu, and coco modes have not yet been published. The Klempt model may be con-
sistent with the n.a2/~f& and p co/coco ratios, but provides no mechanism for the apparent suppression of p p /coco.

Precise experimental data are needed to test these simple models more stringently.

VI. CONSEQUENCES FOR P-WAVE ANNIHILATION

Our two models differ rather dramatically in their dependence on the initial-state orbital angular momentum L.
Klernpt [17] assumes that the C's in Eq. (3) are independent of L. There is no motivation for this assumption except
simplicity, but it is worth testing in any case. In the Pp model, on the other hand, the factors SF on Eq. (6) depend
strongly on L for a fixed transition NN~M&M2. We now compare transitions with approximately the same q, as be-
fore, and point out the qualitative differences between the two models.

First consider the L = 1 ratios analogous to Eq. (7). We find

8('P, ~m co)

8('P, m p)

8 ('P, ~pp) 8 ('P, p'f, )

8 ('P, -q~) 8('P, ~~f, )

C(1;01)y,('P, )
8('P& q;dp), =0.46 [Eq. (3)],

C(0; 11) y('pP, )8('P op)
2. 78y /( P[ )/yp( P] ) 1 ~ 7 [Eq. (6) ]

(18)

These ratios, which are not yet experimentally determined, are seen to be significantly different for the two models: this
is due to the marked increase in the SF ratio from 3/4 for L=O to 2.78 for L= 1 in the Pp model.

The predicted ratios for p-wave annihilation which are analogous to those shown in Table III, are displayed in Table
IV. When several initial J values contribute, we add the contributions with the statistical weight (2J+ 1). For example,
we write
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8( P, 2 n a&(l =1)) Iyo( Po)+3yo( Pi)+5'Yo( Pz)] C(0 11)
8( P ~ f, (& =I )) [y, ( P )+3y, ( P, )+5y, ( P )] C(1;01)

(19)

from Eq. (3), where a, =a
&
(1260)[1++(1 )] and

f ~
=f&(1285)[1 +(0+ )]. Here, we define yI(i)

=yI(i)/I „,(i). If two different i values occur, the corre-
sponding ratios are generally different for the Po model,
so we quote them separately (for L=O, the l=O and 1=2
ratios discussed previously are the same).

In Table IV, we note that the only significant difference
between the two models is in the n b

&
/m h

&
ratio. In the

Po model, the SF matrix elements for the transitions
"P&~m b&(l=1) and 'P& —+m h, (i= 1) both vanish.
These are two examples of dynamical selection rules pre-
dicted by the Po model, i.e., transitions which are al-
lowed by conservation of J (I ) quantum numbers, but
in fact forbidden by the dynamics of the model. It will be
very interesting to see if there is any sign of these Po
selection rules in the L= 1 data from LEAR.

In Table V, we display predicted ratios of charged to
neutral modes for the same final state M&Mz. In the
Klempt model, each of these ratios is a product of
C(1;ll)/C(0;11)=2/15 and a factor depending on iso-
spin probabilities. The smallness of C(1;11)/C(0;11),
which successfully describes the small ratios (5c) and (12)
for L =0, then implies a number of approximate dynami-
cal selection rules for L=1 as indicated in Table V. In
the case of the ratios m+p /m p or m+az /m a2, the
predictions of the Po model are of order unity, so the
two models are clearly distinguished. If the suppressed
ratios predicted by the Klempt model for I.=1 are not
found in the data, the model can be rejected. Alternative-
ly, one could argue that the C's could be independently fit

I

(21)
8 ( P, ~vr f2 ) = ( 18.0+2.5 ) X 10

and hence

8(L =1—+m+a2 )
025 —ops.8( P, ~sr f2)

The allowed L=1 transitions are ' P, z~~+az and
' P, ~m+ai . Using the SF weights of Ref. [9] and iso-
spin probabilities and widths from Table II, we predict

(22)

8(L = 1~m.+ai ) =0.7,8( P, +n. fi)— (23)

larger than Eq. (22). Similarly, it is difficult to explain the
observed smallness of this ratio using the model of Eq.
(3). In this case, we predict

I

to the L= 1 data, but such a model would have little con-
tent.

