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We suggest a phenomenological description of hypernuclear o-o Dirac mean-field theory, where the
meson-baryon vertices are based on the quark model with relativistic corrections. While the model is
shown to be in agreement with the o-» model for regular nuclei, large tensor @YY couplings are derived
for w-hyperon vertices. This coupling, which is negligible for nucleons, is capable of resolving the prob-
lem of the small spin-orbit interaction in A hypernuclei within the Dirac approach, as was recently
shown independently by Jennings. Our model explains the available data. It can also be the basis for
more systematic theoretical studies. Predictions are thus presented for = and = hypernuclei. Further

improvements of the model are discussed.

I. INTRODUCTION

A potentially fruitful area of research involves the ap-
plication to hypernuclear physics of the mean-field o-w
model [1-3], based on the Dirac equation with strong
scalar and vector potentials. Hypernuclei, in which a
hyperon such as the A or the = replaces a nucleon, add
another dimension to weak, electromagnetic or hadronic
probes of nuclear dynamics. Hyperons carry nonzero
strangeness that distinguishes them from nucleons. Thus
they are hardly or not Pauli excluded from orbitals occu-
pied by nucleons and can penetrate dense nuclear matter
inaccessible to other hadronic probes. We can use hyper-
nuclei to explore the role of hyperons in hadronic forces
or weak interactions in nuclei. We may also use them to
measure changes of electromagnetic properties of hype-
rons by the nuclear environment. Some of these prob-
lems have already been addressed elsewhere. Weak in-
teractions in hypernuclei have been recently reviewed [4],
the issue of hypernuclear electromagnetic moments was
studied [5], and a review of relativistic aspects in hyper-
nuclear physics is in progress [6], which led to the present
work.

Here we deal with the hypernuclear spin-orbit force of
the o-w model, where we confirm that to explain the
small A-hypernuclear spin-orbit interaction [6,7] a strong
wAA tensor vertex is required [8,10] and that this feature
arises naturally in a quark model developed some time
ago [9] without disturbing the successful applications of
the o-w model to ordinary nuclei [1-3]. Predictions for
2 and Z hypernuclei are provided. After this work was
completed we learned from A. Gal that similar results for
the A have been independently obtained by Jennings [10].
The present work goes beyond the results of Ref. [10],
however. Since our quark model provides tensor cou-
plings, we are able to make definite predictions for = and
Z hypernuclei in addition to explaining the available data
for A hypernuclei. The model can also be used for more
detailed and refined theoretical studies inasmuch as it
predicts also scalar meson couplings. We also present
new theoretical insight into the problem of hypernuclear
spin-orbit interactions.

4“4

II. HYPERON-NUCLEUS POTENTIALS
AND THE MEAN-FIELD THEORY (MFT)

In the MFT, the meson-field operators are replaced by
their expectation values which are classical fields; thus ¢,
is the ground-state (g.s.) expectation value of the scalar
field ¢ from the ¢ meson and V#=(V,V) is the vector
mean field from the ® meson. The MFT Lagrangian den-
sity for nucleon and hyperon (Y) in the presence of these
fields is

Lyier =¥n [y, (13" —g, Vi) —(My —gNdo) 1y
+yly (18 —g, V) —(My—g, $0) 1y
+ purely mesonic terms , (1)

which provides the simplest hypernuclear o-w formalism.
While it is satisfactory for the nucleon to include only the
vector (y,) o-baryon couplings [1-3], we will follow No-
ble [8,11] in arguing that a strong wAA tensor coupling is
required for A hypernuclei, although for somewhat
different reasons. In fact, a tensor vertex arises naturally
in the quark model [9], while leaving undisturbed the sa-
tisfactory status of the nucleon. Predictions will be pro-
vided for the = and =, where no data are available. Note
that for most applications in spherical nuclei the mean-
field expectation value ¥,,=8,,V,. An exception is dis-
cussed, e.g., in Ref. [5].

