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A static analysis of measurements of 2C elastic electron-scattering cross sections demonstrates
unambiguously the existence of a form-factor energy dependence beyond that due to Coulomb dis-
tortion effects. This energy dependence increases smoothly as a function of momentum transfer and
incident energy in the region covered by the experiments (1.0< gex <2.3 fm™', 240< Eo <690 MeV).
Outside the first diffraction minimum the discrepancies between the form factors deduced from data
obtained at different energies are as large as 5%; in the minimum discrepancies as large as 18% have
been observed. Including dispersion corrections which are reasonably compatible with this observed
energy dependence in the analysis of the data increases the rms charge radius deduced for *2C by
0.007 to 2.478(9) fm, which is in excellent agreement with the value from muonic x-ray studies.

I. INTRODUCTION

High-energy electrons are an accurate probe of nuclear
charge and current densities. This precision is due to
the electromagnetic nature of the electron-nucleus inter-
action, which is calculable to high precision within the
framework of quantum electrodynamics. Nuclear infor-
mation is extracted from electron-scattering data in a
one-hard-photon exchange treatment. This first Born
approximation is improved by taking into account the
distortion of the electron wave function by the Coulomb
monopole field of the nucleus (the Coulomb correction,
see Fig. 1) through a partial-wave analysis, which treats
Coulomb effects to all orders. This approach, together
with the correction of the measured spectra for radia-
tive effects, will be referred to as a static analysis.
Because the electromagnetic coupling constant is small
(o ~ %), higher-order contributions to the electron-
scattering process are traditionally neglected. To im-
prove on the already impressive accuracy achieved in the
analysis of elastic electron scattering data, the contribu-
tion of second-order (dispersive) effects must be investi-
gated experimentally.

Dispersive effects arise from the fact that the nucleus
is not rigid but has internal degrees of freedom that can
be excited and deexcited virtually by the electron dur-
ing the scattering process. They couple all possible nu-
clear excited states between the initial and final states of
the nucleus, which renders a general calculation of their
contribution to observed scattering cross sections a dif-
ficult task. All existing calculations of dispersion cor-
rections have resorted to approximations to estimate the
magnitude of these corrections. Typical approximations
involve consideration of only a few strongly excited in-
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termediate states, use of a simple nuclear model such as
the harmonic-oscillator model, neglect of the excitation
energy of intermediate nuclear states, and/or neglect of
the contributions from the nuclear currents.

Several of these approximations were investigated by
de Forest [1]. He calculated the dispersion correction for
160(e, €) up to second order in a harmonic-oscillator shell
model for the nucleus, but keeping only the Coulomb part
of the interaction. Two important results follow: (1) the
contributions from the various nuclear levels to the dis-
persion corrections tend to cancel; and (2) accounting for
the energy loss of the electron and the center-of-mass cor-
rection alters the results of the calculation significantly
(both tend to reduce the magnitude of the dispersive cor-
rections).
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FIG. 1. Feynman diagrams for processes important in
electron-nucleus scattering.
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Although theoretical calculations often differ dramati-
cally in their results, they agree on a number of general
features of dispersion corrections. First, the form factor
of the dispersive contribution is a smooth function of the
momentum transfer between electron and nucleus, and
is typically two orders of magnitude smaller than the
first-order (“static”) form factor. Therefore, dispersion
corrections are largest (as a percentage of the cross sec-
tion) in the region of diffraction minima where the first-
order Born approximation has a zero and the electron-
scattering cross section calculated in a static analysis is
due entirely to higher-order Coulomb corrections. Sec-
ond, the dispersive contribution tends to increase with
increasing momentum transfer but to decrease with in-
creasing incident electron energy. Finally, the importance
of dispersion corrections in the region of diffraction min-
ima decreases with increasing charge number Z because
these corrections are calculated to be roughly propor-
tional to a, while Coulomb corrections are proportional
to aZ.

Dispersive contributions have been investigated in sev-
eral earlier electron-scattering experiments. The cross-
section ratios for elastic scattering from 2°“Pb and 2°8Pb
were examined by Peterson et al. [2]. The cross sections
measured for 207Pb were up to 10% larger than those for
208ph; this was tentatively attributed to dispersive ef-
fects. Madsen et al. [3] measured cross-section values for
elastic scattering from 142:146,150N{ at low incident ener-
gies. Comparisons between their data and the predictions
of a charge density obtained from a fit to data measured
at higher energies showed that systematic discrepancies
as large as 20% existed between the low- and high-energy
data sets. Later experiments [4-7] indicated that most
of the effects observed in these two measurements were
due to errors in the cross section normalization, but some
evidence remains for the presence of dispersive effects.

Another indication for dispersive effects in elastic elec-
tron scattering has also been reported by Sick and Mc-
Carthy [8], who investigated elastic scattering from 2C
and 0. They found it impossible to fit their data in the
region of the first diffraction minimum with any charge
distribution in a static analysis. The cross section in the
minimum was observed to be about 12% higher than the
predictions of their best-fit charge distribution. This ef-
fect has been confirmed qualitatively by a more recent
study [9] of 12C, which observed a discrepancy of 5% in
the minimum.

A final indication for dispersive effects in electron scat-
tering comes from the comparison of rms radii deduced
from electron scattering and muonic atom studies [10,11];
the value inferred from the muonic atom experiment is
nearly always larger than that from electron-scattering
results. It has been suggested that this disagreement
might be due to the neglect of dispersive contributions
to the electron-scattering data and/or invalid approxi-
mations in the calculations of the corresponding effect
(virtual nuclear excitation) in the muonic atom analysis.

None of the electron-scattering experiments to date has
given conclusive evidence for the presence of dispersive
effects. Second-order corrections to the one-photon ex-
change approximation have also been studied extensively
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theoretically, but the difficulty of performing such cal-
culations without major approximations, together with
the lack of sufficiently accurate data, leaves the results
in doubt. The electron-scattering experiments reported
here were designed specifically to study second-order ef-
fects in the hope that they would contribute to our un-
derstanding of higher-order processes. A further goal
was to establish the size of dispersive contributions ex-
perimentally in order to set limits on errors in the ex-
traction of nuclear densities from analyses of electron-
scattering data in which higher-order processes in the
reaction mechanism were neglected.

There is a general consensus that dispersive effects will
be largest in the diffraction minima for elastic electron
scattering from light nuclei. Calculations by Friar and
Rosen [12] predict that the dispersive contributions have
a very smooth energy and momentum-transfer depen-
dence outside the diffraction minima. This characteristic
explains part of the experimental difficulty in isolating
these corrections; to the extent that they are purely de-
pendent on momentum transfer, they can be largely ab-
sorbed in a static analysis of experimental data by a slight
adjustment of the charge distribution parameters. These
arguments motivate the present experiment, a highly ac-
curate elastic electron-scattering experiment on 12C in
the region of the first diffraction minimum at different
incident energies. 12C is an obvious choice for such a
study because elastic electron-scattering data have been
obtained for 12C over a large-momentum-transfer range;
these data are essential for a systematic search for dis-
persive effects.

II. EXPERIMENT

In the present experiment, performed at the 500 MeV
electron-scattering facility of NIKHEF-K [13], an effec-
tive momentum-transfer range 1.0-2.2 fm~! was covered
at two incident energies, around 240 and 430 MeV. Scat-
tered electrons were analyzed with the high-resolution
QDD spectrometer and its associated detection system.
The properties of this system permit a determination of
the complete electron kinematics after scattering. Dur-
ing every run the product of collected charge and tar-
get thickness was monitored continuously with the QDQ
spectrometer, which shares a pivot with the QDD spec-
trometer. A disk of natural carbon with an isotopic pu-
rity of 98.9% and an average thickness of 93.3 mg/cm?
was used as a target. The target was positioned in trans-
mission geometry. Rotation of the target during the mea-
surements and the use of a dispersed beam spot with a
size between 5 and 15 mm resulted in an uncertainty in
the average target thickness of less than 0.3%. The en-
ergy resolution 6 E/E = 2 x 10~ allowed a clean separa-
tion of the '2C elastic-scattering peak from contributions
of 13C.

