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The a+ ' C elastic-scattering angular distributions at E&,b = 120, 145, and 172.5 MeV were phase-shift
analyzed and an inversion procedure for the determination of the optical potential was applied. The po-
tential and its associated uncertainties, as a function of the radial distance, were found. Comparison is
made with usual Wood-Saxon optical potential analysis.

I. INTRODUCTION

The problem of determining the potential from the S-
matrix elements at fixed energy is extensively discussed in
the literature [1], and some approximate methods have
been developed and applied to nuclear physics problems.
For example, Lipperheide and Fiedeldey [2] based their
method on the assumption that if SI is a simple rational
function of l, a simple method can be applied for the
determination of V(r) Anoth. er approach is the semi-
classical extension of Kujawski [3] to complex potentials.
A further different approach is proposed by Ioannides
and Mackintosh [4] and Cooper and Mackintosh [5]
based on an iterative-perturbative procedure.

For the purpose of investigating the uncertainties in
the optical potential resulting from the errors associated
with the experimental measurements of elastic cross sec-
tions, we found the method of Ref. [4] most convenient.
Thus we adopt their procedure and employ the rneasure-
ments of Wiktor et al. [6] for the a+' C system at
E„b=120, 145, and 172.5 MeV as our input data. Our
choice of this set of data, apart from its good quality, was
based on the fact that at the energies measured we expect
the ca+' C system to be reasonably transparent, allowing
a sufficiently precise determination of the optical poten-
tial. In Sec. II we describe and illustrate the inversion
procedure. Section III contains a description of our
analysis, and in Sec. IV we draw our major conclusions.

Eq. (2.1) is transformed into a linear integral equation for
the dirnensionless function:

f (r) = [ V(r) V(r)—]/Eo,
where Eo is the kinetic energy of the ions in the elastic
channel.

We assume that the nuclear potential contributes to SI
only for l (l,„. Next, we choose a basis of X linearly in-
dependent functions y; (r) to represent f (r) in the interval
(O, r,„). For r,„we may take the classical closest-
approach radius for the ions in the presence of the
Coulomb field with angular mornenturn Al,„. For the
y;(r) we used the linear splines, which we found to be
most convenient.

With these arrangements Eq. (2.1) transforms into a set
of algebraic linear equations:

N

SI —S( —=5S( = g BI,a;, O~l~l „, (2.2)

yI(r) =—[G, iF& —S&(G,—+iFI )],2

at r +~, an—d similarly for y&(r). F& and G& are the regu-
lar and irregular Coulomb wave functions as defined by
Abramowitz and Stegun [7]. Equation (2.1) is the start-
ing point for the inversion procedure.

By setting

Xl(r) =xl(r)

II. INVERSION PROCEDURE with

We assume that the elastic-scattering matrix SI is
reproduced by the spherically symmetric optical poten-
tial V(r) for two colliding spinless nuclei. If V (r) is an
approximation to V(r) and SI its corresponding scatter-
ing matrix, the following relation is easily obtained.

and

Nf (r)= g a;y, (r)

B&; = —2ik f [g&(r)] y;(r)dr .

(2.3)

(2.4)

SI —
S~ = —

z

' f y&(r)yl(r)[V(r) —V (r)]dr, (2.1)

where p is the reduced mass of the system and k the wave
number for the elastic channel. gI(r) and y&(r) are the
radial wave-function amplitudes for the angular momen-
tum hl corresponding to V(r) and V (r), respectively.
We have imposed the following normalization at infinity:

1 max N 2

5SI —g B(;a; IV(,
max i=1

(2.5)

where 8 I are weighting factors. We have taken

The coefficients a; are determined by taking
1V (l,„+1 and minimizing the expression

1152 1991 The American Physical Society



INVERSION POTENTIAL FOR THE a+ ' C SYSTEM 1153

Wi =(21 +1)/(1,„+1).

The procedure can now be summarized: (i) We choose
V (r) as a starting potential; (ii) we fix l,„,r,„,and the
linear spline basis that cover the interval (O,r,„);(iii) we
determine a,. by requiring y to be minimum; (iv) we find
a new potential V (r)+Eof(r); and (v) we repeat the
above procedure starting with the new potential unti1
convergence is reached.

Figure 1 exhibits an example that illustrates the pro-
cedure. The target SI are those generated by the Wood-
Saxon optical potential of Ref. [6]:

0

Vo WoV(r)= +i
1+exp[(r —R)/a] 1+exp[(r —R)/a]; '

R =r, (W,'"+W,'"),
where the parameters are given in the second column of
Table I.

For the starting potential we also used a Wood-Saxon
shape for the real part with parameters given in the third
column of Table I with the imaginary part set to zero.
We chose l,„=40 and r,„=10fm and used a basis of
20 linear splines equally spaced over the interval (0,10
fm). The procedure converged after seven iterations with
final y =0.00096. After each iteration we calculate the
distance between the target SI and the calculated SI ma-
trices defined as follows.
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Figure 1 exhibits the calculated potentials for each itera-
tion and the respective values of y and o.. It is interest-
ing to observe that although we started with a potential
quite different from the one which originated the input S
matrix, after seven interactions the procedure returns
back to the same original potential. This suggests that
the linearization of Eq. (2.1) does not restrict in a sub-
stantial way the applications of the procedure.
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As data, we used the measurements of elastic-
scattering cross sections for the a+ ' C collision at
E&,b=120, 145, and 172.5 MeV of Wiktor et al. in the
angular interval from 0, =6' to 80, 70', and 60, re-
spectively, in investigating the actual shapes and uncer-
tainties in the optical potential determination from the
experimental data. Figure 2 shows their data as dots.
The solid curve is one of our optical potential fits ob-
tained by the inversion procedure previously described.
More detail will be given later. The inset in this figure is
the classical deflection function obtained from the phase
shifts of the 145-MeV optical potential of Ref. [6]. One
should note that the experimental data cover five orders
of magnitude in the cross section with errors around S%%uo

and extend beyond the classical rainbow angle

TABLE I. First column gives the parameters, the second
column their values as used in Ref. [5] for E =172.5 MeV, and
the third column the values of the parameters for the initial po-
tential in the iterative procedure.
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FICx. 1. Real and imaginary parts of the inversion potential
after each iteration (dashed line) and the target potential of Ref.
[6] (solid line).