The above pure o-w (scalar+ vector) model works well
for regular nuclei [1-3], where one typically finds for
medium nuclei that

gNVy(0)=~+345 MeV , (2a)
—gNpo(0)=—420 MeV . (2b)

These values reproduce the standard empirical low-
energy (E =My ) shell-model parameters

VN~ —53 MeV , (3a)
VN, ~17 MeV . (3b)

In principle, the vector coupling constant introduced
for the Dirac MFT above should be identical with the
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quark model constants g, zp of Secs. III and IV for
B =N, A, 3, E. (The same applies also to the scalar cou-
pling constants.) However, there is a common practice of
assuming total freedom to adjust coupling constants in
order to fit a given set of nuclear data, making the model
uncomfortably empirical. We believe that the underlying
physics demands that all possible constraints imposed by
our best present knowledge be applied to the theoretical
calculations and predictions. This is admittedly a rather
austere program that is not generally adhered to. For
this reason we keep separate notation for gf and g_zp
realizing that a more stringent goal of Dirac nuclear
theory would actually require a single coupling constant
[12]. Such a refined theory is, of course, outside the
scope of the present work.

From the phenomenology of hypernuclear binding en-
ergies and level splittings A A4 potential strengths are
found that are considerably smaller than the correspond-
ing N A values [5,13].

The naive quark model prediction for the o-w meson-A
coupling constants is

gAg%gN’ (4)

when the s quark is a spectator. With these relations, the
central and spin-orbit potentials are predicted to be much
larger than the empirical ones [7], by up to a factor of 4.
Thus for consistency with empirics, several authors have
assumed in Eq. (4) a ratio in the range 0.2-0.4 [5,13]. We
know of no theoretical justification for such a small ratio.

In contrast to the nonrelativistic shell model for ordi-
nary nuclei, the o-w model explains the large spin-orbit
and shallow central potentials naturally in its nonrela-
tivistic limit. For hypernuclei, however, the nonrelativis-
tic shell model seems to be a perfectly satisfactory start-
ing point with its small A-nuclear spin-orbit interaction.
In this case, the pure scalar+ vector Dirac model yields a
much too large spin-orbit interaction. However, the
oAA tensor vertex predicted from a quark model trans-
forms the complicated A-nuclear single-particle Dirac
equation with scalar, vector, and tensor potentials into a
simple nonrelativistic shell-model wave equation with just
a shallow central potential in the nonrelativistic limit
[10]. In a hypernucleus one deals with nucleons and the
hyperon simultaneously, for both of which the Dirac ap-
proach provides a natural framework without ad hoc
forces. Thus, we consider the A case as a success of the
Dirac MFT, because such a consistent and natural
description for both nucleons and a hyperon does not
seem to exist for the nonrelativistic model. Therefore, we
shall argue that the Dirac theory can be used to predict
results for systems such as ¥ and = hypernuclei. Al-
though no good data exist for £ hypernuclei to provide
information on the Z-hypernuclear spin-orbit coupling,
predictions will be given in Sec. V for X as well as Z hy-
J
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pernuclei. Such predictions can be provided here based
on the quark model used. Moreover, our model can serve
as a basis for a systematic theoretical study in an attempt
to improve upon the purely phenomenological level.

III. QUARK MODEL FOR THE NUCLEON

Effective meson-field theoretical approaches have been
successful, but not always consistent and hardly predic-
tive, in describing baryon-baryon and meson-baryon in-
teractions [14]. At the fundamental level, the internal
structure of hadrons is described by quantum chromo-
dynamics (QCD), the SU(3) color gauge theory of elemen-
tary quarks and gluons as massless gauge bosons [15].
Only at short distances and high energy is the running
quark-gluon coupling of QCD small enough for perturba-
tion theory to apply, while at large distances QCD-
motivated (quark and other) models are used to under-
stand the nonperturbative aspects of QCD. Such models
incorporate color confinement along with the fundamen-
tal symmetries in their description of hadron structure
and dynamics. We view such models as useful interpola-
tion between QCD and the hadronic picture. We will see
that the hypernuclear spin-orbit problem can be con-
veniently addressed using a quark model.

