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In order to relate nuclear gamma-ray distributions to the fundamental parity-time- (PT-) and parity-
(P-) violating meson-nucleon interaction, we analyze the case of the mixed (E1,M2, E3) 1189-keV gam-
ma ray in ' W which is populated in the decay of cryogenically oriented ' Ta. Within the framework of
the quasiparticle random-phase approximation we calculate the value of the complex "irregular" mixing
ratio c(E2/M2) for this transition. We estimate that this mixing ratio will have a P-violating real part
of ~E~cosi)=5X10 ' which implies an observable forward-backward asymmetry ((J).k) in the 1189-
keV gamma-ray directional distribution of Oz ——2X 10 at 10 mK. For the PT-violating imaginary part
we find

~
E~sini) =200g ' ~~", where g ' &z" is the strength of the isovector PT-violating pion-nucleon cou-

pling. An upper limit to this constant of & 3X10 ' may be obtained from the electric dipole moment
of the neutron. Whence we conclude that at 10 mK one needs to measure the PT-violating correlation
( (J ) k2)( ( J ) k, X k2) to an accuracy of Orr 5 2 X 10 ' in order to improve the limit on g ' ~&" set by the
neutron electric dipole moment.

I. INTRODUCTION

Following the discovery of CP violation in neutral
kaon decay, numerous experimental attempts have been
made to probe the extent of time (T) and simultaneous
parity and time (PT) symmetry violations in other sys-
tems [1]. To date, none of these have shown any
significant symmetry noninvariance. The most stringent
constraint on such effects is provided by the upper limit
on the PT-violating neutron electric dipole moment
d„(1.2X10 e cm [2]. For a PT-violating pion-nucleon
interaction of given isospin structure (I ~ 2), this observ-
able may be related to the associated coupling constant
g» [3—5]. The possible isoscalar and isotensor interac-
tion constants are thus restricted to g

'
~~ ' ' ~ 3 X 10

However, because of a reduced sensitivity of the neutron
electric dipole moment to the isovector interaction, the
limit on the associated coupling constant g„'&&" is an or-
der of magnitude weaker. By contrast, measurements in-
volving the atomic nucleus are more sensitive to the iso-
vector interaction since the isoscalar and isotensor terms
are both hindered by a factor (N —Z)/A [5]. It is there-
fore of interest to ascertain the competitiveness of sym-
metry experiments on the atomic nucleus as compared to
the neutron electric dipole moment, especially with re-
gard to PT-violating isovector pion exchange.

Previously, Murdoch et al. [6] searched for a gamma-
ray distribution arising from the PT-violating correlation
term ((J) k2)((J) kiXk2) in ' Hf, where (J) is the ex-
pectation value of the cryogenically oriented nuclear spin
and k, and k2 are the momenta of two subsequent cascad-
ing gamma rays. (For a review of this and alternative dis-
tributions, see Ref. [1].) From the resulting limit set on
this observable, Herczeg [5] has estimated that the iso-
vector coupling constant be confined to the range
g'&&" ~5X10, two orders of magnitude larger than
that provided by the neutron electric dipole moment.
Nevertheless, similar experiments in more favorable cases

may be more competitive in this respect.
In a previous paper [7], henceforth referred to as I, we

discussed the requirements that candidates for such ex-
periments should satisfy. In the present work we wish to
consider theoretically the merits of one such nucleus,

W, which we consider to be a generic example of a
good experimental case. Therefore, in what follows we
perform a detailed theoretical analysis in order to relate
directly the observable PT-violating experimental distri-
bution given above to the coupling constant g' &&". We
will also discuss some general features of our results
which may be pertinent to the analysis of other nuclei.

II. GENERAL CONSIDERATIONS

Consider a nuclear system consisting of two states, an
initial state ~ao) and a final state b ), both of which are
eigenstates of the P- and T-invariant strong-interaction
Hamiltonian. These will be linked by an electromagnetic
interaction which induces transitions of one or more mul-
tipolarities, characterized by the amplitudes
y(~L, ao~b) [8]. The T invariance of the electromag-
netic interaction (which we assume to hold good) requires
that these be entirely real. However, because of the
atomic final-state effects [9], which involve the virtual in-
teraction of the emitted photons with atomic electrons,
these matrix elements acquire a small imaginary term.
This phenomenon, parametrized by the phase angle
g(trL ), mimics T noninvariance.

