Excitation of ²⁴Mg states through the interaction of 85 MeV ¹⁶O ions with ¹²C and ²⁴Mg targets

E. Costanzo, M. Lattuada, S. Romano, and D. Vinciguerra

Dipartimento di Fisica, Università di Catania, Catania, Italy

and Istituto Nazionale di Fisica Nucleare, Sezione di Catania and Laboratorio Nazionale del Sud, Catania, Italy

N. Cindro and M. Zadro Ruder Bošković Institute, Zagreb, Croatia, Yugoslavia

M. Freer and B. R. Fulton Department of Physics, University of Birmingham, Birmingham B152TT, United Kingdom

W. D. M. Rae

Department of Nuclear Physics, University of Oxford, Oxford OX1 3RH, United Kingdom

(Received 11 March 1991)

The decay of ²⁴Mg at high excitation energies has been investigated by the interaction of a ¹⁶O beam with ²⁴Mg and ¹²C targets. Coincident heavy-ion-heavy-ion detection allowed for the study of the ¹²C-¹²C and ¹⁶O-⁸Be decay modes of ²⁴Mg. No evidence for these processes was found in the interaction of the beam with the ²⁴Mg target. The ¹²C-¹²C relative energy spectra measured via the ¹⁶O+¹²C reaction provide indication for the excitation of a few selected ²⁴Mg states around 30 MeV. Spins as high as 12*ħ*, deduced from the angular correlations, are consistent with a quasimolecular nature of these states.

I. INTRODUCTION

The existence of resonant states at high excitation energies (20-40 MeV) in ²⁴Mg is well documented and is known to influence a variety of reactions [1]. It is also known that different entrance channels may lead to the excitation of different states in ²⁴Mg [2-6].

In an attempt to understand this point better, two measurements in the reaction ${}^{12}C({}^{24}Mg, {}^{12}C{}^{12}C){}^{12}C$ have been performed recently [7,8] with the aim of studying the decay of the formed ²⁴Mg excited states into two ¹²C fragments. In both experiments a ²⁴Mg beam was used to bombard a ¹²C target. The laboratory energies were 375 MeV in Ref. [7] and 180 MeV in Ref. [8]. The spectra of the relative energy of the two emitted ¹²C ions showed that the process takes place essentially through the excitation of selected states of ²⁴Mg presumably formed by inelastic scattering. These states were suggested to have low spin [7] and compared favorably to those seen in the radiative capture [4] of ${}^{12}C + {}^{12}C$ and the electrofission [5] of ²⁴Mg. On the other hand, they did not show a clearcut correspondence to the resonances previously observed [1] in ${}^{12}C + {}^{12}C$ scattering. The possibility that ${}^{12}C^{-12}C$ molecular resonances can

The possibility that ${}^{12}C{}^{-12}C$ molecular resonances can be excited as a final-state interaction (FSI) of a three-body process has also been investigated via the ${}^{16}O{}+{}^{12}C$ reaction. Indeed, structure in the single α spectra from this reaction studied at different energies [9–12] has been interpreted as due to the excitation of ${}^{24}Mg$ states, in some cases related to the well-known resonances observed in several exit channels of the ${}^{12}C{}+{}^{12}C$ reaction [1]. This interpretation was supported by the finding that similar structures were also observed in other reactions such as ¹⁶O(¹⁶O, α)²⁸Si and ¹⁶O(²⁰Ne, α)³²S. It was tempting to relate this evidence to the well-known appearance of structures in the excitation functions of the ¹²C+¹²C, ¹⁶O+¹²C, and ²⁰Ne+¹²C systems which were interpreted as due to the formation of quasimolecular states in ²⁴Mg, ²⁸Si, and ³²S, respectively. In this picture, the lack of structure in the α spectra from the ¹³C(¹⁶O, α)²⁵Mg and ¹⁴N(¹⁶O, α)²⁶Al reactions is also consistent with the absence of resonances in the ¹²C+¹³C and ¹²C+¹⁴N excitation functions, which, if present, could have been related to the formation of quasimolecular states in ²⁵Mg and ²⁶Al.

On the other hand, different interpretations have also been proposed to explain the single α spectra from the ¹²C(¹⁶O, α) reaction, namely, the projectile breakup and the α decay of ²⁰Ne produced as the result of an α transfer from the target to the projectile [13,14]. The role of a compound-nucleus mechanism, leading to normal ²⁴Mg states after α evaporation, was also evidenced by other inclusive experiments [15,16].