In the following we point out how the hypernuclear
spin-orbit interaction problem can benefit from a quark
model that goes beyond the broken SU(3) flavor symme-
try by extrapolating the chiral-invariant vector coupling
of the QCD Lagrangian to long distances starting from a
Fierz transformation of its quark action [16]. A bosoni-
zation of QCD based on this method is now more gen-
erally recognized as a key to the mesonic dynamics of
QCD at longer distances and low energy [17]. The model
includes relativistic effects of the interacting quark in
terms of its small Dirac wave function from some
confinement model. Its bag model version [9] is written
in the coordinate representation as

an)=x'(g(r),ioc Bf(r) . (5)
The following overlap integrals will be useful:
Fa—L(qz)=41Tf0Rdr rAgA AN olar) (6a)
— M rRr .
Fl(qz)—16'n'7 fo dr rig(r)f(r)j,(qr), (6b)

where ¢*=(g,=0,q) (¢=|q|,q*=—q?) is the momen-
tum transfer, R the bag radius, and M the baryon mass of
the relevant meson-baryon vertex. A constituent quark
model version has also been developed in previous appli-
cations of the model to a variety of problems [16,18].

In the ensuring discussion, results will be required for
nucleons as well as hyperons. Starting with the nucleon,
its vector-meson vertex is given by

(V”(T)T)N=(N(p')[3]%,%lfd3rei‘”q(r)y“(T)Tq(r)]N(p)[3]%,%
=(1—q*/4M3)  Yuy(p' (xpF§ +q%yF  /8ME)yF—(xpF§ — Ly F )io*q, /2My 7y ) Tuy(p)
=un(p'NFiry*+iF 0, /2My)(1y) uy(p) 7))
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in the bag model [9], and

(PO y=(1—¢>/4M{)  ay(p)[(Tor —q°T 1 /2My )y*—(Lor —2MyT 1)ioq, /2My [(Ty) Tuy (p)

in the constituent quark model [18]. In Eq. (7)
xp=3""T yr,=—2(5/3)T, 9
while for Eq. (8)
Dor=(1+a/4m2) 3" 1+a(1+¢*/9a) /4m]]
Xexp(qg?/6a) , 10)
Ir=(1+a/4m})~'(5/3)7exp(q*/6a)/3m, .

In Egs. (7) and (8) 7 (1) is the quark (nucleon) isospin
operator, and T =0 or 1; obviously 7 =0 for the isoscal-
ar v meson. The » meson couples via igy* to each of the
three valence quarks, so its coupling to the nucleon is
simply via ig (y*) 5. The w-nucleon vector coupling con-
stant is

gonn =8F10(q*=0)=gx,=3g ,

in the bag model ; (11a)

gony =8Too(g*=0)=3g ,

in the constituent quark model . (11b)

The w-nucleon tensor coupling is given, respectively, by
J
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(8)
[
meN=gF20(42=0)
=—gxoFq (¢>=0)—1gy,Fi(¢’=0),  (12a)
or
waN=—g[Foo(q2=0)—2MNr‘o(q2=o)]
:g[—3+(1+a/4qu)_12MN/3mq] . (12b)

Numerical values for f, yy may be obtained by fitting,
e.g., m, to the measured nucleon mass and a to the
axial-vector coupling constant g , =1.25, yielding for Eq.

(12b)
m,=My/3, a=l2qu/13 ,
and consequently

waN/ngN= —0.47 .

This is a fairly large tensor-to-vector ratio; however, we
show next that a lower ratio is more likely as suggested
by a fit of F,(0) and I' ; to the nucleon magnetic moment.
In the nucleon case, the electromagnetic current is
readily obtained from Egs. (7) and (8) using the quark
charge operator Q =1le({+7;3) for the u and d quarks:

(13)

(N(p')lj”lN(p))=%(1—q2/4M1%,)_1EN(p’){[Ff(q2)+F{/(q2)1'§V]y“+[Ff(q2)+F{(q2)7'§V]io“" J/2My uy(p) ,

where the definition of F sz differ for the bag and constit-
uent quark models. Rather than repeating the same steps

leading to Eq. (13), we note that
F3(g*=0)=F/(¢*=0)=1 (15)

represent the corresponding (isoscalar or isovector) nu-
cleon charge in units of e /2, while in the bag model (e.g.)