The accurate determination of the kinematic variables
is crucial for measurements in the region of a sharp
diffraction minimum. Therefore, calibration measure-
ments were performed before the runs as well as after
every spectrometer rotation during the runs. In the sec-
tions that follow we discuss the calibration procedures
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TABLE I. Contributions (in degrees) to the uncertainty
in scattering angle.
Optically Sieve-slit
determined determined
Spectrometer median plane 0.005
Aperture location 0.01

Central scattering angle © 0.02
8¢ relative to © < 0.02

and the uncertainties in these kinematic variables in de-
tail.

A. Scattering angle calibration

Several factors contribute to the uncertainty in the
scattering angle of the electron (see Fig. 2). The an-
gle between the median plane of the spectrometer and
the beam line was aligned optically and calibrated with
respect to a fixed scale. This determined the angular po-
sition of the spectrometer median plane with an accuracy
of 0.005°. The position of the spectrometer’s solid-angle
defining aperture relative to the median plane and the
position of the center of rotation of the target system
relative to the beam line were also determined optically.
The errors in these quantities are listed in Table I.

The other parameters important for the event-by-event
reconstruction of the scattering angle of the electrons
were determined in measurements with a special, solid-
angle defining “sieve slit” [14]. The main purpose of the
sieve-slit measurements was the determination of the op-
tical transfer matrices for the QDD spectrometer that are
used to reconstruct the electron vector. These measure-
ments also proved to be important in the determination
of the central scattering angle © because they provided
a very sensitive test for a possible misalignment of the
center of rotation of the target system and the center of

Scattering Plane

i spectrometer
solid-angle Median plane
defining aperture — N\ e

target rotation
center

T @ target
sieve-slit defined T
beam direction

optically-defined
beam line

spectrometer
rotation center

FIG. 2. Schematic layout of the scattering plane showing
the angles that are relevant to the definition of the scattering
angle.
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rotation of the spectrometer [14]. As a result of sieve-slit
calibrations after each spectrometer rotation, the cen-
tral scattering angle © was reproducible to +0.02° and
the angle 8y, (between the electron vector and the cen-
tral scattering angle as measured in the scattering plane)
could be reconstructed with an accuracy of £1%. This
resulted in an uncertainty in 6y, less than +0.02° even
for the largest solid-angle defining aperture used.

B. Energy calibration

The incident energy of the electrons and the spectrom-
eter constants were determined in a single, consistent
framework using measurements that were performed dur-
ing the actual data taking, thereby minimizing system-
atic errors. Calibration data were taken with beryllium-
oxide, boron-nitride, and tantalum targets at each scat-
tering angle. The recoil energy differences measured for
these isotopes and excitation energies taken from the lit-
erature provided the information necessary for an accu-
rate determination of the energy of the incoming electron
beam and of the electrons detected along the spectrom-
eter’s focal plane.

The position, z (channel number), along the focal
plane is related to Ef, the energy of the detected electron,
through the dispersion polynomial:

E; =TB 1+24:dj(m—a:c)j : 1)

ji=1

Here, I is the conversion factor (in MeV /kG) between the
spectrometer’s magnetic field B (in kG) and the energy
of the particles following the central trajectory; the d;
(7 = 1 —4) are the spectrometer dispersion coefficients
(in chan™7); and z. is the number of the central-channel
(z = 2200).

For each peak, the energy F; (in MeV) is expressed in
terms of its corresponding excitation energy E, and the
incident beam energy Ejy:

1 Eloss E:v Eloss
Ej == |EBy—2es _p (14 22 )| _ Zloss
! n[” 2 ”(+2M)] 2 @

with M the mass of the target nucleus (in MeV). The
factor 7 is the recoil factor:

(2Ey — Eloss) sin?(0/2)
n + M ;
E)oss is the mean energy loss (in MeV) due to Landau
straggling in the target in transmission geometry:

Z t
Floss = €1 zt [ln (Cz;)] s

where the constants ¢; and cy have values of 0.154
MeV cm?/g and 2.31x10% cm™!, respectively; ¢t is the
effective target thickness (in g/cm?); and p is the target
density (in g/cm3).

The parameters Ey, I', and d; (j=1-4) are determined
simultaneously using Egs. (1) and (2) in a least-squares
fit of the energy-calibration data. There is a strong corre-
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lation between the beam energy Ey and the spectrometer
constant I', so it is necessary that the data cover a wide
range of values of the recoil factor in order to obtain a
precise estimate of the energy Ejy. Table II lists the val-
ues of Fy and T" obtained for the different experimental
runs. The errors listed are statistical only, and include
the effects of the correlations between the variables.
There seems to be a systematic deviation between the
values of T obtained at different magnetic-field settings;
it is systematically larger for the runs at 430 MeV (I, II1,
and V) than for the runs at 240 MeV (II and IV). This
apparent field dependence of the conversion factor T is
probably due to a difference in the magnetic-field con-
figuration caused by the cycling procedure and/or sat-
uration effects. The systematic uncertainty in Fy can
be estimated by comparing the fitted value of the spec-
trometer constant I' between different experimental runs
at the same magnetic-field setting. The values of I' in
Table II indicate that this error in Ey is less than 0.08%.

ITI. DATA ANALYSIS

In the analysis of previous measurements [8, 9] one of
the factors that hampered the unambiguous identifica-
tion of an energy dependence of the form factor in the
minimum was the correction for the finite solid angle of
the spectrometer. The cross-section differences observed
ranged from 5 to 12% but folding corrections as large as
12% were applied in the data analysis. The data-taking
and analysis procedure used in the present experiment
limited the folding corrections to 2%, even at the highest
incident energies.

Another important ingredient in our data set is the
fact that the normalization between runs at different en-
ergies is well known. Previous experiments above ¢=1
fm~! consist of separate data sets measured at differ-
ent incident energies with only a limited overlap of the
momentum-transfer range. The relative normalization of
these data sets is not known exactly. As a consequence,

bin number

40

20 |

g (mrad)
o

-40 -20 0 20 40
B‘g (mrad)

FIG. 3.
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TABLE II. Energy-calibration parameters and their sta-

tistical uncertainties for different experimental runs.
r Eo

Run (MeV/kG) (MeV)

I 42.031(6) 418.80(7)

11 41.960(8) 238.13(5)
111 42.034(7) 431.44(7)
v 41.994(16) 242.73(9)

\Y% 42.010(13) 428.83(18)

a large part of the dispersive effects in these data could
have been concealed by a renormalization of the form-
factor data sets in a combined analysis. The procedure
by which the normalizations between the data sets and
contributions to their uncertainties were established is
discussed in detail below.

A. Histogramming of the solid angle

During the experiment, information from the
detection-system was stored event by event for off-line
analysis. The detection system of the QDD spectrome-
ter permits reconstruction of the momentum, direction,
and position (in the nondispersive direction only) at the
target for each detected electron [13, 15]. The coordi-
nate of the scattering point in the plane of the spec-
trometer’s dispersion cannot be reconstructed because
the spectrometer is operated “dispersion matched” to the
incident electron beam. Therefore, the out-of-plane angle
@14 was folded with a £7.5-mrad-wide distribution corre-
sponding to the angular uncertainty associated with the
maximum beam-spot size of 15 mm.

The event-by-event trajectory information can be used
to subdivide the solid-angle acceptance of the spectrom-
eter into bins, each covering a small range of scattering
angles [see Fig. 3(a)]. Using this procedure, a single set-

bin number
1 3 5 7 9
T T T T 1 T T T T

counts

§ 1 1 Il

o 4 1 1
-40 -20 0 20 40
Gtg (mrad)

(a) The acceptance of the largest aperture used in the scattering plane (6:¢) and the dispersive plane (@¢g). The

Ab.g bins into which the solid angle was divided in the data analysis are indicated. (b) The number of electrons scattered from
12C observed with the QDD using the solid-angle defining aperture of (a) is shown as a function of the measured angle Oig.
The gray bands in the two figures indicate one of the A,y bins into which the data were histogrammed.
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ting of the spectrometer provides a number of data points
[see Fig. 3(b)]. This histogramming procedure is an indis-
pensable tool for measuring cross sections in the region of
a diffraction minimum because the scattering-angle range
of each bin can be chosen small enough that the folding
correction for the cross section measured for that bin is
small and accurately calculable.