If the full nuclear Hamiltonian contains also a P-
violating term, which could be the weak interaction V~
or a new interaction which simultaneously violates T in-
variance VzT, then the initial and final nuclear states of
the electromagnetic transition will contain admixtures of
opposite parity states. For simplicity, we will assume
that only the initial state ~ao) becomes mixed with a
complete set of opposite parity states ~a, ). Then to first
order we have
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la, &la)=la, )+ g ' (a, lv»+v, la, ) .
0

As a result, in addition to the "regular" electromagnetic
multipoles ( vrL ) with amplitudes y ( rrL, a +b—)
=y(vrL, ao +b—), there will also exist "irregular" mul-
tipoles of the opposite parity (~L ) with amplitudes

y(~L, a~b)= g y(~L, a, ~b)

( ( J ) k), where ( J) is the oriented nuclear spin and k is
the momentum of a single emitted photon, yields a quan-
tity which is proportional to the real part of the mixing
ratio:

y(vrL, a, ~b )

y vrL, ao~b Eo E,—

(3)

X ( a, Vi,T + Vp l ao ) .
0 z

(2)

By focusing on certain aspects of the emitted gamma-ray
angular distribution, we may obtain experimental observ-
ables which depend upon the irregular mixing ratio
E(rrL ILL ) =y (rrL, a ~b) ly (rrL, a &b ). —Specifically, a
measurement of the P-violating vector combination

Through this relationship the experimental observable
may be directly related to the matrix elements of the
weak interaction V~ and subsequently to the weak-
coupling constants.

If, on the other hand, we measure the PT-violating dis-
tribution ((J) k2)((J) ki Xkz) introduced earlier, then
we obtain a quantity which is proportional to the imagi-
nary part of the mixing ratio:

y(vrL, a, ~b ) . &a. l Vprlao &+i &a. l Vplao & g(~L) —g(~L)
y ~L,ao~b Eo E, — (4)
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FIG. 1. Simplified decay scheme of" Ta indicating the levels
and gamma rays involved in the parity mixing.

(We note that the matrix elements of VpT and Vi, are rel-
atively pure imaginary. ) Thus, as before, we may relate
the experimental observable to the matrix elements of
V&T and ultimately to the as-yet unknown coupling con-
stants of the PT interaction. Unfortunately, there is an
added complication here in that the experimental observ-
able cannot distinguish the true PT violation from the
pure P violation coupled with the pseudo-T violation aris-
ing from the atomic final-state effects. We will not con-
sider these final-state eff'ects further; i.e., we will neglect
the second braced term in Eq. (4). However, in a separate

publication [21] we calculate these using a previously
developed technique [9] and assess their ramifications for
our present results.

From these relationships it can be seen that in order to
obtain optimal sensitivity of the experimentally observed
mixing ratio to the matrix elements and coupling con-
stants of the PT- and P-violating potentials, we require
that the regular parity state possess a relatively hindered
transition [small y(rrL, ao~b)], while simultaneously
there exists at least one close-lying state of the opposite
parity and suitable quantum numbers which exhibits a
relatively enhanced corresponding transition [small
(Eo E, ) and larg—e y(rrL, a, +b)]. Such a—situation per-
tains in the deformed nucleus ' W and, to a lesser extent,
in several neighboring even-3 rare-earth nuclei.

A simplified scheme of levels following the P decay of
Ta is shown in Fig. 1. Consider the mixed

(El,M2, E3) 1189-keV transition between the first octu-
pole vibrational bandhead ( l

J K ) = l2 2) ) at 1289 keV
and the first excited member of the ground-state rotation-
al band (lJ K) = l2+0)) at 100 keV. Owing partially to
K forbiddedness, the leading order E1 component of this
transition is hindered by a factor of almost 10 relative
to the single-particle estimate [10].

In the vicinity of the octupole bandhead, there exists a
l2+2) gamma vibrational bandhead lying at 1221 keV
which also exhibits a transition to the first excited state of
the ground-state rotational band. However, in this case it
is a strong collective E2 (the M 1 component is K forbid-
den and therefore much smaller).

Since these two vibrational bandheads have the same
spin I and projection K, they may be mixed by the PT-
and P-violating scalar potentials in a K-allowed manner.
If we focus on the 1189-keV transition from the octupole
bandhead, then in addition to the regular (El,M2, E3)
multipoles, we may also expect to observe the presence of
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TABLE I. Spectroscopic properties of the 1189- and 1121-keV gamma transitions in ' W. A11

values are taken from Ref. [10].