F$(g*=0)=—[1—1F(¢*=0)]

=k, tk,=—0.12, 16)
FY(g*=0)=—[1—3F(¢*=0)]

=k,—k,=3.70 ,

where ky is the nucleon anomalous magnetic moment in
nuclear magnetons. From Egs. (16) we find an average
value of

F(g*=0)=2.72; (17

this result is obtained [see Eq. (16)] from a fit to the nu-
cleon magnetic moment. From Eq. (12a) we now obtain
the bag model result

F,0(g?=0)=—0.28, f.nn/8ony=—0.09 (18)

(14)

[
for the ratio of the w-nucleon tensor-to-vector coupling
constants. Likewise in the constituent quark model,

(40— 2MyTo)l 2_,=0.12,

(19)
(Do —2MyT))| >, =3.70

[cf. Eq. (16)], again yielding f yn/8.nv = —0.09 as in
Eq. (18). The small tensor-to-vector ratio obtained here
is in good agreement with the hadronic phenomenology
[14,19] (See, however, Ref. [20] for the w and [21] for the
p ratio.) In Sec. IV, we will see that a large o AA tensor
coupling is required, and that the magnetic moment pro-
vides no input in determining f, 5, (unlike the nucleon
case).

IV. QUARK MODEL FOR HYPERONS

The quark model results of Sec. III have been shown to
be consistent with the nuclear o-w MFT in the nucleon
sector. In this section we apply the model to hypernuclei,
where a small A-hypernuclear spin-orbit splitting is mea-
sured (see Sec. II); predictions for = and = hypernuclei
[22] will also be given.

The underlying quark structure of the A in the uds
basis, where quarks are treated as distinguishable and the
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u, d quarks are antisymmetrized explicitly, is given by

|A(S=14,T=0)) =|(ud)S=0,T=0)Is )5, =1 5,7, =0 »

(20)

where the u and d quarks are coupled to spin and isospin
zero. For the 3%,

=TS =1/2,T=1))
=[lg)S=1,T=1)Is)]s =1 p,7, =1, (1)

with ¢ =u(d) for =*(Z7). Finally, we also consider here
the S= —2 E hyperon, where

|E%T(§=1/2,T=1/2))
=[lg> l(ss)S=1)]SE=1/2’TE=1/2 - (22)

A hypernuclei can be analyzed on the basis of Eq. (20).
Following the approach of Sec. III, we now proceed to
write down the w-A coupling. Assuming no admixture of
strange quark content in the ® (or the o), the Okubo-
Zweig-lizuka (OZI) rule tells us that the mesons will only
couple to the u and d quarks. [The same assumption
leads to Eq. (4).] The wAA vertex is, therefore, given by

(9]
(Algy"|A)=2g(1—q*/aM3%) " 'Ffa,(p")
X(yt—iotq,/2M \)u \(p) , (23)
yielding the tensor-to-vector coupling ratio

Sorn/8oan="1. (24)

This ratio does not depend on fitting any particular set of
data, in contrast to the situation encountered for the nu-
cleon in Sec. III. This feature was crucial for Ref. [10] to
show that the small spin-orbit interaction of the A hype-
ron is consistent with the o-w Dirac model. Indeed, it is
unrelated to the magnetic moment of the A, which comes
from the o matrix element of the s quark and does not
tell us anything about the value of f A, /8,aa; there is
no F, contribution in Eq. (23) because the ¥ matrix ele-
ment is zero for the ud pair coupled to spin 0. Further-
more, since the A hyperon is neutral, it has only an
anomalous magnetic moment. The A-electromagnetic
current is

(yre, ) a=—31(1—g*/4M} )" 'a

X(—q*y"T1/2M , +Tjio*q,)u, 25)

for the constituent quark model (with a similar result for
the bag model). As ¢g2—0, Eq. (25) does not contain a
vector coupling and does not contain information
relevant for Eq. (23).