The width of the scattering-angle bin was chosen on
the basis of the angular resolution of the QDD, the
multiple-scattering contribution from the target, and the
folding correction. The QDD has a £2-mrad resolution
in the scattering plane [14]. For an effective target thick-
ness of about 130 mg/cm? the rms value of the multiple-
scattering angle is less than 5 mrad for the energies and
scattering angles of the present experiment. Therefore,
we have chosen to histogram the data into 8-mrad bins.
In all cases, even in the minimum, these bins were small
enough that the folding correction remained <2% despite
the strong scattering-angle dependence of the cross sec-
tion. To minimize edge effects on the solid angle of the
bins, the outer bin edges in the scattering plane were al-
ways positioned at least 4 mrad from the edges of the
solid-angle defining aperture. In the five data runs three
different sizes of solid-angle defining apertures were used,
as listed in Table III. The choice of scattering-angle bins
results in nine cross-section data points at each spec-
trometer setting for apertures B and C [see Fig. 3(a)].
At the five most-forward scattering-angle positions of the
spectrometer at 430 MeV, a smaller aperture (A) with a
scattering-angle acceptance of 20 mrad had to be used
to limit the count rate. Dead-time corrections never ex-
ceeded 10% and could be calculated very accurately due

E. A.J. M. OFFERMANN et al.
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TABLEIII. Nominal acceptances of the solid-angle defin-
ing apertures.
Agtg A¢‘g
Aperture (mrad) (mrad)
A 20.0 20.0
B 80.0 16.0
c* 80.0 80.0

2This aperture has an octagonal shape.

to installation of a large, fixed dead-time of 500 ns in the
trigger logic of the detection system. When the small
aperture A was used, only one data point was derived
from a single bin of 12 mrad. For all of the measure-
ments, except for the above-mentioned five spectrome-
ter settings at the most-forward angles, overlapping data
points were obtained by rotating the spectrometer’s cen-
tral angle through an angle smaller than the scattering-
angle acceptance of the solid-angle defining aperture; this
provided an important stability check for the experimen-
tal setup.

B. Calculation of the cross sections

A momentum spectrum is obtained for each scattering-
angle bin. The cross sections for the ground state and
excited states of a particular nucleus were determined by
fitting each spectrum with a sum of hyper-Gaussian and
Lorentzian peak shapes convoluted with their radiative
tails, as shown in Fig. 4. The radiative tail used was a
convolution of the effects of Landau straggling [17], exter-
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. i 0=51.4 ]
10° & E
o F o E
s - I
Q 107! = BC =
4 u %" 3
; - 13C —
‘a - /Vz— ; 1BC -~
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. I'E ‘5? I Uil l{ i
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FIG. 4.

The spectrum of electrons scattered from the graphite target into bin 1 [see Fig. 3(a)] as a function of the excitation

energy in '?C. Also shown are the individual line shapes fitted to the spectrum. Scattering from the ~ 1% **C contaminant is

separated cleanly from the ?C scattering.
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nal bremsstrahlung [18], and the Schwinger [19] correc-
tions. The peak shapes provided a good fit to all known
levels [16] of 12C and '3C in the excitation region studied.

The cross sections must be corrected for the efficiency
of the focal-plane detection system. Insufficient or im-
proper response of the focal-plane detectors can result in
the rejection of events due to incomplete focal-plane in-
formation or incorrect reconstruction of focal-plane coor-
dinates. The first effect influences the absolute efficiency
of the QDD detection system, which was determined [13]
to be 97.14+0.4%. The second effect results in events be-
ing placed in the wrong momentum bin and/or in their
being traced back to the wrong scattering-angle bin. This
effect was smoothed out to a large extent by shifting the
detector package periodically during the measurements.
Remaining fluctuations were further reduced by monitor-
ing the drift-time pattern in each wire chamber for each
event. Events with an anomalous pattern were rejected.
The fraction of events rejected by this check was typically
0.5%, and was constant over the scattering-angle bins.

The precise reconstruction of the scattered electron’s
vector at the target allowed well-defined cuts on the an-
gles by which an electron enters the solid angle of the
spectrometer. Figure 5 shows a three-dimensional his-
togram of the reconstructed electron angles at the target
for a measurement with the octagonal aperture C. Note
that the central peak in this figure is truncated at 2% of
its height to enhance the visibility of possible background
events outside the acceptance of the aperture. Since most
background events are produced at or near the target and
have lost energy before detection by rescattering in the
spectrometer or the entrance collimator, or by hitting
material positioned close to the target, they are distin-
guished by their coordinates in the dispersive plane of
the spectrometer.

2% cut-off

counts —

FIG. 5.
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A peak around ¢;; = —90 mrad and a continuum
above ¢;;=+55 mrad are evident in Fig. 5 in addition to
the dominant central peak associated with “good” elec-
tron events. The momentum spectra associated with the
three indicated ranges of values for the dispersive angle
¢:4 are shown in the right half of the figure. The peak at
—90 mrad is caused by a halo of the incoming electron
beam hitting the thick aluminium rings that support the
graphite target. These events were always < 0.3% of the
total observed. The continuum above +55 mrad comes
from combining data from different events in the differ-
ent wire chambers in the reconstruction of the particle
vector at the focal plane. Its size depends on the count
rate [20], but never exceeded 0.5% of the elastic cross sec-
tion. These events were rejected in the off-line analysis
by applying a +55 mrad window on ¢q4.

The solid-angle defining aperture of the QDD spec-
trometer is located between the entrance quadrupole and
the first dipole magnet. As a consequence, the solid-
angle acceptance depends on the momentum of the de-
tected electrons. The effect of the quadrupole was cal-
culated by ray-tracing particles from the target through
the quadrupole to the aperture using the program RAY-
TRACE [21] and the design value for the quadrupole’s
magnetic field configuration. The solid angle for each
scattering-angle bin varied less than £1% over the mo-
mentum acceptance of the spectrometer. The corrections
were checked by evaluating the cross sections for the first
excited state in 12C, as discussed in Sec. III E.

The product of collected charge and target thickness
was monitored continuously during the experiment with
the QDQ spectrometer. For the runs I and III the QDQ
spectrometer was tuned to detect electrons, while for the
runs IV and V it was used to detect knocked-out protons
instead; this was found to provide a better long-term

a] Aluminum background

b | good events

counts

e .. ]

C MWPC events

Aplp (%)

A three-dimensional histogram of the reconstructed angle coordinates at the target for a measurement with an

octogonal aperture. The central peak is cut off at 2% of its height. The three inset figures show the momentum spectra of the
electrons associated with the cuts a, b, and c indicated on the ¢:y coordinate.
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stability. A correction factor for the variations in the
product of collected charge and target thickness was cal-
culated from the ratio of the number of event triggers in
the QDQ per unit of collected charge to its mean value
during the run.

The correction factors for runs I, III, IV, and V are
shown in Fig. 6 as a function of the effective momentum
transfer gesr, where

2E,sin(6/2) Ze?
= () ©

with (r2)!1/2 the rms charge radius. The fluctuations in
the correction factor are roughly consistent with the 0.3%
inhomogeneity of the graphite target. For run II and
the two lowest ger values in run IV no correction factor
is available due to malfunctions of the QDQ detection
system. However, a stability check of the experimental
setup that includes these measurements is discussed in
the next section.

C. Stability of the experimental setup

The corrections discussed above should have removed
any dependence of the cross sections on the position
in the focal plane where the corresponding peaks were
detected and on the scattering-angle bin for which the
momentum spectrum was determined. This has been
checked by studying the cross sections for the 2% exci-
tation in 12C at E,=4.439 MeV, which were measured
simultaneously with the elastic-scattering data.

For this study the count-rate response of scattermg—
angle bin (7) at spectrometer angle setting (j), €1, has
been defined to be the product of a correction factor
¢j, which includes all factors related to the instability of
the experlmental setup at spectrometer angle setting (5)
and €}, the response of scattering-angle bin (), which
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g 100 r o 0 997 %%
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el o
e toz [ run v
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FIG. 6. Correction factor Cqpq for the run-to-run fluc-
tuations in the product of the collected charge and the target
thickness as a function of ges.
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FIG. 7. Correction factors c¢; for the instability of the
QDD detection system at different spectrometer angle set-
tings as a function of ges.

includes irregularities due to the histogramming proce-
dure. The response function €y, has been determined
separately for each of the different solid-angle defining
apertures for each of the five experimental runs.