The mechanism of the above reactions can be better investigated by coincidence experiments, since if quasimolecular states of ²⁴Mg are indeed excited in the reaction, they are expected to have large widths for decaying into the ¹²C-¹²C channel. Since the work of Wieland *et al.* [17], searches for the α -heavy-ion and heavyion-heavy-ion FSI have been performed by detecting coincident α -¹²C, α -¹⁶O, and ¹²C-¹²C pairs produced in the ¹⁶O+¹²C reaction [17-24] and measuring their relative energy spectra. The main conclusion of these exclusive experiments was that the process is dominated by the sequential α decay of inelastically scattered ¹⁶O ions [18-22] or ²⁰Ne ions produced by an α transfer mechanism [20–22]. Only in particularly favorable detection geometries evidence was found for a mechanism proceeding through the excitation of ²⁴Mg states and the decay into the ¹²C-¹²C channel [23,24]. Due to the small cross section of the latter process with respect to the other competing mechanisms of α production, the only quantitative information on these states deduced from coincidence experiments is reported by Lazzarini *et al.* [24]. Their cross-correlation analysis between the ¹²C+¹²C+ α coincidence data and the known excitation function of ¹²C+¹²C elastic and inelastic scattering indicates the formation and ¹²C-¹²C decay of four ²⁴Mg states in the range of 25–35 MeV of excitation energy.

As seen from the above discussion, in spite of the relative abundance of experiments, the actual mechanism of the excitation and the decay of 24 Mg states at high energies presents many unknowns. Hence the present experiment was devised with the aim of studying the excitation of 24 Mg via the inelastic scattering of 16 O and its decay into the 12 C- 12 C and 16 O- 8 Be channels. However, as we shall discuss later, additional data were also obtained on the 16 O+ 12 C interaction due to the presence of a large carbon buildup in the 24 Mg target. Preliminary results of the analysis of these data have been reported in Ref. [25].

II. THE EXPERIMENT

A beam of 85-MeV ¹⁶O ions was provided by the SMP tandem accelerator of the Laboratorio Nazionale del Sud, Catania, and focused, after careful collimation, onto a self-supported 250- μ g/cm²-Mg target, enriched to 99.8% in ²⁴Mg, placed at the center of a standard reaction chamber. The beam spot size on the target was about 1×2 mm².

The detection setup is sketched in Fig. 1. It consisted of three heavy-ion telescopes (A, B, C) and one split detector for ⁸Be (D). Each telescope consisted of a longitudinal field ionization chamber followed by a silicon position-sensitive detector (PSD), with a depletion depth of 500 μ m. Two of them (B, C) were mounted with axes at 27° on opposite sides with respect to the beam direction and the third one (A) was mounted at 52°. Rectangular slits on the PSD's restricted their polar and az-

FIG. 1. Sketch of the experimental setup.

imuthal angular acceptances to about 11° and 2°, respectively, but only horizontal-position information was provided by these detectors. The fourth detector (D) consisted of a rectangular silicon PSD, 600 μ m thick, horizontally split into two parts separated by 1 mm. Its center was placed at -55° in the reaction plane in such a way that the resulting average azimuthal angle of these two PSD's was $+2.5^{\circ}$ and -2.5° , respectively. The polar angular opening of the split detector was about 22°. The measurement of the energies and polar angles of the coincident particles in these two detectors, together with the assumption of a given value for the masses and of average out-of-plane angles, allows for the determination of their relative energy. With this technique, it is possible to identify the α -particle pairs emitted in the decay of ⁸Be, and, hence, measure the energy and position of the primary ⁸Be ions. Due to its closely packed geometry, the system has a much lower efficiency for the detection of α particles from the decay of ⁸Be excited states than for those from the ground state.

The time signals from any pair of PSD's were sent to time-to-amplitude converters (TAC's), whose standard outputs were used as a general trigger for computer acquisition. For each coincidence between any two of the heavy-ion telescopes seven digitized analog signals ($\Delta E, E$ and position for both telescopes and time difference) were stored on tape in event-by-event mode and then analyzed off line. An event due to coincidence between the ⁸Be detector and one of the three heavy-ion detectors consisted of eight signals ($\Delta E, E$ and position for the heavy-ion telescope, two energy and two position signals for the ⁸Be detector and time difference).

The calibration of the detectors was performed in preliminary runs by using α particles from a ²⁴¹Am source and ¹⁶O ions scattered from a thin gold target at different beam energies. The calibration was also checked at the end of the experiment.