We now turn to the = and Z hyperons [cf. Egs. (21)
and (22)]. As was the case for the A hyperon, the o
meson couples only to the ¥ and d quarks, not to the s
quark. We shall use the measured baryon masses in the
ensuing discussion. The quark model [9,18] predicts for
the convection current of Eq. (37) an octet F /(F+ D) ra-
tio a=1, while a=2/5 for the Pauli current (tensor ma-
trix element) at g2=0. The same « values are obtained
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from magnetic couplings in the SU(6) symmetry [20]
which is broken in quark models. Our quark model goes
beyond SU(6) in predicting scalar meson couplings
(ag=1) from chiral properties built into the model. The
model yields the following ®23 and wEZ vertices, corre-
sponding to Eq. (7) for the nucleon and Eq. (23) for the A
hyperon with F, of Eq. (6b); similar results hold for the
constituent quark model version:

(Zlgy*|2)=g(1—q2/aM3%) 'as(p’)
X[(2Fg —q*F,/3M%)y*
—(2F§ —4F/3)io*q,/2M s us(p) ,

(26)
(Elgy*IE)=g(1—q?/aM%) 'a=(p")
X[(F§ +q%F, /12M% )y*
—(F§ +F,/3)io""q,/2Mz Ju=(p) ,
(27)
where F§ =1 at ¢>=0 and
2.41, = bag version
Fi=1266, = bag version ’
(28)
3.46, X Eq. (19) fit
Fi= 1382, = Eq. (19) fit -

From Egs. (26) and (27) we obtain the tensor-to-vector
coupling constant ratios (at g2=0)

foss/8oss=—1+2F,/3

0.61, bag version
=11.31, Eq. (19) fit (29)
Sfozz/80zz="1—F/3
—1.89, bag version
=1_ . (30)
2.27, Eq. (19) fit

A comparison of Eq. (23) for the A hyperon with Egs.
(26) and (27) shows that the strong vector and tensor w-
hyperon couplings contain detailed dynamics of the
quark model for the 2 and = hyperons (as well as for the
nucleon), in contrast to the A hyperon.

V. APPLICATION TO HYPERNUCLEAR
SPIN-ORBIT INTERACTION

When applied to hypernuclei the results of Sec. IV
bring about considerable changes compared with the
pure scalar+vector model. They result from the large
fovry/8,yy ratios, Egs. (24), (29), (30) relative to the
small value of £ yn /8.~y in Eq. (18).

Starting with the A hyperon [see Eq. (24)] we seek an
explanation of the small measured spin-orbit interaction
[7] of A hypernuclei. Toward this end, we discuss two al-
ternative formalisms and then give an intuitive physical
explanation which, we believe, is new and helps to clarify
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the pertinent physical picture beyond the formalism.
Predictions will then be discussed for 2 and = hypernu-
clei.

The (strong) oYY tensor coupling adds an extra term
to the MFT Lagrangian,

—waY¢0“vav¢/4MY ’ (31)

where F,,=3,V,—9d,V,. In this work we have derived
this tensor part from a quark model. In a purely hadron-
ic theory such terms are sometimes put by hand into the
Lagrangian, in analogy with magnetic-moment contribu-
tions of Pauli type to represent the interaction of the elec-
tromagnetic field with the anomalous magnetic moment
of the baryon. It has long been realized that such contri-
butions should emerge (in terms of hadronic degrees of
freedom) as higher-order perturbative corrections in the
field-theoretical calculations [23]. However, a complete
theory along these lines has never been worked out;
indeed very similar words were written 40 years ago [24]
in very similar circumstances. It is important to keep in
mind, however, that the magnetic moments and tensor
couplings should not be treated as tree-level contributions
in the strict hadronic theory sense.

The wYY tensor coupling affects the phenomenological
Dirac equation as discussed in Ref. [11] (this result is ob-
tained by the usual [2] methods starting from an MFT
Lagrangian, Eq. (1), modified to include the term in (31))

iy, —8 v Vo(r) —[My—gJdy(r)]

1 waY .0 Y
i Vg, Volr) |¢¥(r)=0, (32)
My Bory Y Vg, Volr) |9

where we assume that the ratio f,yy/g,yy Obtained in
the quark model is directly applicable to the phenomeno-
logical Dirac equation. Note that the tensor coupling
term in Eq. (31) is important only when the potentials de-
pend explicitly on r, particularly in the nuclear surface,
where the r dependence is strongest. For spherically
symmetric potentials, V,(r)=V¥,(r), the tensor term be-
comes

1 f(uYY . 0 /\_d_ Y
_2MY —ngY iy’y T o (g, Vo(r)] . (33)

Using Appendix I of Clark, Hama, and Mercer [3] (where
an equivalent Schrodinger potential is obtained from the
Dirac equation by eliminating the lower component of ¥
and solving for the upper), the tensor coupling adds to
the usual spin-orbit interaction the term

1 waY__d_ Y
—rMY —ngY ar (g, Vo(r)], (34)

implying a large effect on the spin-orbit interaction. The
central nonrelativistic potential remains largely un-
changed.