The count-rate response ¢, was determined by
parametrizing the 2% cross sections with a Fourier-Bessel
fit for each experimental run, using the computer code
HADES [22]. In this fit only the five scattering-angle bins
of each spectrometer setting that were positioned in the
center of the solid-angle acceptance were used, minimiz-
ing the influence of possible small errors in the histogram-
ming procedure. The count-rate response £, was calcu-
lated from the ratio of the experimental 2t cross section
and the calculated value. The coefficients ¢; and &',
were determined in a x? fit of the count-rate response.

The correction factor ¢; is shown in Fig. 7 for the dif-
ferent experimental runs. The small fluctuations in this
correction factor confirm the stability of the experimen-
tal setup. The larger deviation at the second spectrome-
ter setting in run IV might be due to the fact that here
no QDQ correction factor was available (see Sec. III B).
Fluctuations as large as +0.5% can result from the influ-
ence of the beam-spot size in the dispersive direction on
the solid angle; no explicit corrections were made for this
effect in the analysis.

The bin-response function €%, is represented in Fig. 8
by the open circles for aperture C for the runs I and II.
Clearly 529 depends on 6;, with the outer bins show-
ing significant correction factors. The 6,, dependence for
aperture B agrees qualitatively with the result for aper-
ture C, but deviations from unity are much smaller. This
dependence is probably due to small deviations of the ac-
tual quadrupole-magnet field from its design value which
was used to calculate the solid angle.

Possible field deviations were investigated in first or-
der by varying the linear part of the transformation
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FIG. 8. The response €y, of the scattering bin before [open circles (0)] and after [closed circles (o)] correction for the ;4

reconstruction.

of the scattering angle 6;;, from the position after the
quadrupole to the target [14]. In a x? fit the influence of
0:y on both the solid angle and the count-rate response
is taken into account. Fits were performed only for mea-
surements with aperture C because here the deviation
of the scattering angle 0, is determined most precisely
since it influences both the count-rate response (through
a change in the fitted cross section) and the solid angle
of a bin (due to the tapered edges of aperture C).

The correction to the angle 6,4 is listed for each run
in Table IV. This correction is in agreement with cali-
bration measurements for the quadrupole field reported
by Offermann et al. [14]. The bin responses €}, after
correction for the change in 8,, are indicated by the solid
circles in Fig. 8. The remaining (asymmetric) deviation
from unity can be attributed to an incorrect angle recon-
struction. However, the corresponding error in the re-
construction of the angle ,, is still within the estimated
1% uncertainty (see Table I).

In summary, the study of the count-rate response re-
sulted in a correction to the cross sections for each spec-
trometer setting (see Fig. 7), a correction to the scatter-
ing angle ;4 (see Table IV), and a cross section correction
for the remaining variations of the bin-response function
(see solid circles in Fig. 8).

The energy dependence of the normalization of the
data accumulated in the different experimental runs was

TABLE IV. Rescaling of the angle 8,4 relative to the cen-
tral scattering angle.

investigated by a distorted-wave Born approximation
analysis of the 2% data at 240 and 430 MeV (accumu-
lated simultaneously with the elastic scattering data). In
this analysis the (transverse) E2 contribution to the dom-
inantly C2 excitation was taken into account through a
parametrization of the electric current obtained from the
180° scattering data of Flanz et al. [23]. This correction
was always less than 0.5% for the angles and energies
of the present experiment. The 2t data were corrected
with the results from the count-rate response measure-
ments described above. Different normalization coeffi-
cients were introduced for measurements with different
solid-angle defining apertures. The normalizations were
determined relative to the data of run II. The results are
listed in Table V. The high-energy data measured with
apertures A and B are consistent with the low-energy
data measured with aperture C. The high-energy data
measured with aperture C all show a 2% lower normal-
ization factor than the rest of the data. The large dimen-
sions of this aperture in the dispersive angle ¢, suggest
that an energy dependence of the higher-order transfer
coefficients may be responsible for this difference.

The combined results of Tables IV and V indicate a dif-
ference of 2.6% in the acceptance of the software-defined
angle bins at the two energies. In a previous experi-
ment, also at 430 MeV, a sieve-slit study [14] yielded
a 2.0(1.4)% smaller acceptance than the design value.

TABLE V. Overall normalization factors for the different
data sets. The normalization factor for a data set is defined
as norm = ot /Gexp-

Normalization

Eo Al Eo Full aperture: [Af:g,A¢:y (mrad)]
Run (MeV) (%) Run (MeV) A: (20,20) B: (80,16) C: (80,80)
I 418.80 ~1.3(1) I 418.80 1.020(2)

11 238.13 —0.9(1) 11 238.13 1.000
111 431.44 ~1.7(1) 111 431.44 1.026(2)
v 242.73 —0.9(2) v 242.73 1.002(2)
\Y% 428.83 -1.6(1) \Y 428.83 0.998(5) 1.005(2) 1.016(2)
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These observations lead us to decide to normalize all data
to the 240-MeV data using the correction factors given
in Table V.

D. Unfolding of energy and angle spread

Each measured cross section differs from its “true”
value due to the fact that the experiment integrates the
cross section over the scattering angles subtended by the
finite aperture of the spectrometer and the angular di-
vergence of the incident beam (including multiple scat-
tering in the target itself) and also integrates over the

J

A 2
Ofol = Ounfol {1 + %ﬁCOt@ [52 + "('M"] + 226 [62 +

6 4

where
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energy resolution of the beam and the experimental ap-
paratus. The data were corrected for these effects using
the method of Lyman, Hanson, and Scott [24] in an iter-
ative procedure in which the slope and curvature of the
cross section with respect to scattering energy and scat-
tering angle was determined self-consistently from this
experiment. In this method the cross-section behavior is
first determined with the uncorrected data points. The
slope and curvature of the cross sections with respect to
energy and angle are calculated using the ground-state
charge density that provided a best fit to these data.
These cross-section derivatives are then used to perform
an unfolding correction to first order:

0ol = the cross section integrated over scattering energy and angle,

Ounfol = the unfolded cross section,
O = the central scattering angle of the bin,

A¢;y = the angular width of the bin in the dispersive plane,

Af;y = the angular width of the bin in the scattering plane,

€ = the rms value of the multiple-scattering angle [24],

AFE = the energy spread of the incoming beam,

_ 100 o _._1_& and o _10%
# =500 ¥~ 50602 = GOR?

o1

This correction never exceeded 2% due to the small size
of the solid-angle acceptance. As a result, the procedure
converged in a single iteration.

After all corrections were performed, data points from
overlapping spectrometer settings were combined. Cross
sections obtained at slightly different angles, and energies
were converted to the same angle and energy setting by
using a logarithmic expansion up to second order of the
cross section [25]. The experimental cross sections are
listed in Table VI.

E. Cross section uncertainties

Statistical and systematic uncertainties in the cross-
section data are discussed in this section. A distinction
is made between errors resulting from normalizations rel-
evant for intercomparison of the cross sections measured
in the present experiment and from an overall normaliza-
tion necessary for the interpretation of the data in terms
of absolute cross sections. In the following analysis the
error contributions from the relative normalizations were
used because the absolute normalization is determined
by the inclusion of existing, high-precision, low-q data
sets in the analysis.

Table VII summarizes the sources of uncertainty in
the relative normalization. As discussed in Sec. II, the
uncertainty in the scattering angle has several contribu-
tions. The contributions from the uncertainty in the me-
dian plane are systematic, but the contributions from

[
the other two uncertainties in the scattering angle can
be treated as statistical since the final cross section is
the average of several cross-section values obtained from
overlapping scattering-angle bins. These scattering-angle
bins were positioned differently with respect to the me-
dian plane, so that the errors in the reconstructed angle
contribute in different directions to the cross section. The
same argument holds for the uncertainty in the scattering
angle due to the position of the beam spot and for the
normalization factors determined with the data of the 2+
level and the data from the QDQ spectrometer.