The annihilation process NN(L =1)~up was studied
in detail by the ASTERIX Collaboration at LEAR (May
et al. [29]). They give

8( P, ~m+p ) =0.64 (20)8(1P 0 0)

which does not suggest a dynamical selection rule for the
L =1 mp system. As seen from Table V, neither the
Klempt model nor the Po model is in agreement with
Eq. (20). Another potential difficulty for the Po model is
seen in the rra2/m f ratio. Klempt [17] gives

B(L =l~vr+a2 )=(4.5+2.4)X10

8(L =1 +n+a2 ) —[3y. o( P, )C(0;11)+5yo( P2)C(0;ll)+3y, ('P, )C(1;11)]=1.2 .8( P(~n. f~) 3yi( P, )C(1;01)
(24)

Ratio

B'(p'p') yB'(~~)

B'(p co) /B'(coco)

8'(m'a')/8'(~ f, )

B'( '~', )rB'{ 'I, )

Klempt
model [Eq. (3)]

C (0;11)
[3/4]

C(0;00)
y&C(1~01)

y,C(0;00)
[0.4]

y()C(0; 11)
y', C(1;01)

[1.9]

y'C(0; l. 1)
y', C(1;01)

[1 9]

3p

model [Eq. (6)]

[4 4]
9yo
9 s

[0.5]
25y)

t

[1 7]
3y]

TABLE III. Ratios of branching rates for I. =0 NN
annihilation at rest. We use the standard notation
a2=a2(1320)[J c(IG)=2++(1 )], b, =b, (1235)[1+ (1+)], f2
=fz(1270)[2++(0+)]. As in the text, the notation 8'(p p )

stands for B("So~p p (I =1)), etc. For m 6, and m h l, both
l'=0 and I=2 are possible, and the ratio is the same for each in
both models. The numbers in brackets are obtained using Eqs.
{4a)—{4c)and Table II.

8 (L = 1 —+rr+a 2 ) yo( P, )

o8("P)~~ f2) y, ('P, )

where

(25)

The results (23) and (24) are rather sensitive to how we
treat the coupled ' Pz-' Fz partial wave. In the above,
we have attributed the entire probability yo to the ' Pz
component. In the tensor-coupled calculations [7],
go=0.60 in Table II splits up into 0.37 for the ' Pz com-
ponent and 0.23 for ' Fz. If we simply suppress the ' Fz
piece, the ratios (23) and (24) become 0.56 and 0.85, re-
spectively. Finally, if we make the extreme assumption
of complete destructiue interference of ' Pz~~az and
' Fz —+m.az amplitudes, we would obtain 0.35 and 0.28 for
Eqs. (23) and (24), not far from the experimental value of
Eq. (22). Clearly one should take such interferences into
account explicitly, particularly for I=0 channels.

One can also use the ratio (22) to obtain a limit on
yo( P( )/y, ('P) ), since we have
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TABLE IV. Predicted ratios of branching ratios 8 for neutral modes in NN(L =1)~M&M2
annihilations.

Ratio

8('Po, 2 ~p p (1 =0,2) )

8( Pp 2 ~coco( l =0 2 ) )

B( Po & 2~p cu(l =0,2))
8( Po, 2~con(l =0 2))
8( P$,2~~ ap(1=1))
B('P, ,~sr f, (/ =1))
8('P] m b](1=1))
8('Pl ~a h&(1=1))

Klempt
model [Eq. (3)]

0.8

1.0

0.8

2.5

3p

model [Eq. (6)]

0.7( 1 =0),3.2( 1=2)

0.3

Both zero

(=C(0;11)/C(1;01)=3/2

for the Klempt model and

(=SF(' P&~sr+a& )/SF( P, ~mf2)=1. /3

for the Po model. From Eq. (22), we then obtain

y, (3P, ) 6 (Klempt),

y (3p, ) 4/3 ('Po) .
(26)

Thus in the Klempt model, we get a clear indication that
the large value of y, ( P, )/yo( P, ) (6.7 in Table II) ex-
pected theoretically, and arising because of the repulsive
tensor potential in the ' P, channel, is indeed seen in the
data. In the Po model, on the other hand, the factor g is
smaller, and the restriction (26) is much weaker. The
other dramatic prediction of the isospin mixing calcula-
tions, namely, that ye( Po ) ))y, ( Po ), is difficult to
confirm based on the existing data. The problem is that
there are no transitions which are fed only by the Po

channel; in all cases, the P2 or P& (or both) initial states
also contribute, and the branching ratio
NN( PJ)~M&M2 is not very sensitive to the Po part,
which has the lowest statistical weight (2J+ 1).