III. DATA ANALYSIS

In the off-line analysis of the data the number of random coincidences was reduced by selecting only the events falling under the time peak in the TAC spectra. The particle energies were corrected event by event for energy losses in the target, in the ionization-chamber windows, and in the dead layers of the silicon detectors. The thresholds of detectors A, B, and C, due to the ΔE and window thickness, were about 20 MeV for ¹²C ions. However, in the analysis somewhat higher, angledependent thresholds had to be used, due to difficulties in the fast timing for particles hitting the central region of PSD's.

Preliminary runs had shown a carbon buildup on the target, presumably due to leakage of isobutane from the ionization chambers. A backscattering analysis of the target showed that the carbon buildup at the end of the experiment was about 60 μ g/cm². A procedure [26] was then used to discriminate between the coincidences produced by the interaction of ¹⁶O on different target nuclei. According to this procedure, coincidences are reported in an E_3 versus p_3^2 plot. Here E_3 and p_3 are the energy and

momentum of the undetected third particle, respectively, and are deduced independently from conservation laws [26]. As seen in Fig. 2, events from three-body reactions, corresponding either to different residual nuclei (and thus to different targets) or to different Q values, fall on different straight lines. The slope $(1/A_3)$ of each line gives the mass A_3 of the undetected particle and its intersection with the E_3 axis (-Q) gives the Q value of the corresponding reaction. Thus in the plot it is possible to identify events due to reactions on different targets.

In this way it is possible to analyze separately the contributions of the reactions induced by ¹⁶O on the two main components (²⁴Mg and ¹²C) of the target. Both components can in principle lead to the coincident detection of ¹²C-¹²C and of ¹⁶O-⁸Be produced in the decay of highly excited ²⁴ Mg nuclei.

In the data analysis, the mass number of all the carbon ions detected in coincidence was assumed to be 12. The validity of such assumption was verified *a posteriori*, by an inspection of the obtained *Q* spectra. Indeed, reactions leading to coincidences of carbon isotopes other than ¹²C have much more negative *Q* values, with both the ¹²C and ²⁴Mg target, and would be easily identified on the *Q* spectra. Similar arguments hold for the assignment of mass 16 to the Z = 8 ions detected in coincidence with ⁸Be.

IV. RESULTS AND DISCUSSION

The first striking results of the above analysis applied to the present experiment is that essentially all the observed ${}^{12}C{}^{-12}C$ and ${}^{16}O{}^{-8}Be$ coincidences come from the interaction of the beam with ${}^{12}C$, while practically no contribution from the ${}^{16}O{}^{+24}Mg$ reaction was observed. In fact, the events tend to align along the lines corresponding to the reactions on ${}^{12}C$ [solid lines in Figs. 2(a) and 2(b)], while no clear indication of reactions induced on ${}^{24}Mg$ (dashed lines) is present. The lowest lines correspond to the emission of all particles in their ground state; upper lines correspond to the emission of one or

FIG. 2. Scatter plot of the ${}^{12}C_{-}{}^{12}C$ (a) and ${}^{16}O_{-}{}^{8}Be$ (b) coincidence yield (see text for the definition of the coordinates). Coincidences produced in the interaction of ${}^{16}O$ with ${}^{12}C$ and ${}^{24}Mg$ are expected to fall around the solid and dashed lines, respectively.

both of the detected ions in their first excited states (4.44 MeV for 12 C and 6.1 MeV doublet for 16 O).

¹⁶O on the ²⁴Mg target

Our experimental setup was optimized for detecting a process leading to ²⁴Mg states around 30 MeV of excitation. Nevertheless, we did not observe such a process. At least two reaction mechanisms can be expected to produce the ${}^{12}C + {}^{12}C + {}^{16}O$ final state, namely, the inelastic scattering and the transfer of two α particles (or a ⁸Be nucleus) from the ²⁴Mg target to the projectile leaving an ¹⁶O residual nucleus. However, in the present experiment the ¹⁶O scattering angle covers the range from $+155^{\circ}$ to -155° in the center of mass, with a maximum efficiency at 180°. Thus the inelastic-scattering process is not supposed to give an important contribution at these very backward angles. Hence, from our results one can conclude that either the excited ²⁴Mg nucleus has a small probability of being formed in a ⁸Be transfer or that it decays preferentially into channels not detected in the present experiment.

¹²C-¹²C from the ¹²C target

The analysis of the ${}^{12}C{}^{-12}C$ coincidences entirely attributed to the ${}^{16}O{}^{+12}C$ interaction was performed in a standard way, by deducing the three-body Q spectrum for the coincidences between Z = 6 ions in each pair of the detectors, A, B, and C. Figure 3 shows these Q spectra for coincidences $A{-}C$ (a) and $B{-}C$ (b). The coincidence in detectors B and C fall under three well-separated Q peaks, close to the expected values of -7.16, -11.60, and -16.04 MeV, which correspond to final states involving all the combinations of ${}^{12}C$ (g.s.) and ${}^{12}C(2^+)$.