Transition (keV)

1189

1121

E1
M2
E3
M1
E2

B(mL) (W.u. )

1.7(1)X 10-'
1.1(2)X 10-'
9.1(9)
2.7(11)X 10-'
8.0(3)

Mixing ratio

6(E1/M2) = +2.3(3)

6(E3/M2) = —1.6(2)

5(E2/M1) = +30(5)

irregular (E2) components, which we may associate with
the 1121-keV transition, due to a small admixture of the
gamma bandhead. Since both the E2 transition rate is al-
most 10 times faster than the combined regular transi-
tion rate and the energy separation of the two levels is
only 68 keV, there will be an enhanced sensitivity of the
irregular mixing ratio c. to the PT- and P-violating matrix
elements. The relevant spectroscopic information for the
1189- and 1121-keV transitions is presented in Table I.

As we have demonstrated in I, the majority of the PT-
and P-violating strength is concentrated in the matrix ele-
ments of states separated by approximately 1Acu-7 MeV.
While the energy denominator does much to increase the
contribution from close-lying states, they still constitute
only a modest fraction of the total-energy-weighted
strength. We must therefore consider contributions
from the entire spectrum of ~2+2) quadrupole states, not
only that of the lowest-lying one. In addition to the gam-
ma bandhead at 1221 keV, there will also be some admix-
tures into the 1289-keV octupole state from the even
closer-lying

~

2+0 ) beta vibrational bandhead at 1257
keV. However, despite this, we expect that it will have a
much smaller contribution to c since both the corre-
sponding E2 transition is comparatively weak and the
matrix element mixing it into the octupole state is small,
being second-order E forbidden. In what follows we con-
sider the angular momentum projection K to be a good
quantum number, thereby ignoring beta vibrational
states.

Before turning to a theoretical evaluation of the irregu-
lar multipole mixing ratio c in terms of the fundamental
PT- and P-violating coupling constants, we will first dis-
cuss the nuclear orientation aspects of the ' W system in
order to determine how this parameter is related to the
experimental observables.

III. NUCLEAR ORIENTATION

Nuclear parity violation may manifest itself as small
terms of the form ((J).k) which are present in the more
dominant P- and T-conserving directional distribution of
a single photon emitted from an oriented nucleus. In the
notation of Steffen and Alder [11],this directional distri-
bution W(9) may be generally written as

W(9)= QB&A&U&P&(cos9),

B~ A ~ U~
A, OCld A, even

This quantity is now directly proportional to the real part
of the irregular mixing ratio, which for the present case
we define as Ez2~e'"=y(E2)/y(M2). This may be seen
by writing the odd-rank angular distribution coefficients
explicitly [11]:

2
I e22 I cosy

Ag, dd
=

~ [5,2Fg(12)+Fg(22)1+5)~+ c.q~+ 63~

+532Fq(23)], (7)

where the regular mixing ratios, which are purely real
since we are neglecting atomic final-state effects, are
defined to be 5,2=y(E1)/y(M2) and
53z=y(E3)/y(M2) as given in Table I. Thus, for the de-

cay of ' Ta nuclei cryogenically oriented by the magnet-
ic hyperfine interaction in iron, we find for the 1189-keV
transition of interest that O~ = —0.37

~ ezz ~
cosy and

—0.03 E22 ~
cosy at temperatures of 10 and 20 mK, re-

spectively. The rather poor experimental sensitivity to
the P violation, especially at 20 mK, results from phase
cancellations and may be somewhat improved by choos-
ing an alternative observation axis 0.

We now consider the PT-violating term
((J).k2)((J) k, Xkz), which requires a measurement of
the angular correlation of two successive gamma radia-
tions emitted from an oriented source. The probability
distribution for such an occurrence is given in the nota-
tion of Krane [12] by

W(8„8,%)= g Bq Aq' 'Aq Hq q q (8„9,%), (g)

0 1 2

where 0, and 02 are the angles between the axis of nuclear
orientation (J) and the directions of observation of the
two photons k& and k2, which are themselves separated
by an angle N. The experimental observable O~T, defined
as

where 0 is the angle between the axis of nuclear orienta-
tion ( J) and the direction of observation k. The experi-
mental P-violating observable O~ is then the forward-
backward asymmetry defined by

o, = [ w(0) —w(~)]/[ w(o)+ w(~)]

0 =[W(+8 )
—W( —8 )]/[W(+8 )+ W( —8 )]

A 2APX &~, ~ ~, ~~,H~, ~,~, (+82)
~2~0 even

OdCi

A 2A 0X & ~,~ ~, ~ ~,H~,~,~,(+82»
2AO even

A& even
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where W(+82) = W(n/2, +n/4, vr/2), is then seen to be
directly proportional to the imaginary part of the irregu-
lar mixing ratio, since we have

2,
&

odd I+g2 + 2 +fi2 [ 12
12 ~22 32

+532F3' '(23)] .