The statistical uncertainty in the incident energy was
obtained from a least-squares fit to the energy-calibration
data; the systematic error in the energy was estimated
from the variation of the spectrometer constant I' at the
same incident energy, as discussed in Sec. II. The un-
certainty in the cross section was determined from the
energy and angle uncertainties through the cross-section
dependence on these parameters. The overall statistical
uncertainties in the cross sections were taken to be the
quadratic sum of the effects of the statistical uncertain-
ties listed in Table VII and the counting statistics. The
overall systematic error in the data was taken to be the
linear sum of the systematic errors listed in Table VII.

The uncertainties in the absolute normalization of the
data are summarized in Table VIII. A distinction is
made between normalization uncertainties which change
all cross sections in the same direction (o1) and uncer-
tainties which can change the normalization of individ-
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ual data points in either direction (o11). We have esti-
mated that the theoretical uncertainty in the radiative
correction contributes 0.1% to o1. The contribution of
the radiative correction to oy is of a completely different
nature. Ifscattering of the electron is preceded by energy
loss through radiation, the scattering takes place at an
effectively lower energy. Our radiative corrections do not
take into account the associated change in the value of
the form factor for this process. Calculations by Merle
[25] and Reuter [26] suggest that these processes result
in corrections smaller than 0.3% for our kinematic con-
ditions. This was taken into account by adding 0.3% to
oOI11.
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IV. ENERGY DEPENDENCE OF THE '2C
ELASTIC FORM FACTOR

A. Ground-state charge density parametrization

The validity of the static analysis can be investigated
by comparing the 12C elastic cross sections measured at
two energies over the same momentum-transfer range. A
charge density is derived from the data set at the first
energy and then used to predict the cross-section values
for the same momentum transfers at the second energy.
Cross sections are calculated by partial-wave solution of
the Dirac equation which contains the Coulomb potential

TABLE VI. Cross sections for elastic electron scattering from !2C. The corrections discussed in Sec. III have been applied.
Uncertainty Uncertainty

8 do/dQ Statistical Systematic '] do/d2 Statistical Systematic

(deg) (fm®/sr) (%) (%) (deg) (fm? /st) (%) (%)
Eo = 238 MeV Eo = 243 MeV

84.94 8.379%x10~7 1.3 0.9 46.54 1.435%1073 0.8 1.8
85.63 6.973%x10~" 0.9 0.9 47.23 1.278%103 0.6 1.8
86.53 5.439%10~7 0.9 0.9 48.14 1.092x1072 0.6 1.8
87.43 4.142x10~7 0.8 1.0 49.06 9.178x%10~* 0.6 1.8
88.33 3.173x10~7 0.8 1.1 49.96 7.845%107* 0.5 1.7
89.23 2.347%x10~7 1.0 1.1 50.83 6.748%10* 0.6 1.5
90.13 1.730%10~7 0.9 1.2 51.74 5.771%107* 0.6 1.5
91.03 1.247x10~7 0.8 1.3 52.66 4.917x10* 0.6 1.5
91.93 9.003x108 0.8 1.4 53.56 4.136x10* 0.5 1.5
92.83 6.164x1078 0.8 1.4 54.43 3.511x10~* 0.6 1.5
93.74 4.272x1078 0.9 1.5 55.34 2.998x107* 0.6 1.5
94.66 2.854%10~8 1.0 1.5 56.26 2.540x10~* 0.7 1.5
95.55 2.009%108 1.0 1.4 57.16 2.136x10~* 0.5 1.5
96.42 1.480%1078 1.0 1.1 58.03 1.820x10™* 0.7 1.2
97.34 1.216x10~8 1.0 0.6 58.94 1.551x10~* 0.7 1.3
98.26 1.138%1078 1.0 0.3 59.86 1.315%107* 0.7 1.3
99.14 1.252x1078 1.0 0.7 60.76 1.104x10™* 0.6 1.2
100.03 1.453x1078 1.1 0.9 61.62 9.320%107° 0.7 1.0
100.94 1.695x1078 1.0 1.0 62.54 7.964%107° 0.8 1.0
101.86 2.000%10~8 1.1 0.9 63.46 6.661x107° 0.8 1.0
102.75 2.371x10~8 1.0 0.9 64.36 5.459%107° 0.8 1.0
103.63 2.641x1078 1.1 0.8 65.23 4.733%107° 0.9 0.9
104.54 3.029%1078 1.1 0.7 66.14 3.973x107° 0.9 0.9
105.46 3.285%10~% 1.3 0.7 67.06 3.334x10°° 1.0 0.9
106.38 3.471%x1078 1.4 0.6 67.96 2.728%107° 0.8 0.9
111.37 4.576%1078 1.2 0.4 68.83 2.274%107° 1.0 0.9
112.28 4.510%x1078 1.1 0.3 69.74 1.919%10~° 1.0 0.9
113.20 4.493x1078 1.1 0.3 70.66 1.582%x107° 1.1 0.9
114.11 4.532%x1078 1.1 0.3 71.56 1.323%x107° 0.9 0.9
114.80 4.591x1078 1.8 0.3 72.43 1.097x107° 1.0 0.9
73.34 9.122x107° 1.0 0.9
74.26 7.452%107° 1.1 0.9
75.19 5.998% 10~ 1.0 1.0
76.13 4.797x107° 1.0 1.0
77.04 3.972x107° 1.1 1.0
77.96 3.222x107° 1.1 1.0
78.84 2.577%x107° 1.0 1.2
79.63 2.110x107 1.1 1.6




1106

of a static nucleus with a spherically symmetric charge
distribution but without internal degrees of freedom.
The best-fit charge density was obtained by performing
a x2 analysis of the data using the phase-shift program
MEFIT [25]. In this phase-shift analysis the charge distri-
bution parameter variations were explicitly constrained
to keep the gradient of the charge distribution zero at
the cutoff radius beyond which this distribution is zero.
In those data sets where the incident energy was varied,
the nominal value of the energy together with its quoted
uncertainty was included as an additional data point in
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the x2 fit. The electron mass was neglected in the phase-
shift calculations for computational simplicity. However,
an empirical correction factor [27] for the finite electron
mass, which is valid to an accuracy of better than 0.04%
for the kinematical conditions of this experiment, was
applied to the calculated cross sections; this correction
factor never exceeded 0.2%.

The numerical accuracy of the phase-shift calculations
has been checked by comparing the results of the program
MEFIT with those of the phase-shift code HADES [22]. The
results of the two programs are in perfect agreement.

TABLE VI. (Continued).
Uncertainty Uncertainty
6 do/dQ Statistical Systematic '] do/d2 Statistical Systematic
(deg) (fm? /sr) (%) (%) (deg) (fm® /sr) (%) (%)
FEo = 419 MeV Eo = 429 MeV

45.52 3.630%107° 1.4 2.3 29.43 1.630%x107° 0.9 1.2
45.98 2.802x107° 1.5 2.4 31.23 8.976x10™* 1.0 1.2
46.44 2.111%107° 1.6 2.4 33.03 4.877%107* 1.0 1.2
46.90 1.554%107° 1.7 2.5 34.83 2.572%107* 1.0 1.2
47.34 1.177x107¢ 1.2 2.5 36.72 1.280x10* 0.7 1.3
47.80 8.589%10~7 1.3 2.6 37.68 8.761x107° 1.0 1.1
48.25 6.090x10~7 1.4 2.6 38.35 6.724x107° 1.0 1.2
48.71 4.234x1077 2.0 2.7 38.82 5.568x107° 1.1 1.2
49.16 2.889%10~7 1.5 2.5 39.27 4.592x107° 1.1 1.2
49.60 2.050%10~7 1.6 2.6 39.73 3.784x107° 1.1 1.2
50.06 1.384%1077 1.6 2.5 40.17 3.089x107° 0.9 1.2
50.51 1.045%1077 1.6 2.2 40.62 2.561x107° 1.0 1.3
50.96 8.754%1078 1.3 1.5 41.08 2.047x107° 1.1 1.3
51.40 8.597x10™8 1.4 1.0 41.54 1.685x107° 1.1 1.3
51.85 9.385%x10~8 1.4 1.4 41.97 1.367x107° 1.0 1.3
52.31 1.094x10°7 1.4 1.6 42.42 1.117x10~° 1.2 1.4
52.76 1.309%10~7 1.3 1.5 42.87 8.627x107° 1.3 1.4
53.19 1.545%10~7 1.4 1.3 43.33 6.939%107° 1.4 1.5
53.65 1.771%1077 1.3 1.3 43.77 5.537x107¢ 1.4 1.5
54.11 2.071x1077 1.2 1.2 44.46 3.790x10~ 1.7 1.6
54.56 2.278x10~7 1.1 1.0 52.08 1.726x10~7 2.1 1.3
55.00 2.560%10~7 1.4 0.9 52.77 2.187x10°7 1.8 1.1
55.45 2.762x%10~7 1.3 0.8 53.22 2.444%1077 1.6 1.0
55.91 2.932x10~7 1.3 0.8 53.67 2.641x10~7 1.5 0.9
56.36 3.105%x10~7 1.0 0.7 54.13 2.956x10~7 1.4 0.8
56.80 3.274%1077 1.0 0.6 54.57 3.177%10~7 0.9 0.7
57.25 3.312x10~7 1.0 0.5 55.02 3.303x10~7 0.9 0.7
57.70 3.453%10~7 1.0 0.5 55.48 3.468x1077 0.8 0.6
58.17 3.483%1077 1.0 0.5 55.93 3.547x1077 0.8 0.6
58.61 3.496%10~7 1.1 0.4 56.37 3.666x10~7 0.6 0.5
59.07 3.532%10~7 1.1 0.4 56.81 3.651x1077 0.6 0.5
59.53 3.540x10~7 1.2 0.4 57.27 3.746x1077 0.6 0.5
60.00 3.530%x10~7 1.3 0.4 57.73 3.814%x10~7 0.6 0.4