FIG. 3. Q spectra of the ${}^{12}C{}^{-12}C$ coincidences in detectors A-C (a) and B-C (b) from the ${}^{16}O{}+{}^{12}C$ interaction.

These peaks are labeled Q_{ggg} , Q_{1gg} , and Q_{11g} , respectively. Detection of ¹²C-¹²C coincidences is kinematically forbidden for the detector pair *A-B*, while the absence of the less energetic peak in the *Q* spectrum of the detector pair *A-C* is due to the energy thresholds.

For each peak in the Q spectra the relative energies between any two of the three final particles were deduced. Figure 4 shows the matrices $E_{12} - E_{2\alpha}$ and $E_{1\alpha} - E_{2\alpha}$ for the Q_{ggg} peak. Here 1 and 2 refer to the ¹²C ions detected, respectively, in telescopes B and C. Due to different thresholds introduced in the off-line analysis the $E_{1\alpha} - E_{2\alpha}$ matrix is not symmetric, in spite of the geometric symmetry of the detectors.

In this representation, the grouping of data along a line perpendicular to the E_{ij} axis provides evidence for a reaction proceeding through the formation of the (i + j) intermediate nucleus at a given excitation energy, followed by the decay into particles *i* and *j*. We recall that the excitation energy E^* of this nucleus is simply given by the sum of the relative energy E_{ij} and the separation energy of the decay products *i* and *j*. The latter is 13.92 and 7.16 MeV for the ${}^{12}C+{}^{12}C$ and ${}^{12}C+\alpha$ systems, respectively. Figure 4 clearly shows that most of the ${}^{12}C-{}^{12}C$ yield comes from the deexcitation of ${}^{16}O$ discrete states into the ${}^{12}C+\alpha$ system.

To obtain the relative energy spectra, shown in Figs. 5, 6, and 7 for each one of the three Q peaks, the matrices were projected on the axes. Because of the different thresholds on detectors B and C, information from $E_{1\alpha}$ and $E_{2\alpha}$ spectra is not equivalent. Nevertheless, in both spectra a peaking is visible at about 4 MeV [Figs. 6(a) and 7(a)], corresponding to the excitation of a few levels in ¹⁶O around 11 MeV. The preferential excitation of these states has been observed already in other ¹⁶O breakup experiments (see, e.g., Refs. [17, 20, and 22]).

Even if the reaction is dominated by the breakup of the projectile, it is possible to see in the matrix of Fig. 4(a) a trend of data at high $E_{2\alpha}$ to align on vertical lines. Obviously, when all the data are projected on the E_{12} axis, the presence of such events is completely covered by the breakup contribution. To highlight this yield we selected on the $E_{1\alpha}$ - $E_{2\alpha}$ matrix the events with both of these relative energies larger than 11 MeV [$E^*({}^{16}O) > 18$ MeV ap-

FIG. 4. $E_{12} - E_{2\alpha}$ (a) and $E_{1\alpha} - E_{2\alpha}$ (b) matrices for ¹²C-¹²C coincidences falling under the Q_{ggg} peak (detectors *B*-*C*).

FIG. 5. E_{12} relative energy spectra deduced from ${}^{12}C{}^{-12}C$ coincidences by gating in turn on each one of the three Q peaks of Fig. 3(b); (a) Q_{ggg} , (b) Q_{1gg} , (c) Q_{11g} .

FIG. 6. $E_{1\alpha}$ relative energy spectra deduced from ${}^{12}C{}^{-12}C$ coincidences by gating in turn on each one of the three Q peaks of Fig. 3(b): (a) Q_{ggg} , (b) Q_{1gg} , (c) Q_{11g} .

FIG. 7. $E_{2\alpha}$ relative energy spectra deduced from ¹²C-¹²C coincidences by gating in turn on each one of the three Q peaks of Fig. 3(b): (a) Q_{ggg} , (b) Q_{1gg} , (c) Q_{11g} .

proximately], thus excluding the strongest contributions from the ¹²C- α FSI. Figure 8 shows the projection of these data on the E_{12} axis. The main feature of this spectrum is the presence of a few peaks which can be attributed to the formation and decay of selected ²⁴Mg states at excitation energies of 26.3, 27.3, 28.4, 29.2, 30.7, and 31.6 MeV (see Table I). Checks were made to be sure that the overall features of the E_{12} projection are not affected by the particular choice of the thresholds. Increasing the thresholds on $E_{1\alpha}$ and $E_{2\alpha}$ has the only effect of gradually cutting the highest energy peaks.