IV. SYMMETRY-VIOLATING
MATRIX ELEMENTS

Having expressed the experimental observable in terms
of the symmetry-violating irregular mixing ratio, we must
relate this quantity theoretically to the matrix elements of
the symmetry-violating potentials through Eqs. (3) and
(4). With reference to the discussion in Sec. II, we do this
with Iao) representing the 1289-keV octupole I2 2) vi-

brational state, Ia, ) the spectrum of I2+2) quadrupole
states, and Ib ) the first excited member of the ground-
state rotational band at 100 keV.

We model the quadrupole and octupole vibrational
states within the framework of the quasiparticle random-
phase approximation (QRPA). We restrict the I2+2) lev-
els to the complete set of one phonon states. Naturally,
there exist other multiphonon I2 2) states. However,
the corresponding matrix elements of VzT~, being of
higher order in the QRPA, are expected to be smaller
than the ones which we include. In addition, as can be
seen from Eq. (2), the admixed states Ia, ) are required to
undergo an electromagnetic transition to the state

I
b ) .

Since in the present case this latter state is a member of
the ground-state rotational band, the one-body elec-
tromagnetic operators are expected to connect predom-
inantly to the one-phonon states that we consider here.

The single-particle states, created by the operator

= X ~x, b'av, n (1 1)
Nj

are derived from an axially symmetric, deformed Nilsson
potential, where the creation operators of the spherical
harmonic-oscillator states labeled by (NjQ) transform
under time reversal according to the relation

b ~ —
( 1)j+N —nbt

xjQ xj —Q (12)

I

(10)

In the case of ' W, taking k, to be the 1189-keV gamma
ray and k2 to be the subsequent 100-keV ground-state
transition, we find that OPT ——+0.25

I E22 I sing and
+0.20IE22Isin2) at temperatures of 10 and 20 mK, respec-
tively. By comparison, the sensitivity of the previous

Hf experiment [6] was significantly worse, only—0.03IE22Ising at 20 mK. Potentially, this is an impor-
tant advantage for the ' W system.

and A& are the usual expansion coefficients. The quasi-
particle creation operators are then related to the particle
operators via the Bogoliubov transformation

o. =u a —v a (13)

The single quasiparticle basis in our calculation encom-
passes all such states lying within 9 MeV (=1.2%co) of
the Fermi level.

The QRPA phonons

(14)
m (n

of multipolarity L and angular momentum projection E,
are calculated using a separable particle-hole force of the
form

(15)

(17)

Here the short-range nucleon-nucleon repulsion is ex-
plictly included with the introduction of the function I,
where

2I=l —e ' (1 y2r ), — (18)

with parameters y1=1.1 fm and y2=0.68 fm 2 [14].
The antisymmetrized matrix elements of Eq. (17) were
evaluated in a coupled (to total angular momentum J and
isospin T) spherical harmonic-oscillator representation

34V]234, where 1,2,3,4 denote states labeled (Nj ), accord-
ing to

The coefficients K22 and ~32 were deduced by fitting to the
experimental collective quadrupole gamma and octupole
vibrational bandhead energies in a number of nuclei of
the A =152—190 mass region. We thus obtained the
values ~22 =205 A MeV fm and ~32 = 121 A

MeVfm, which are consistent with previous works
[13].

Having solved the QRPA equations, we now wish to
calculate the I2 2) to I2+2) mixing matrix elements.
Unless otherwise stated, in what follows we refer explicit-
ly to the case of the isovector PT-violating potential
Vj,T

" [5] as given in I. The P-violating potential Vj
may be treated in a similar manner. Thus we require