For the Y=A, =, and E hyperons the spin-orbit in-
teraction is

1185

MyrgVyo f(n)/r

_ -1 d
=r 1(E+My_gsy¢0—guYVO) lg;(ng 0+ngV0)

—1a,—1 d
+r My 1E(guyVo)waY/ngY . 35)
Evidently for the A, using faa/8oar=—1 [Eq. (24)],
the two terms in Eq. (35) cancel each other to a large ex-
tent. A numerical estimate of Eq. (35) may be obtained
by substituting ¢y(r)=V(r) and E =M ,, yielding

MAr%vQOVf’(r)/r=r“l(l/M}';—l/MA)%[g,f\qﬁo(r)] .

(36)

The scalar A-matrix element contains the mesonic cou-
pling constant 2g /3 instead of g for the nucleon. Using
g2 /gN¥=0.6 [see also Eq. (4) and the discussion following
it], we find that

1/M*%—1/M,=0.27/M, ,

reducing the spin-orbit interaction for A hypernuclei by
another factor of 4 relative to the prediction of the pure
scalar+vector Dirac model. The approximate ratio of
vector-to-tensor potentials,

RA=M%/M,=0.79 ,

is in surprising agreement with Noble’s [8] value of
K, =0.8 adopted on the basis of the anomalous magnetic
moment of the A hyperon.

Furthermore, the spin-orbit potential acts mostly in or
near the nuclear surface, where V,, and ¢, are smaller
than their central density values. Taking the potentials
at half of the latter strength [8] gives a suppression factor
0.12/M ,, decreasing the spin-orbit interaction by a fac-
tor of about 10 relative to the pure scalar + vector predic-
tion. This reduction occurs over and above what has pre-
viously been attained in the literature within the pure
scalar +vector model by reducing the meson-baryon cou-
plings g, and g,,.

For A hypernuclei, where Eq. (24) applies, a similar re-
sult (at least at a semiquantitative level) may be obtained
by using the (on-shell) Gordon decomposition

Vu—i0,,q"/2Mp=(p +p"),/2M (37)

where p, p’ are the initial and final A four-momenta. The
importance of this relation in this context was already
recognized in Ref. [9] and utilized in Ref. [10].

Since the presence of a tensor coupling results in the
modified MFT Dirac equation [cf. Eq. (1)]

1 Sfory
y#V“+———w oF,,

. u_oY
R 2My g,yy K

—(My—g/[$o) }1/::0 ,  (38)

we use Eq. (37) for the case of weak overall A binding to
get for Y=A
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¥=0. (39)

. (p+p)H*
iy, Y — ‘M A +g$_% V,—g o

For spherical nuclei and intensive observables, where
only the timelike component of a four-vector potential is
important, Eq. (39) yields

E,\

iy, 8" — MA+M gMVo—gldo | [v=0. (40)
A

Interestingly, only a fairly weak scalar potential appears
in Eq. (40), of the order

gA
V,=£-(75 MeV) .
g

The net result is a transformation from a complicated A-
hypernuclear single-particle Dirac equation with scalar,
vector, and tensor potentials to a simple Dirac equation
virtually equivalent to the nonrelativistic shell model
with only a shallow central potential.