The peak energies, whose uncertainty is estimated to be ± 200 keV, are to be compared with the ones previously found in the same reaction. Lazzarini *et al.* [24] report four peaks at 25.2, 28.8, 30.2, and 33.2 MeV, which do not overlap well with our findings. On the other hand, in the inclusive experiment of Stwertka *et al.* [16], some α peaks from the interaction of ¹⁶O with ¹²C were interpreted as due to the formation of ²⁴Mg states at about 20, 21, 26, and 29 MeV. Only the last two values are in the range of the present investigation and are in agreement with our results.

Assuming that for each peak one single value of the angular momentum J is dominating, this value can be obtained by following the procedure reported in Ref. 27, taking into account the fact that all the involved particles have zero spin. The double differential cross section, expressed as a function of θ^* , the c.m. angle of ²⁴Mg, and of ψ , the angle formed by the relative ¹²C-¹²C velocity with the beam axis, shows ridges in the θ^* - ψ plane. The slope

FIG. 8. Projection of a selected portion of the E_{12} - $E_{1\alpha}$ matrix on the E_{12} -axis, for the Q_{ggg} peak. In the upper scale the corresponding excitation energies in ²⁴Mg are reported.

of these ridges and their spacing in the ψ direction depend on the spin J of the intermediate state. In addition, the cross section as a function of ψ at $\theta^* = 0^\circ$ should be simply proportional to the square of the Legendre polynomial of order J. In order to get information on J from the experimental data, one can average the double-differential cross section along lines parallel to the ridges. The resultant cross section can be presented as a function of ψ_0 , the value of ψ at $\theta^* = 0^\circ$. Its comparison with the squared Legendre polynomials of various orders allows the determination of the spin J.

Obviously, this analysis needs a wide ψ range covered by the experiment. In our case this condition is better satisfied for the two peaks at the highest energies where the data extend over a ψ range from about 70° to 110°.

Figure 9 shows that the best reproduction of the oscillations of the data for the peak at $E^{*(^{24}Mg)}=30.7$ MeV is given by J=12, which can be taken as a measure of the spin of this state. The uncertainty on this value is mainly

TABLE I. Resonances observed as ${}^{12}C{}^{-12}C$ FSI in the ${}^{16}O{}^{+12}C$ interaction compared with selected ${}^{24}Mg$ states found in various exit channels of the ${}^{12}C{}^{+12}C$ reaction.

Present work $E^{*(^{24}Mg)}$ (MeV)	$^{12}C + ^{12}C$ reactions		
	$E^{*}(^{24}Mg)$ (MeV)	J	Ref
26.3	26.26	8	28
	26.21		29
27.3	27.27	10	28
	27.33		30
28.4	28.26	10	28
(29.2)	29.25	10	28
30.7	30.35	10	28
31.6	31.68	12	28
	31.80		31

FIG. 9. Double-differential cross section for the 30.7-MeV state in ²⁴Mg (obtained after averaging along axes parallel to the ridges in the θ^* - ψ plane, see text), compared with squared Legendre polynomials of different orders.

due to poor statistics which prevents an unambiguous determination of the slope of the ridges, and is estimated to be ± 2 units.

The same procedure applied to the structure centered at $E^{*(^{24}Mg)}=31.6$ MeV leads again to a spin assignment of 12 ± 2 . The assignment of the same spin value to both states is further supported by the very similar slopes of the ridges in the two cases.

For the peaks at lower energies, the angular range covered by the data was not large enough to show more than one or two oscillations. Thus the above analysis would not be meaningful.

A comparison can be made with the existing data on the ²⁴Mg states excited in the interaction between two ¹²C nuclei [28–31]. The energies of the states found in the present work agree fairly well with those of some of the levels reported in the literature (see Table I). A correspondence can even be found for the small peak at 29.2 MeV of excitation energy, which is statistically less meaningful. For states in this region of excitation energy in ²⁴Mg spins around 10 units have been measured, which compares well with our assignment of $J = 12\pm 2$ to the states at 30.7 and 31.6 MeV.