&aol vpTla. &
= &g s IQ32 g ~jkla aja1ak'Q22 'Ig sao —

g y a(
ij kl

(16)

the mixing matrix elements of the two-body PT (or P)--
violating meson-exchange potential between the lowest

aO)
I2 2) =Q32 Ig.s. ) octupole state and the spectrum of

I2+2) =Q22 Ig.s. ) quadrupole states labeled z, where

1,2, 3,4,J, T12, T34

i j k l
—JT)2 T34~ 1 ~ 2 ~ 3 ~ 4 (J 1 +1J2 +2 I

» )(J 3 +3J4 +4 I
» )( T1 T1.T2 T2 I T12 T )( T3 T3 T4 T4 I T34 +z ) V 1234

(19)
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Computational restrictions required that this spherical basis be confined to the %=4,5,6 oscillator shells.
In evaluating Eq. (16), one may separate the interaction into two more or less distinct parts. The former is a one-

body mean-field interaction of the form

X ~X„~'+cY '~ Y„~' V pp(vpv )(u u„+cv v„)+—,
'

V~, (u v )(v u„—cu v„)
mrpq

(20)

where the dichotomous quantum number c is related to
the time-reversal properties of the interaction (c= + 1

and —1 for PT and P, respectively). The first term in the
braces corresponds to the usual effective one-body in-
teraction, which becomes clear if we make the substitu-
tion

(20) also receives contributions in the core summation
from elements outside the present basis. Being a pure
pairing term (upvp ~0 in the no-pairing limit), it is not
calculable by an analytic reduction of the form used
above. However, since the pairing factor increasingly
suppresses the effect of states lying farther from the Fer-
mi level, the largest contributions to the summation lie
within the N=4, 5,6 oscillator shells (upv =0.05 at 9
MeV from the Fermi level). With this truncation we may
evaluate this term explicitly, finding that it is typically 10
times smaller than the previous term.

Although the one-body mean-field interaction is usual-
ly the most important component of a two-body mixing
matrix element, there are two factors which serve to
reduce its contribution in the present case. First, a one-
body interaction can only scatter one out of the two
quasiparticles in the QRPA bosons. Therefore, we re-
quire that the quadrupole and octupole phonons have a
single-particle label in common, q in Eq. (20). In the case
of ' W, we find that the overlap between the lowest
quadrupole and octupole vibrational states with a com-
mon label is as little as 6%. Second, as illustrated in I,
the j-conserving nature of U „ implies that the majority
of the PT-, and also P-, violating strength occurs for
states separated by —1fzco. For small energy separations
one finds only a tiny proportion of the total strength due
solely to j mixing in the spin-orbit split intruder subshell.
On the other hand, a true two-body interaction may

so that all the components of
ntribute to the mixing matrix
calar nature of the interaction
entum conservation, the con-

trictive since it refers now only
ntum to which two states are
s it is possible that the residual
Eq. (16) competes with and
ver the one-body mean field.

o the irreducible two-body ma-

(21)mr g Vmprp(vpvp )

p

An explicit evaluation of U „would require a summation
over all occupied, deformed core states p. However, in
the spherical limit the summation requires only terms of—~Tiz T32the form V, 232 . The reduced number of matrix ele-
ments required in the presence of the dummy index al-
lows an extension of the basis to include the summation
over all core states. Such a procedure has already been
carried out in I with the result that, to a very good ap-
proximation, we can replace the reduced two-body in-
teraction +2V, 23@ with the eff'ective one-body potential
I'(m R) G( m, y„yz) UpT=„'~p. (An analogous expres-
sion for the P-violating potential has been considered by
Adelberger and Haxton [15].) In the deformed case we
may therefore make the convenient substitution

U „=g Ai Az(1~F(m R)G(m, y„y2)Up'T„'„' 2),

(22)

where the spherical states 1,2 and therefore the deformed scatter both quasiparticles
single-particle states m, r are now no longer limited to the QRPA bosons may co
any given shell. By doing so we make two approxima- element. Also, while the s
tions regarding the nature of the core. First, we makean still demands angular mom
equal-weight core summation up to a sharp Fermi s«- dition is now much less res
face. Second, we assume that the core consists of filled to the total angular mome
spherical subshells. In particular, we model the core of' coupled [cf. Eq. (19)]. Thu
74 W by summing protons and neutrons up to the top of two-body component of
the fourth (Z=70) and fifth (N= 112) oscillator shells, re- perhaps even dominates o
spectively. Therefore, we calculate als

The second term in braces in the one-body interaction trix element:

g (X '„X„, —cY '„Y„, )[ V „,„(u v„v„u, —cv u„u„v, )
—V „„(u v„u„v, —cv u„v„u, )

+V „„,(u u„u„u, —cv v„v„v, )]

—(X '„Y„,' —cY '„X„,')[ V „„(u v„v„u, —cv u„u„v, )—V „„(u v„u„v, —cv u„v„u, )

+V „„,(u u„v„v, —cv v„u„u, )] . (23)

As before, we restrict the V; kI to the N=4, 5,6 oscillator
shells. Further, to reduce the number of summations, we
confined the indices r, s of the octupole phonon to those
for which either of the RPA amplitudes X„,Y„, ) 0.04.