There also exists a simple semiclassical explanation of
the above observations [26]. First note that the vector
field equation of motion [2] (without a tensor coupling),

3 FH +mlVy=g dy"y , (41)

looks like massive quantum electrodynamics with the
conserved baryon current B¥=1)y*y (rather than the
conserved electromagnetic current of QED) as a source.
The origin of the spin dependence of the nonrelativistic
baryon-nucleus potential is a result of two possible
effects. The first of these arises from an external torque
from the interaction between a ‘“‘magnetic dipole” pro-
portional to the spin and a “magnetic” field. The “mag-
netic” field is producted by the motion (at velocity v) of

the baryon in an “electric” field proportional to
—8,VV,(r). The outcome is an effective spin-orbit in-
teraction Hamiltonian

H,=—g,s:-vXVVyr) /My . (42)

The second effect is the Thomas precession [25],

H,=s-vXVV,(r)/2My . 43)

In conventional nonrelativistic nuclear physics, where
only one type of potential exists, a scalar potential gives
[based on Eq. (43)] a spin-orbit interaction of the correct
sign but a factor of 20 too low, as discussed above. In the
Dirac approach with both a strong scalar and vector po-
tential, Eq. (42) gives a large spin-orbit force, hence the
success of the model. As shown in Eq. (40), the w-A ten-
sor coupling effectively eliminates the vector potential al-
together while reducing the scalar potential to the level of
the nonrelativistic shell model, thereby eliminating the
spin-orbit interaction as required by hypernuclear data.
The Z-hypernuclear spin-orbit interaction can be ob-
tained in a similar fashion. For gZ/g¥=0.6 and the pos-
itive ratio in Eq. (29), the tensor potential of the £ hype-
ron increases its spin-orbit potential by about 50% (bag
version) to 100% [fit of Eq. (17)] relative to the pure
scalar+vector theory. For potentials at half strength in
the nuclear surface (as done for A hypernuclei above), the
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ratio of = to N spin-orbit interaction is 0.6 (bag) to 1 (fit),
which amounts to a sizable spin-orbit interaction some-
what smaller than (but comparable with) that of the nu-
cleon. Unfortunately, no experimental data are available
at this time to compare with.

For E hypernuclei we use g=/gN=1/3, as only one
nonstrange quark is assumed to interact with the o
meson. The standard spin-orbit potential in Eq. (35) is
reduced by the negative ratio in Eq. (30) reversing its
sign, so that the Z-hypernuclear spin-orbit interaction is
—15% to —20% of that of the nucleon.

The one-boson-exchange results within a nonrelativis-
tic hypernuclear dynamics were derived and reviewed by
Dover and Gal [20]. They found in model D [27] the =
hypernuclear spin-orbit potential is about 40% of the
nucleon’s, the = hypernuclear spin-orbit potential is 15%
and equal in sign to the nucleon one (smaller and opposite
in sign in model F), while the A-hypernuclear spin-orbit
potential is 25% of the nucleon quantity. The meson-
exchange models used by Dover and Gal tend to yield too
large a A-hypernuclear spin-orbit potential. They could
have obtained a vanishing A-hypernuclear spin-orbit po-
tential from their Eq. (2.40) upon using f s /8oan = — 1.
However, their couplings are based on a different model,
viz. the nonrelativistic one-boson-exchange picture,
which provides different values for the pertinent coupling
constants when fitted to the scarce hyperon-nucleon
scattering data.

VI. CONCLUSION

We find, in agreement with Jennings [10], that to ex-
plain the small A-hypernuclear spin-orbit interaction a
strong wAA tensor vertex is required. A strong o-
hyperon tensor coupling arises naturally in the quark
model. This ©YY tensor coupling affects the phenomeno-
logical Dirac equation, while the central nonrelativistic
potential remains largely unchanged, i.e., without dis-
turbing the successful applications of the o-w model to
ordinary nuclei. The net result is a transformation from
a complicated A-hypernuclear single-particle Dirac equa-
tion with scalar, vector, and tensor potentials to a simple
Dirac equation virtually equivalent to the nonrelativistic
shell model with only a shallow central potential. The
positive ratio of tensor-to-vector coupling for the = hype-
ron increases its spin-orbit potential comparable to that
of the nucleon, while for the = hyperon the standard
spin-orbit potential is reduced by the corresponding nega-
tive ratio and a reduction factor 1/3 in its scalar and vec-
tor coupling constants.

The A, =, = hyperons have different spin-orbit forces:
for the A a vanishing spin-orbit interaction, for the X it is
comparable to the nuclear spin-orbit interaction, for the
Z it is of opposite sign and an order of magnitude smaller
than the nuclear case.
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