The data corresponding to the other peaks of the Q spectrum (Fig. 4) as well as those coming from detectors A-C, do not show any evidence for contributions from the ${}^{12}C{}^{-12}C$ FSI. In these cases, from the relative energy spectra, one can conclude that only mechanisms involving excitation and decay of ${}^{16}O$ are responsible for the ${}^{12}C{}^{-12}C$ coincidence yield.

¹⁶O-⁸Be from the ¹²C target

Recently, population of ²⁴Mg states followed by the decay into the ¹⁶O-⁸Be channel has been observed in the interaction of a ²⁴Mg beam with a ¹²C target [32]. Comparison of the strength for this and the ¹²C-¹²C channel indicates a dominance of the ¹⁶O-⁸Be cluster configuration in ²⁴Mg at excitation energies around 20–25 MeV.

The present setup kinematically allows ¹⁶O-⁸Be coincidences only in the B-D detector pair. Figure 10 shows the spectrum of the relative energy between the particles hitting in coincidence the two parts of the detector D. In this analysis mass 4 was assumed for the detected particles. The peak corresponding to two α particles produced in the decay of the ⁸Be ground state clearly shows up around the known value of 92 keV. From the events falling under this peak which are in coincidence with Z = 8 ions detected in B, the Q spectrum of Fig. 11 is obtained. In this spectrum, apart of the background due to the simultaneous detection in D of particles other than α from ⁸Be decay, two peaks can be observed which are attributed to the reaction leading to the formation of the ground state (Q_{ggg}) and the doublet of ¹⁶O around 6 MeV (Q_{1gg}) . Contributions from higher levels of ¹⁶O can fall in the tail of the Q_{1gg} peak.

With the same procedure described in the previous section, the relative energy spectra were deduced for all the combinations of particles in the final state by gating in turn on each one of the peaks in the Q spectrum. They are shown in Figs. 12, 13, and 14, the ¹⁶O being labeled as particle 1 and the ⁸Be as particle 2. The ²⁴Mg excitation energy spanned by our detection geometry is higher than in the case of ¹²C-¹²C coincidences, ranging from 33 to 43 MeV. This is mainly due to the larger angle between counters *B* and *D* with respect to counters *B* and *C* and to the energy thresholds.

Both data and Monte Carlo simulation show that ${}^{24}Mg$ nuclei, eventually formed in the reaction and leading to the ${}^{16}O(g.s.){}^{8}Be$ and ${}^{16}O(6.1 \text{ MeV}){}^{8}Be$ coincidences detected in our experimental setup, are emitted into cones around 4° in the laboratory system, with full widths of 8° and 5°, respectively. These forward angles should still be favorable for detecting decay products from a

FIG. 10. Relative energy spectrum for two particles simultaneously hitting the upper and lower section of detector D, assuming mass 4 for both of them.

FIG. 11. Q spectrum of ${}^{16}O{}^{-8}Be$ coincidences in detectors B-D from the ${}^{16}O{}^{+12}C$ interaction.

²⁴Mg formed in a ⁸Be transfer process from the target to the projectile. Nevertheless, no contribution from this or other mechanisms producing ²⁴Mg can be deduced by looking at the relative energy spectra. The reaction appears to be dominated by different processes such as the target excitation and decay into the α -⁸Be system [peaks in $E_{2\alpha}$ spectra, Figs. 14(a) and 14(b)] or the formation and α decay of ²⁰Ne [peaks in $E_{1\alpha}$ spectra, Figs. 13(a) and 13(b)]. ¹²C states close to 7.4 and 9.6 MeV which are known to have large widths for α decay, are excited in combination with the ¹⁶O in its ground and first-excited states.

The $E_{1\alpha}$ spectrum for the Q_{ggg} peak [Fig. 13(a)] clearly shows the deexcitation of states in ²⁰Ne around 5.7 and 9 MeV, and also provides evidence for higher states, whose identification is made difficult by the overlapping of the

FIG. 12. E_{12} relative energy spectra deduced from ¹⁶O-⁸Be coincidences by gating in turn on each one of the two Q peaks of Fig. 11: (a) Q_{ggg} , (b) Q_{1gg} .

FIG. 13. $E_{1\alpha}$ relative energy spectra deduced from ¹⁶O-⁸Be coincidences by gating in turn on each one of the two Q peaks of Fig. 11: (a) Q_{ggg} , (b) Q_{1gg} .