I

This reduced the basis space of the octupole phonon by a
factor of 7, while still retaining 96% by intensity of the
wave function.

Finally, an important test of the validity of our results
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is the prediction of the degree of P violation. The factors
which led us to consider both the one-body mean field
and the irreducible two-body interaction also apply here.
The appropriate two-body P-violating potential is given
in Ref. [15]. However, we did not attempt a full calcula-
tion of the two-body matrix elements. Instead, we con-
sider only the one-body mean-field interaction analogous
to Eq. (22). The numerical results will be shown and dis-
cussed in the next section.

V. NUMERICAL RESULTS

Before proceeding to the calculation of the irregular
mixing ratio in ' W, we first discuss the relative magni-
tudes of the matrix elements which are involved. Since
one would expect the matrix elements (ao ~ VpT+ Vi ~a, )
between the lowest octupole and gamma vibrational
states to be the most important in the perturbative sum-
mation, we present them in Table II for several rare-earth
nuclei. In column 2 we show the matrix elements of the
one-body PT-violating mean field, corresponding to the
first braced term in Eq. (20). As stated above, the "pure
pairing term, " corresponding to the second braced term
in Eq. (20), is considerably smaller, being about 10% of
the value given in column 2. In column 3 we show the ir-
reducible two-body matrix element of Eq. (23). (Because
of the sizable computer time involved, we evaluated this
matrix element only for ' W. ) The entries in columns 2
and 3 are given for g'&&"=3X10 ', the approximate
upper limit set by the neutron electric dipole moment for
the isovector PT-violating interaction. Next, for compar-
ison, we show in columns 4 and 5 the matrix elements of
the P-violating one-body potential. The values of the as-
sociated coupling constants remain uncertain, and thus
we use two different sets of values, those of Desplanques,
Donoghue, and Holstein [16] and those of Adelberger
[17] (as quoted by Herczeg [5], who considers only the
more important p-meson-exchange component). In both
cases the effects of the short-range nucleon-nucleon
correlations were included by reducing the pion- and p-
meson-exchange terms by 30% and 70%, respectively
[15].

It is of interest to compare the matrix elements of the
PT- and P-violating potentials. If their ratio for different
nuclei and different states is approximately constant,
then, as suggested by Herczeg [5], it would be possible to
use the experimentally determined degree of P violation
to estimate how large the PT violation will be for a given

PT coupling constant. To test this hypothesis we show in
column 6 the dimensionless parameter ~"' defined as

(24)

This is simply the ratio of the one-body PT and P matrix
elements of columns 2 and 5 with the symmetry-violating
coupling constants removed.

The entries in Table II describe the mixing of the
lowest octupole and gamma vibrational states. They can
be compared with the average matrix element
(ao~ VpT a, ), where the averaging is then over all 506
~a, ) = ~2+2) states present in our calculation. The corre-
sponding mean one-body matrix element is 17 peV with a
variance of (51 peV) . The pure pairing one-body term
mentioned earlier has a mean value of 1 peV and variance
2 (peV), and so it remains small throughout. The irre-
ducible two-body matrix element in Table II represents
about 30%%uo of the total PT-violating mixing between the
lowest octupole and gamma vibrational states. More gen-
erally, we find that the mean two-body matrix element is
5 peV with a variance of 9 (peV), continuing the same
trend. Despite this smaller average value, the two-body
term exceeded the one-body term 25% of the time. Since
the relative sign of these two competing terms is random,
the two-body cannot be neglected if one is to correctly ac-
count for the possibility of phase cancellations.

To illustrate the distribution of the total (one-body
mean-field plus irreducible two-body) PT-violating matrix
elements, we plot in Fig. 2 the frequency of such terms
occurring with a given value. The mean matrix element
is 19 peV with variance 53 (peV) . The large variance is
due to a small number of one-body matrix elements with
extremely large values (up to 950 peV). As expected from
the one-body angular momentum selection rules, these all
lie at excitation energies approaching 1%co.