Parameters

Vp

rp
a

p

rp
rp
a;

Potential
of Ref. [6]

112.8 MeV
0.673 fm
0.82 fm

16.8 MeV
1.076 fm
1.076 fm
0.53 fm

Initial
potential

80 MeV
0.773 fm
0.50 fm
0.0
0.0
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Since our task is to exhibit not only the shape of the

potential, but also its uncertainties as determined by the
data, we generated from the original data 15 new angular
distributions by adding to them white noises with widths
given by the experimental errors. A totality of 45 angu-
lar distributions, 15 for each energy value, was the start-
ing point of our analysis. As the experimental angular
distributions contains around 40—50 points, insufBcient
to make a phase-shift analysis, we enlarged the initial
data set by including 50 new points for each angular dis-
tribution, determined from a cubic spline interpolation.
These enlarged sets were used to search for the phase

shifts that best fit the data. In the search we varied only
those S& for 0~l ~25. The other SI values were taken
from the optical potential of Ref. [6]. Figure 3 summa-
rizes the S& values found in our analysis. The vertical
scale is ~S& and the horizontal scale is the value of I. The
result is plotted as vertical bars centered on the mean
value of ~SI ~

with widths equal to twice the rms deviation
from the mean value. We observe that the uncertainty in
~SI ~

increases as l decreases, reflecting the relatively low
sensitivity of the cross section to the low values of the an-
gular momentum.

To each one of the 45 sets of S matrices, we applied the
inversion procedure described in the previous section, us-
ing I,„=40, r „=10fm, and a base of N =20 linear
splines. In all cases V (r) was taken as the Wood-Saxon
potential given in the third column of Table I. Figure 4
exhibits our results. The 15 optical potentials found by
the inversion procedure are plotted as small dots. The
open circles (connected by the dashed line) correspond to
the mean value of the potentials for each radial distance.
The solid curve represents the Wood-Saxon optical po-
tential of Ref. [6]. For each energy we observe that for
r 3 fm, i.e., the surface region, the uncertainties in the
potential are small and our results agree with the optical
potential of Ref. [6] except for the 145-MeV case where
the shape exhibits some structure outside the uncertainty
bars. In the inner region df (r (3 fm), the potentials de-
viate substantially from that of Ref. [6]. In particular,
not only does the imaginary potential exhibit very large
negative values, but also the real potential also becomes
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FIG. 2. Experimental elastic angular distributions of a+' C
at E =172.5, 145, and 120 MeV. The solid curve is one of our
optical potential fits obtained by the inversion procedure. Inset:
The classical deflection function obtained from the 145-MeV
optical potential of Ref. [6].

Flax. 3. Solid bars represent the rms deviation of ~S&~ ob-
tained from the phase-shift analyses centered on the mean valve
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FIG. 4. Optical potentials obtained by inversion (small dots).
The open circles connected by the dashed line correspond to
the mean value of the potentials. The solid curves are the
Wood-Saxon optical potentials of Ref. [6] for each energy.

repulsive the lower the entrance channel energy. From
our point of view, these effects in the inner region as a
function of the energy can be qualitatively understood as
resulting from the exclusion principle that inhibits the ex-
istence of o.+ ' C configuration in the ' 0 system for
lower values of the excitation energy. This is in agree-
ment with general considerations that predict the ex-
clusion principle to be active only for I & 6. From Fig. 4

for E&,b
= 120 MeV, we observe that the repulsion occurs

for N & ro= 1.5 fm, showing that the main contribution is
for I &roko=5. 4, where ko is the wave number for the
energy under consideration. We should also point out
the fact that the uncertainties in the potential get larger
as the o.+' C approach one another. This basically
reAects the uncertainties found in the determination of
the S matrix due to the centrifugal barrier since SI is
more sensitive to the inner region for lower values of l.

IV. CGNCLUSIQNS

The application of the inversion procedure for the
determination of the optical potential from the elastic S-
matrix elements, first proposed by Ioannides and Mackin-
tosh [4], worked well for 172.5 MeV [6]. We found both
the optical potentials for the entrance channel energies
measured and their uncertainties associated with the ex-
perimental errors. The uncertainties found agree with
the general belief that the optical potential for ion col-
lisions is not well determined in the inner region. Besides
these main results, we also found that as the energy de-
creases, the imaginary part of the potential increases neg-
atively and the real part becomes repulsive, suggesting
the existence of a hard core in the inner region for low
entrance channel energies. We believe that this behavior
is of a general character, reAecting the constraint im-
posed by the exclusion principle. If this is so, then we
may expect that this effect is stronger for heavier-ion col-
lisions at the same entrance channel energy per nucleon.

We would like to thank S. Wiktor for kindly providing
us with the scattering cross sections for the o. + ' C sys-
tem.
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