58.17 3.763x10~7 0.5 0.4

58.62 3.728x1077 0.6 0.4

59.07 3.690%x10~7 0.6 0.4

59.53 3.635%1077 0.6 0.4

59.99 3.548%10°7 0.6 0.4

60.66 3.394%x10~7 0.6 0.5

61.58 3.228%x1077 0.7 0.5
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TABLE VI. (Continued). TABLE VII. Error Sources.
Uncertainty Parameter Statistical Systematic
6 do/dQ Statistical Systematic  gcattering angle (A®) <0.03° 0.015°
(deg) (fm? /sr) (%) (%) Incident energy (AE/FE) <0.04% 0.08%
Radiative correction <0.3%
Eo = 431 MeV Efficiency 0.5%
Dead-time correction <0.5%
40.27 2.736x107° 1.2 1.8 QDQ monitor <0.1%
40.73 2.216x107° 1.2 1.8 QDD stability <0.5%
41.19 1.832%10~° 1.2 1.8 Count-rate response of bin <0.5%
41.64 1.473%10™° 1.3 1.8 Bin-width correction <0.2%
42.08 1.194%107° 0.9 1.9
42.54 9.495%107° 1.0 1.9
43.00 7.501x10~° 1.0 1.9
43.46 5'956X10_Z 1.1 2.0 in such an analysis by parametrizing the ground-state
B 4'557X10_6 1.1 2.0 charge distribution p(r) with a complete set of zeroth-
44.36 3.590x10 1.6 2.1 . .
44.84 2.625%10~¢ 11 21 order Bessel functions of the first kind [29]:
45.30 1.953x107° 1.2 2.2 oo .
45.76 1.442x10° 1.3 2.2 p(r) = {g:"j}‘;’]]%(q"r) » TSR, (5)
46.24 1.021x107° 1.8 2.2 ’ ’
46.70 7.136x10:: 2.0 2.3 Here R is the cutoff radius of the charge distribution, and
47.16 5'102X10_7 2.1 24 ¢, R is the vth zero of the Bessel function: ¢, = v7/R.
47.59 3'486X10_7 1.6 2.4 In the first Born approximation the expansion coefli-
48.05 2‘374X_10_7 1.6 2.4 cient a, is related to the form factor at ¢, through the
ig‘gi 1?22:18_7 ig ?g exp?ession, a, = q2Fo(qy)/27R. The form factor squared
49:40 9:512)(10-3 1:4 1:3 FO2 is defined as O'/O'M., where oM is the Mott' cross sec-
49.86 9.072% 102 13 1.0 FIOII [28]. The normallzatlon of the charge distribution
50.24 0.928%10~° 1.2 1.2 imposes the constraint
50.70 1.147x10°7 1.2 1.4 oo
51.16 1.373%1077 1.2 1.4 ZFo(qg=0)= 47r/ p(r)ridr
51.54 1.662x1077 1.7 1.2 - 0
52.00 1.918x107 1.5 1.1 4TR
52.46 2.171x1077 1.4 1.0 = Z(_I)HI 2
52.84 2.386%10°7 1.1 0.9 =1 v
53.30 2.732x1077 1.0 0.8
53.76 2.908%x10~7 1.0 0.8
54.14 3.180x10~7 1.3 0.6
54.60 3.320x 10_: 1.3 0.6 TABLE VIII. Uncertainties in the absolute normalization
55.16 3'535)(10_7 1.1 0.5 of the NIKHEF-K data. The systematic errors are divided in
55.63 3'617X10_7 1.0 0.5 two categories: o1, which change the normalization of all cross
56.08 3'730>(10_7 1.0 0.5 sections in the same direction; and o711, which can change the
56.53 3.748x10 . 1.1 0.4 normalization in either direction.
57.08 3.747x10™ 1.3 0.4
57.54 3.838x1077 1.2 0.4 Measurement a1 (%) ou (%)
58.00 3.816><10_: 1.2 0.4 Charge integrator o1
58.46 3.849%10 1.2 0.4 Solid angle
58.90 3.745%x 1077 1.1 0.4 beam seometr 0.5
59.34 3.672x1077 1.2 0.4 8 Y :
. quadrupole field 1.0
59.80 3.535%10 , 1.2 0.4 Target thickness
60.26 3.490)(10_7 1.3 0.4 target angle (Agtuge! _ 0.30) 0.3
60.72 3'34OX10_7 1.4 0.4 average thickness 0.3
61.16 3'294X10_7 L7 0.4 Incident energy (AE/E = 0.08%) 0.3
61.62 3'073X10__7 1.8 0.5 Scattering angle (A© = 0.015°) 0.2
62.08 3.043x10 . 2.0 0.5 Detection efficiency 0.5
62.53 2.804x10™ 2.3 0.5 Radiative correction 0.1 0.3
Dead-time correction 0.5
The ground-state charge density was deduced from  Total uncertainty 2.32 0.8

the experimental cross sections in a so-called “model-
independent” analysis. Constraints imposed by the as-
sumption of a phenomenological model are minimized

*Linear sum.
b .
Quadratic sum.
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If the data set is limited to a maximum momentum
transfer, gmax, only the coefficients a, for ¥ < gmaxR/7
are determined. As suggested by Dreher et al. [29] the
data set was extrapolated to higher momentum transfer
by expressing the asymptotic behavior of Fy(¢) in terms
of the folded proton form factor [30]:

as Fpr(q
Fg¥™P(q) ~ I;& )

where Fy(q) is the proton form factor:

b

Fo(q) = e—97(r?)/6 ,
(rHY? = 0.86 fm.

This extrapolation was incorporated into the fit by sim-
ulating the form factor from gpax t0 2¢max With pseudo-

data [29, 31]:

FO(‘IU) =0 ¢gmax < ¢ < 2¢max ,
with
AQFD(‘IV = 'L[F(?symp(qu)F .

The direct relation between the expansion coefficients
a, and the form-factor value Fy(q,) facilitates the esti-
mate of the so-called incompleteness error, which is tra-
ditionally defined as the error due to the absence of data
at ¢ values larger than gmax-

Since the choice of the cutoff radius R introduces some
model dependence, the influence of R on the charge dis-
tribution has been studied. The optimum number of
terms in the Fourier-Bessel series for different values of
R was obtained from the formula: vpax = 2¢maxR/7.
The cutoff radius R was varied between 5 and 12 fm in a
combined analysis of our measurements with data from
earlier measurements [8, 9, 32, 33]. It was found that the
fit deteriorated rapidly for R <6 fm, while the description
of the data sets hardly changed for 6 < R <10 fm (see
Fig. 9). A value of 8 fm was chosen based on the F' test
[34] for the significance of additional terms describing the
charge density.

E. A. J. M. OFFERMANN et al.
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xz/u as a function of R, the cutoff radius.