We now turn to the calculation of the irregular mixing
ratio czar of the 1189-keV transition in ' W using Eqs. (3)
and (4). The regular M2 transition amplitude
y(M2, ao~b) is taken from experiment. Also, for the
term involving the lowest gamma vibrational state, we
use the experimental irregular transition amplitude
y(E2, a, ~b) and energy splitting. All other values are
taken from the QRPA calculations. For the PT-violating
term, we find

(25)

TABLE II. PT- and P-violating mixing matrix elements between the lowest octupole and gamma vi-

brational states in several rare-earth nuclei.

156Gd
162D

174Yb

Hf
182~

UpT (peV)

—7.0
+3.9

—11.9
—5.1

—10.7

V (~eV)

—4.3

U, (meV)'

+29.7
+22.0
—14.9
—4.9

—10.0

U, (mev)'

+59.3
+47.8
—40.5
—31.4
—13.6

0.98
0.68
2.44
1.35
6.56

'Calculated with the interaction constants of Ref. [16].
Calculated with the interaction constants of Ref. [17].
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The limit on the neutron electric dipole moment there-
fore implies that ~s2z~sini) 6X10 . The factor 200 in

Eq. (25) represents "nuclear enhancement" in the present
case.

For the (one-body mean-field contribution to the) P
violating mixing ratio, we find for the two sets of cou-
pling constants that

4X10 (Ref. [16]),
SX10 5 (Ref. [17]) . (26)

In I we discussed the energy distribution of the PT-
violating strength. We concluded that while the pertur-
bative energy denominator did much to enhance that part
of the strength at low excitation energies, the majority of
the energy-weighted strength lay at energies in the region
of 1A'cu. In the present case there is an additional
enhancement of the low-energy strength due to the col-
lectivity of their vibrational transitions. As a result, we
find that the admixture with the lowest gamma vibration-
al state accounts for 80% of the maximum passible con-
tribution to the irregular mixing ratio (which we define
by summing absolute values). If we perform the summa-
tions of Eq. (3) and (4) with the E2 transition amplitudes
removed, we find that the lowest gamma vibrational state
constitutes only 11% to the maximum possible value of
the irregular mixing ratio. Moreover, there is now a
significant cancellation between the various terms in the
summation. We therefore conclude that when selecting
possible cases for studying PT and P violations, one
should pay as much attention to the comparative
strengths of the irregular and regular transitions as to the
size of the energy denominator, since the predominance
of a single perturbative admixture allows not only a sim-
ple two-level mixing calculation, but also avoids cancella-
tion s.

In passing, we compare this situation with the one
which may pertain in the case of P-conserving T viola-
tion. Here the most general one-body potential can be
written as UT=(p. r)[f (r)+g(r)r, ]+H.c. [18]. If the

0.02—
I I I I I I I I I I I I I t I I I I I I I I I l I I I I I I I I I I I I I I

Q 5 10 15 20 25 30 35 4Q

l(2 ~I~PTI2'dl (re~)

FIG. 2. Frequency of the total PT-violating matrix elements
(ao~ V~r~a, ) for ' W occurring with a given value. The mean
and variance of the distribution are 19 peV and 53 (peV), re-
spectively.

-(I=1)
—tang = lr' ' ' + [g( vrL ) g( vrL )], —

Op pe%
(27)

where g &&-—2. 5X10 is the weak p-nucleon coupling
[17]. (We follow Herczeg and assume that the most im-
portant contribution to the P-violating interaction comes
from p-meson exchange. ) To judge the constancy of a"',
we evaluate its frequency distribution using the set of
one-body mean-field matrix elements (ao~UiTp~a, ) of
all the nuclei shown in Table II. In fact since we are
dealing with ratios, we consider logarithmic values which
are plotted in Fig. 3. From this distribution we find a
mean and variance for logio~a"'~ of +0.8 and (0.7), re-
spectively. Typically therefore K"' is notably lower than
the earlier estimate.