 α -⁸Be FSI contribution. Contributions from states close to 9 MeV have been already observed in ¹⁶O- α coincidence experiments (see, for example, Refs. [20] and [22]). States close to 5.7 MeV cannot easily be observed by detection of the decay products (¹⁶O and α), because of their small relative energy (about 1 MeV). Evidence for excitation and α decay of a state at 5.62 MeV has been provided by the experiment on the ¹²C(¹²C, $\alpha\alpha$)¹⁶O reaction reported in Ref. [33]. The $E_{1\alpha}$ spectrum for the Q_{1gg} peak [Fig. 13(b)] probably contains a contribution from a process of α emission from a ²⁰Ne leaving an ¹⁶O^{*}, but it is strongly influenced by the α -⁸Be FSI.

600 ¹²C(¹⁶O,¹⁶O⁸Be) 500 ⁴He 400 300 Number of counts (a) 200 100 0 150 100 (b) 50 0 0 2 6 10 4 8 12 $E_{2\alpha}$ (MeV)

FIG. 14. $E_{2\alpha}$ relative energy spectra deduced from ¹⁶O-⁸Be coincidences by gating in turn on each one of the two Q peaks of Fig. 11: (a) Q_{ggg} , (b) Q_{1gg} .

V. CONCLUSIONS

The present experiment did not show any contribution to the ${}^{12}C{}^{-12}C$ or the ${}^{16}O{}^{-8}Be$ coincident yields due to the interaction of the ${}^{16}O$ beam with the ${}^{24}Mg$ target. On the other hand, a few ${}^{24}Mg$ states around 30 MeV, decaying into the ${}^{12}C{}^{-12}C$ channel, have been found to be excited via the ${}^{12}C({}^{16}O, {}^{12}C{}^{12}C){}^{4}He$ reaction. Since our setup does not allow for the detection of the decay of these states

- See, for instance, N. Cindro, Riv. Nuovo Cimento, 4, 1 (1981); K. A. Erb and D. A. Bromley, in *Treatise on Heavy-Ion Science*, edited by D. A. Bromley (Plenum, New York, 1985), Vol. 3; N. Cindro, Ann. Phys. (Paris) 13, 289 (1988), and references therein.
- [2] T. M. Cormier, J. Applegate, G. M. Berkowitz, P. Braun-Munzinger, P. M. Cormier, J. W. Harris, C. M. Jachcinski, and L. L. Lee, Jr., Phys. Rev. Lett. 38, 940 (1977).
- [3] N. R. Fletcher, J. D. Fox. G. J. KeKelis, G. R. Morgan, and G. A. Norton, Phys. Rev C 13, 1173 (1976).
- [4] A. M. Sandorfi and A. M. Nathan, Phys. Rev. Lett. 40, 1252 (1978); A. M. Nathan, A. M. Sandorfi, and T. J. Bowles, Phys. Rev. C 24, 932 (1981).
- [5] A. M. Sandorfi, L. R. Kilius, H. W. Lee, and A. E. Litherland, Phys. Rev. Lett. 40, 1248 (1978); A. M. Sandorfi, J. R. Calarco, R. E. Rand, and H. A. Schwettman, *ibid.* 45, 1615 (1980).
- [6] W. D. M. Rae, Int. J. Mod. Phys. 3, 1343 (1988).
- J. Wilczynsky, K. Siwek-Wilczynska, Y. Chan, E. Chavez, S. B. Gazes, and R. G. Stokstad, Phys. Lett. B 181, 229 (1986).
- [8] B. R. Fulton, S. J. Bennet, C. A. Ogilvie, J. S. Lilley, D. W. Banes, W. D. M. Rae, S. C. Allcock, R. R. Betts, and A. E. Smith, Phys. Lett. B 181, 233 (1986).
- [9] A. J. Lazzarini, E. R. Cosman, A. Sperduto, S. G. Steadman, W. Thoms, and G. R. Young, Phys. Rev. Lett. 40, 1426 (1978).
- [10] K. Nagatani, T. Shimoda, D. Tanner, R. Tribble, and T. Yamaya, Phys. Rev. Lett. 43, 1480 (1979).
- [11] M. Ichimura, E. Takada, T. Yamaya, and K. Nagatani, Phys. Lett. 101B, 31 (1981).
- [12] N. Takahashi, T. Yamaya, R. E. Tribble, E. Takada, Y.-W. Lui, D. M. Tanner, and K. Nagatani, Phys. Lett. 108B, 177 (1982).
- [13] D. Branford, M. J. Levine, J. Barrette, and S. Kubono, Phys. Rev. C 23, 549 (1981).
- [14] T. Murakami, E. Ungricht, N. Takahashi, Y.-W. Lui, Y. Mihara, R. E. Neese, E. Takada, D. M. Tanner, R. E. Tribble, and K. Nagatani, Phys. Lett. **120B**, 319 (1983).
- [15] A. Szanto de Toledo, M. M. Coimbra, N. Carlin Filho, T. M. Cormier, and P. M. Stwertka, Phys. Rev. Lett. 47, 632 (1981).
- [16] P. M. Stwertka, T. M. Cormier, M. Herman, N. Nicolas, A. Szanto de Toledo, M. M. Coimbra, and N. Carlin