B. Results of the static analysis

The gesr range of the NIKHEF-K data is limited to
1.0-2.3 fm~!. In order to obtain a static charge den-
sity that describes the NIKHEF-K data at one energy,
additional measurements over lower and similar momen-
tum transfers have been included. The data sets used
are listed in Table IX. The energy ranges of the data
from the Instituut voor Kernfysisch Onderzoek (IKO)
[33] (20< Ep <80 MeV), the National Bureau of Stan-
dards (NBS) [32] (24< Fy <116 MeV) and the University
of Mainz [9] (100< Eo <320 MeV) have the largest over-
lap with the low-energy data set of NIKHEF-K. There-
fore, the best-fit charge density was determined from
these data sets and the NIKHEF-K low-energy data sets
at 238 and 243 MeV (run II and IV, see Table II). The
IKO and NBS data sets consist of absolute cross sections

TABLE IX. A tabulation of the results of three different fits to the data using a Fourier-Bessel parametrization of the
ground-state charge density. The data points in the region of the minimum were omitted in all fits. In the first fit only the
normalization factor of each data set was varied. In the second fit the normalization was varied and the momentum scales of the
Mainz and Stanford data were recalibrated. In the third fit the cross section values were corrected for dispersive contributions
before the analysis. The normalization factor for a data set is defined as norm = a5, /0exp- Only statistical errors are given.

Fit 1
Nominal values

Fit 2
Ejq calibration varied

Fit 3
Eg calibration varied
and dispersion corrections

deff Ep AEg AEg
Data (No. points) (fm_l) (MeV) Norm X2 Norm (%) x2 Norm (%) x2
IKO [33] (9) 0.2-0.7 20-80 0.992(3) 5.7 0.993(3) 0.0 5.4 0.994(3) 0.0 5.0
NBS [32) (35) 0.1-1.0  24-116 0.997(1)  34.0 0.998(1) 0.0 33.7 0.999(1) 0.0 34.7
Mainz [9] (16) 0.3-0.7  100-300 0.995(2) 15.1 0.996(2) 0.0 14.0 0.996(2) 0.0 14.4
Mainz [9] (27) 05-1.4  150.24 1.003(2) 20.6 1.015(4) —0.25(6)  14.1 1.012(4) —0.22(6)  16.0
(8) 1.1-2.0 24017 0.965(3) 25.7 0.980(7) —0.22(4) 9.0 0.978(7) —0.22(4) 6.4
(16) 1.3-2.7  300.52 1.005(4) 35.7 1.015(6) —0.18(3) 155 1.015(6) -0.20(3) 17.8
(8) 1.4-23  320.10 1.077(4) 8.0 1.074(6) —0.09(2) 2.6 1.072(6) —0.10(3) 2.9
Stanford [8] (23) 1.1-2.8  374.50 0.993(8) 14.9 0.997(10) -0.18(7) 8.1 0.992(10) —0.19(7) 8.9
(16) 2.1-4.0  747.20 1.017(14) 7. 1.011(15) —0.05(6) 6.6 0.995(15) —0.07(9) 7.9
This work  (43) 1.0-2.0  240.00 1.009(3) 75.5 0.999(4)" 0.0 67.5 0.995(4)" 0.0 60.4
This work (74) 1.1-2.3 430.00 118.5 0.0 89.5 0.0 90.1
S x2/v 360.6/252 280.2/252 279.0/252
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in the geg range 0.2-0.8 fm~! and 0.1-1.0 fm™!, respec-
tively. The Mainz data consist of five separate sets with
overlapping momentum-transfer ranges 0.3< ¢eg <2.7
fm~1. The Mainz data set in the g.g range 0.3< geg <0.7
fm~! has an absolute normalization, while the normal-
ization factors of the other four sets must be determined
in a fit in conjunction with absolute data. The normal-
izations of the absolute data sets were fixed in this part of
the analysis to minimize absorption of a possible energy
dependence of the form factor into the fit.

The original (raw) Mainz data were reanalyzed using
the same procedure described above for the NIKHEF-
K data so that the final cross-section corrections to the
Mainz data for solid-angle effects and energy spread were
consistent with the best-fit density obtained from the
combined analysis of all the data; the changes in the
Mainz cross sections due to this procedure were very
small. The fitting of the combined data sets was per-
formed using a version of the code MEFIT [25] modified
to incorporate the corrections for finite solid angle and
energy spread described above. The energy of the Mainz
data was adjusted slightly in a manner similar to the fits
described in the next section.

As was pointed out in the description of the data reduc-
tion, the relative normalization of the NIKHEF-K data
sets at low and high energy is well established. In the
analysis discussed in this section, the normalization of
the NIKHEF-K data was determined by fitting the two
low-energy sets in conjunction with the absolute data. In
this fit (x?/v=163.8/148) all cross sections in the region
of the diffraction minimum (1.6< geg <1.95 fm~1) were
excluded, so that deviations in the region of the minimum
would not be absorbed into the normalization factor. A
more detailed study of the absolute normalization factor
of the complete NIKHEF-K data set will be presented in
Sec. V.

In a second fit the low-energy NIKHEF-K data in
the minimum were included, but the absolute normal-
ization of the data was fixed at the value obtained from
the first fit. Data from the experiment of Reuter et
al. [9] taken in the region of the diffraction minimum
were omitted from this fit because they were replaced by
the higher-quality data from the present experiment. In
this way we deduced a charge distribution that describes
the form-factor minimum at the lower energy of the
present experiment as well as possible. It should be noted
that the cross section in the diffraction minimum comes
mainly from Coulomb distortion effects whose magni-
tude is determined by the complete charge distribution
and thus mainly by the cross-section values outside the
minimum. The overall quality of the fit is reasonable
(x?/v=244.3/174, with the 25 data points in the mini-
mum contributing 61.8). The percentage deviations of
the measured cross sections from the predictions of the
best-fit charge density are plotted as a function of geg
in Fig. 10 and the top part of Fig. 11(a) for the IKO,
NBS, Mainz and low-energy NIKHEF-K data; the agree-
ment between experiment and the predictions of the best-
fit density is good. However, in the momentum-transfer
range 1.2< geg <1.6 fm™! the NIKHEF-K data appear
to be systematically about 1% lower than the fit, and a
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FIG. 10. The percentage deviation between predictions

of the best-fit charge density and cross section values of IKO
[33], Mainz [9], and NBS [32] as a function of the effective
momentum transfer ges. The position of the minimum and
of the second maximum of the form factor are indicated. Ab-
solute cross sections are represented in the figure by closed
circles (o) and relative cross sections by open circles (o).

3(1)% deviation between experiment and best fit is ap-
parent in the first diffraction minimum at geg=1.84 fm=1.
The best-fit static charge density inferred from this
procedure can now be used to predict the cross-section
values for the high-energy NIKHEF-K data sets (runs I,
III, and V), and for data measured in a subsequent exper-
iment [35] at MIT-Bates at 690 MeV. The absolute nor-
malization of the MIT-Bates data (0.90) was determined
by comparing data on the 2% level measured simultane-
ously with the predictions of the transition density that
provided a fit to our measurements and earlier data on
this state. The percentage deviations between the exper-
imental values and predictions are shown in Figs. 11(b)
and (c). Systematic uncertainties were estimated by re-
peating the analysis with the NIKHEF-K and MIT-Bates
cross-section values increased and decreased by their sys-
tematic errors independently for the low- and high-energy
data. The influence of these systematic effects on the de-
viation between experiment and prediction is indicated
by the shaded area in Fig. 11. This figure shows an un-
ambiguous energy dependence of the form factor. At
the higher energies the cross section in the region of the
diffraction minimum is increased relative to the predic-
tion of a static-analysis fit to the lower-energy data sets
by as much as 8(1)% at 430 MeV and 18(3)% at 690 MeV.
Furthermore, the cross section drops below the predicted
values on both sides of the minimum for the 430-MeV
data set and on one side for the 690-MeV data set.
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FIG. 11. The differences between the cross sections mea-

sured at six incident electron energies (from 238 to 690 MeV)
and the values predicted by the ground-state charge den-
sity parameters obtained from the data at lower energies (see
text). The dashed curves indicate the energy dependence of
the dispersive contribution according to Friar and Rosen [12]
between 240 MeV and the energy under consideration.