In general, the variation in K'" would be too great to
allow any form of equality between the perturbative sum-
mations af Eqs. (3) and (4). However, if ane term in the
summation is expected to dominate, such as in the

radial functions f (r),g (r) are at most linear, as assumed
in Refs. [19]and [20], then this may be recast in the form
UT= [Ho, h (r, r, )], where Ho is the strong nuclear Ham-
iltonian which is assumed to contain no velocity-
dependent ter~s other than a possible spin-orbit interac-
tion. This form of UT implies that the matrix element be-
tween any two states scales as their energy separation.
This dependence exactly compensates the energy denomi-
nators in the perturbative expansion with the result that
we would expect no enhancement in the observed T-
violating effect due to close-lying levels. Since the selec-
tion rules of UT (hj=O, no parity change) put the vast
majority of the T-violating strength within a single oscil-
lator shell, the lack of energy weighting may not be too
critical, although it may lead to convergence problems in
a limited basis space. Experimentally, if such a potential
were valid, this would put the onus entirely on the rela-
tive irregular and regular transition rates when selecting
favorable candidate nuclei for study.

Finally, we discuss the behavior of the parameter K'"
as defined in Eq. (24). This has two important charac-
teristics. First, the magnitude of K"' determines the rela-
tive sensitivity of the PT- and P-violating matrix elements
to their respective coupling constants. On the basis of
simple argument, Herczeg has indicated that a value of
K =3 1 may be expected [5]. [We included corrections
for a numerical factor ( XO.S) in his PT-violating poten-
tial and the eff'ects of finite pion-range ( X0.7) and short-
range correlations (a=3.4) as discussed in I.] Since this
is considerably larger than unity, the PT-violating matrix
elements may therefore be expected to exhibit a relatively
enhanced sensitivity to the coupling constant g'&&" as
compared to the P-violating case. Second, if K"' is fairly
well defined within a given range of values, then a degree
of proportionality may be established between the matrix
elements of the PT- and P-violating potentials. As indi-
cated earlier, in such a case the real and imaginary parts
of the irregular mixing ratio [Eqs. (3) and (4)] are related.
Since the experimental PT- and P-violating observables

OpT and Oz are directly proportional to ~E~sini) and
~c. cosi), we may write
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FIG. 3. Frequency of the parameter log, 0~It"'~ as defined in

Eq. (27) occurring with a given value. The mean and variance
of log, o~tr" '~ are +0.8 and (0.7)', respectively.

present case, then Eq. (27) may be used to obtain a rough
estimate of the PT-violating effects of a given coupling
constant. In particular, we find that in order to compete
with the limit on g'„&&" set by the neutron electric dipole
moment, then we must have that tang —(1—40) X10
That is, one must measure the PT-violating mixing ratio
at least three orders of magnitude more accurately than
the value determined for the P-violating part. For com-
parison, the limit set by the ' Hf experiment was only
tang ( 1.3 [6].

When applying the quantity ~"' to a given case, one
should bear in mind its limitations. For example, the
one-body potentials UzT and Uz exhibit different isospin
properties. Thus, when taking matrix elements between
states whose wave functions receive contributions from
both protons and neutrons, there may be additional vari-
ations of x'". (However, the values of tc'" given in Table
II pertain to just such states and we find no great devia-
tions from the expected range. )

CONCLUSIONS

To conclude, we have calculated the real and imagi-
nary parts of the (E2,M2) mixing ratio of the 1189-keV

transition in ' W and find that
~ c22 ~

cosy = 5 X 10 ' and

IEzzl»nt1=200g "~~", respectively. For the case of the
low-temperature nuclear orientation experiments out-
lined in Sec. III, one would therefore expect a
P-violating forward-backward gamma-ray asymmetry of
Op —2 X 10 and a PT-violating gamma-gamma correla-
tion effect of O&T ——50g' zz" at 10 mK. In order to com-
pete with the limit on the isovector PT-violating coupling
constant set by measurements of the neutron electric di-
pole moment, one therefore needs to measure a PT-
violating asymmetry to the level of —10

We found that the contributions of the eA'ective one-
body PT- and P-violating mean fields to these mixing ra-
tios were significantly suppressed due to a poor overlap
between the lowest quadrupole and octupole phonons.
This reduction, by a factor of more than 10, requires that
the irreducible two-body contribution also be considered.
While these are somewhat smaller than the one-body ma-
trix elements, both are necessary for a reliable calcula-
tion. Provided that the one-body suppression is large
enough, this will be generally true of all calculations in
even-even A and odd-odd A nuclei, which involve the
mixing of two-quasiparticle states. By contrast, in princi-
ple, a one-body operator may always link the one-
quasiparticle states of odd-A nuclei. The lack of suppres-
sion means that not only can the one-body terms be con-
sidered exclusively, but also one can expect larger PT-
and P-violating matrix elements. Odd-A nuclei therefore
seem to ofFer the best opportunity for studying
symmetry-violating effects in nuclei.
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