through the ${}^{16}\text{O}{}^{-8}\text{Be}$ channel, nothing can be said about the branching ratio of the competing ${}^{12}\text{C}{}^{-12}\text{C}$ and ${}^{16}\text{O}{}^{-8}\text{Be}$ exit channels. No evidence for ${}^{16}\text{O}{}^{-8}\text{Be}$ decay of ${}^{24}\text{Mg}$ at excitation energies higher than 30 MeV has been found in the present experiment.

The spin of two of the observed states, at energies of 30.7 and 31.6 MeV, measured through the ${}^{12}C{}^{-12}C$ angular correlations, was found to be 12 ± 2 . This is in agreement with previous findings and supports the hypothesis that these states have a quasimolecular nature.

Filho, Phys. Rev. Lett. 49, 640 (1982).

- [17] R. Wieland, R. Stokstad, A. Gobbi, D. Shapira, L. Chua, M. W. Sachs, and A. Bromley, Phys. Rev. C 9, 1474 (1974).
- [18] W. D. M. Rae, R. G. Stokstad, B. G. Harvey, A. Dacal, R. Legrain, J. Mahoney, M. J. Murphy, and T. J. M. Symons, Phys. Rev. Lett. 45, 884 (1980).
- [19] W. D. M. Rae, Phys. Lett. 105B, 417 (1981).
- [20] T. Shimoda, S. Shimoura, T. Fukuda, M. Tanaka, H. Ogata, I. Miura, E. Takada, M.-K. Tanaka, K. Takimoto, and K. Katori, J. Phys. G 9, L199 (1983).
- [21] T. Murakami, E. Ungricht, N. Takahashi, Y.-W. Lui, Y. Mihara, R. E. Neese, E. Takada, D. M. Tanner, R. E. Tribble, and K. Nagatani, Phys. Rev. C 29, 847 (1984).
- [22] W. D. M. Rae, A. J. Cole, B. G. Harvey, and R. G. Stokstad, Phys. Rev. C 30, 158 (1984).
- [23] J. S. Karp, D. Abriola, R. L. McGrath, and W. A. Watson III, Phys. Rev. C 27, 2649 (1983).
- [24] A. J. Lazzarini, S. G. Steadman, R. J. Ledoux, A. Sperduto, G. R. Young, K. Van Bibber, and E. R. Cosman, Phys. Rev. C 27, 1550 (1983).
- [25] E. Costanzo, M. Lattuada, S. Romano, D. Vinciguerra, M. Zadro, N. Cindro, M. Freer, B. R. Fulton and W. D. M. Rae, Europhys. Lett. 14, 221 (1991).
- [26] E. Costanzo, M. Lattuada, S. Romano, D. Vinciguerra, and M. Zadro, Nucl. Instrum. Methods A 295, 373 (1990).
- [27] S. Marsh and W. D. M. Rae, Phys. Lett. **153B**, 21 (1985);
 W. D. M. Rae, S. C. Allcock, S. Marsh, and B. R. Fulton, *ibid.* **156B**, 167 (1985);
 S. C. Allcock, W. D. M. Rae, P. R. Keeling, A. E. Smith, B. R. Fulton, and D. W. Banes, Phys. Lett. B **201**, 201 (1988).
- [28] D. R. James and N. R. Fletcher, Phys. Rev. C 17, 2248 (1978).
- [29] W. Treu, H. Fröhlich, W. Galster, P. Dück, and H. Voit, Phys. Rev. C 22, 2462 (1980).
- [30] W. Treu, H. Fröhlich, W. Galster, P. Dück, and H. Voit, Phys. Rev. C 18, 2148 (1980).
- [31] H. T. Fortune, L. R. Greenwood, R. E. Segel, and J. R. Erskine, Phys. Rev. C 15, 439 (1977).
- [32] B. R. Fulton, S. J. Bennett, M. Freer, R. D. Page, P. J. Woods, S. C. Allcock, A. E. Smith, W. D. M. Rae, and J. S. Lilley, Phys. Lett. B 232, 56 (1989).
- [33] W. D. M. Rae, P. R. Keeling, and S. C. Allcock, Phys. Lett. B 184, 133 (1987).