VII. CONCLUSIONS

The problem of initial- and final-state interactions in
NN annihilation is a very complicated one. It is clear
from various estimates that such interactions strongly
distort predictions for relative branching ratios based on
the Born approximation. What is not clear is how to in-
corporate these interactions in a quantitative way. In the
present paper, we compare two models in which the effect
of initial-state interactions in the NN atom is expressed in
terms of probabilities y~ that states i = [LSJ] have iso-
spin components I=0,1. These y~ depend very strongly
on i, particularly for L=1 initial states. The dominant
effect at work here is the I=0 tensor force, which is
coherently attractive for L =I+1 and repulsive for

TABLE V. Predicted ratios of charged to neutral modes for NN(L= 1) annihilations.

Ratio

8('P, ~~+p-(1=0))
8( 'P

l ~m. p (1 =0) )

B( P, 2~m+p (l =2))
8('P, ~m. p (l =2))
8('P, ~p+p (1 =0) )

8('P„p'p'(l =0) )

8('P]~p+p (1=2))
8( Po 2~p p (1=2))
B('P, m.+a, (1=1))
8('P, m a, (1=1))
8('P, —+~+a 2 (l = 1))

P1,2~+ a2(l = 1))

Klempt
model [Eq. (3)]

0.3

0.4

0.05

0.05

0.04

0.05

'Po
model [Eq. (6)]

6.3

3.9

0.17

0.25

0.07

0.8
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L =J. %'e have investigated the sensitivity of yr to
modifications for the vector meson contribution to the
tensor potential. Our conclusion is that the dramatic
eftects of short-range pp-nn mixing already occur when
only single pion exchange is included, and that there is no
qualitative modification of yr from (p, co) exchange.

The two models that we study, in addition to y~, in-
corporate a channel-dependent spin-Aavor factor. En the
first model, due to Klempt [17], this factor is assumed to
depend only on isospins, whereas in the second model, we
use the Po spin-flavor recoupling factors. Both of these
models can be adjusted to produce a number of relative
branching ratios for L, =O. However, they give dramati-
cally difFerent predictions for certain transitions from ini-
tial L =1 XN states. Data which will become available
from experiments at the LEAR facility at CERN should
clearly distinguish between the two models considered
here, enabling us to reject one, or more likely both, of
them.

We have identified some problems with both the
Klempt [17] and Po models, based on the existing data.
Note that we have considered only one form of the Po
model, with the planar A2 topology of Fig. 3. Some ad-
mixture of rearrangement amplitudes [9] may improve
the situation. However, there are a number of conceptual
problems with such simple models. The use of isospin
probabilities y J clearly does not take into account the in-
terferences which are likely to be strong for tensor-
coupled partial waves, particularly ' S,-' D, and ' P2-
' F2. Maruyama et al. [10) have shown that ' S, 'D, -

constructive interference is very important for an under-
standing of the "mp puzzle. " There is another potentially
serious problem with the use of probabilities. These re-
sult from an average over the annihilation region, in the
context of an optical model calculation of 2VX wave func-
tions. Inspection of these wave functions reveals that the
I= 1 to X=0 ratio depends sensitively on the distance r.
When one isospin component dominates, the eA'ect is
most pronounced at short distances, in the region which
is relevant for the sizable q values characteristic of two-
body final states. Thus, the branching ratios may not
reAect the average values yz. Further, our estimates of
yz have been obtained by assuming a local and channel-
independent annihilation potential W(r). In microscopic
models, 8'is nonlocal and spin-isospin dependent, so our
assumption is clearly an oversimplification. Nevertheless,
we still find it usefnl to investigate simple treatments of
initial-state interactions, in order to see where they break
down. This may provide some hints as to how to proceed
to a more refined picture of the low-energy XX annihila-
tion process.
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