C. Comparison with other measurements

As was mentioned earlier, measurements from Mainz
[9] and Stanford [8] include data in the region of the
diffraction minimum. A comparison of these data with
the predictions of our best-fit charge density, which was
obtained by fitting low-energy data of IKO, Mainz, NBS,
and NIKHEF-K, supplies further information on the en-
ergy dependence of the dispersion correction in the min-
imum.

In contrast to the high-energy NIKHEF-K and MIT-
Bates cross sections, the normalization of the Mainz and
Stanford data relative to the low-energy NIKHEF-K data
is not known precisely. Normalization factors for the
Mainz data were determined as described in the pre-
ceding section by a combined fit of all data outside the
minimum; the normalization of the Stanford data was
obtained by comparing the cross sections measured at
Stanford outside 1.6< geg <1.95 fm~! with the values
predicted by the best-fit charge density. This procedure
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introduces an uncertainty in the deviation from the low-
energy prediction because the average deviation outside
the minimum is absorbed in the normalization factors.
It should be noted that the unfolding corrections for the
effects of finite solid angle and straggling in the target
amounted to 12% near the form-factor minimum for the
Mainz and Stanford data sets; the information about the
Stanford data required to correct for finite-solid-angle
and target straggling effects was taken from Friar and
Negele [36].

The percentage deviations of the data sets of Mainz
and of Stanford from the predictions of the charge density
that provided a best-fit to the low-energy data are plotted
in Fig. 12 as a function of ¢geg. The form-factor minimum
was shifted to the same momentum-transfer value as was
observed in the more precise NIKHEF-K data by adjust-
ing the incident energy of the different Mainz data sets
by between 0.08% and 0.25% and of the Stanford data by
0.18%. However, it is important to note that deviations
observed in the diffraction minimum between these data
sets and the predictions of our best-fit static charge den-
sity cannot be removed by any adjustment of energy or
normalization. Figure 13 summarizes the deviations ob-
served in the diffraction minimum as a function of beam
energy; the discrepancy increases with incident energy.
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FIG. 12. The percent deviations of the cross sections mea-

sured at Mainz [9] and Stanford [8] in the region of the form-
factor minimum from the predictions of our best-fit charge
density as a function of ges.
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D. Interpretation in terms of dispersive effects

If higher-order contributions to the static analysis are
negligible, the static charge density deduced from lower-
energy data should accurately predict the cross sections
at other incident energies over the same momentum
transfer. Figure 11 shows clearly that the elastic form
factor exhibits an energy dependence. The two most im-
portant corrections to the standard static analysis are
given by the dispersion and recoil corrections. Disper-
sion corrections have been discussed briefly in the intro-
duction; they are expected to show a significant energy
dependence [12, 37, 38]. The recoil correction arises from
the interaction of the electron with the current associ-
ated with the recoiling nucleus. Calculations [39, 40] of
the recoil correction, performed within the Breit approx-
imation, suggest that the correction is at most +1% in
the region of the first diffraction minimum of 2C. Fur-
thermore, the calculated recoil correction depends very
little on the incident energy. Therefore, it seems reason-
able to interpret the observed energy dependence of the
12C form factor in terms of dispersive processes only.

A general feature of available theoretical calculations
of the dispersion correction is a smooth increase in the
correction outside diffraction minima with increasing mo-
mentum transfer. The small deviations of the low-energy
data outside the minimum relative to the predictions
of the best-fit density [see Fig. 11(a)] suggest that this
smooth part of the dispersive contribution at this energy
(if indeed it is present) has been absorbed into the static
charge density. The discrepancy observed in the low-
energy data in the minimum between experiment and
fit is then the local surplus of dispersive contributions
above this smooth function. In fact, any comparison
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between experiment and the predictions of this best-fit
charge density will show the size of dispersive effects rel-
ative to this smooth dispersive contribution at about 240
MeV.

Some general features of dispersive contributions in
12C can be extracted from the measurements. Since the
first Born amplitude and the real part of the Coulomb-
distortion amplitude fc change sign (and therefore go
through zero) in the minimum of the form factor, the
leading dispersive contribution in the minimum is given
by the product of the imaginary part of fc and the dis-
persion amplitude fp. The contribution coming from fl%
is much smaller since fc comes from a coherent sum of
the different proton contributions in the nucleus while
fp turns out to be an incoherent sum [12]. Therefore,
the linear energy dependence of the deviation observed
in the minimum and the 1/E, dependence of fc in the
minimum [1] lead to the conclusion that Im(fp) has an
energy dependence in the minimum given by ¢; + ¢2/Ejp.

If one assumes that the Ey dependence is monotonic
and does not change sign, two different classes of dis-
persion corrections are compatible with the observed en-
ergy dependence outside the minimum. Two extreme
cases of each class are illustrated schematically in Fig. 14.
The two classes are distinguished by the fact that the
dispersion correction can become negative and increase
in absolute magnitude with energy for one group [see
Fig. 14(a)] while it is positive and decreases with energy
for the other group [Fig. 14(b)]. The corrections have
been extended to zero momentum transfer through the
use of unitarity and dispersion relations [41, 42]. These
model-independent ingredients prescribe that the disper-
sion amplitude is finite and has positive real and imagi-
nary parts for ¢ = 0, so the dispersion correction at ¢ = 0
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FIG. 14. Schematic representations of different types of
dispersion corrections that are compatible with the observed
energy dependence of the form factor. The thick solid curve
indicates the correction for low energy while the thin curve
shows the correction for high energy. The shaded area dis-
plays the energy dependence.
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is zero and its derivative with respect to ¢ is positive.

We have compared the observed energy dependence
with the dispersion-correction calculations of Friar and
Rosen [12]. As can be seen in Fig. 15, their calculations
agree qualitatively with the second class of dispersion
corrections, discussed above. They predict a strongly
peaked effect in the diffraction minimum and an energy
dependence on both sides of the minimum that has the
opposite sign of the correction in the minimum and de-
creases as 1/Ep. The agreement between the predictions
of this calculation and our experiment in the region of
the minimum is poor. First, the observed effect is nearly
an order of magnitude larger than the calculation. Sec-
ond, the observed effect increases roughly linearly with
energy while the calculated effect is almost independent
of the beam energy. One explanation of this discrepancy
is that the imaginary part of the calculated dispersion
amplitude is grossly underestimated since this part of
the amplitude dominates near the diffraction minimum
(where the real part changes sign). The discrepancy be-
tween theory and experiment in the minimum does not
necessarily have implications for the validity of the cal-
culated dispersion amplitude outside the minimum. A
number of approximations have been made by Friar and
Rosen, and there are several possibilities for modifying
the imaginary part of the dispersion amplitude, such as
the inclusion of the transverse part of the dispersion am-
plitude [36]. The precise nature of the changes in the
theory that are required to match our measurements is
beyond the scope of the present work.

The energy dependence of the dispersive contribution
outside the minimum as calculated by Friar and Rosen
is indicated in Fig. 11 by dashed curves. These curves
were obtained by parametrizing their results for 375 and
747 MeV (shown in Fig. 15) as a function of Ey and ¢?
with a polynomial outside the region of the first diffrac-
tion minimum:

1.1q2+0.1q4) 6)

Ostat+disp = Ostat (1
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:\3 3 - — 747.2 MeV / -
- L Minimum 4
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FIG. 15. The results of the calculations of Friar and Rosen

[12] for dispersion corrections to elastic scattering from '2C
at 374.5 and 750 MeV.
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where gpat4disp 1S the dynamic cross section, which in-
cludes dispersive contributions, and ostat is the static
cross section. Their prediction for the energy depen-
dence outside the minimum agrees reasonably well with
the measurements at 430 MeV, but differences are ap-
parent at 690 MeV. We conclude that although the real
part of the calculated dispersion amplitude is roughly
compatible with the measurements at 430 MeV, the dis-
agreement with the 690 MeV measurements seems to in-
dicate that the energy dependence of the real part of the
dispersion amplitude is not correct either.

V. THE EFFECTS OF DISPERSION
CORRECTIONS ON THE INFERRED '2C
GROUND-STATE CHARGE DISTRIBUTION

We have investigated the influence of dispersive effects
on the extracted ground-state charge distribution by in-
corporating the dispersion corrections calculated by Friar
and Rosen [12] in an analysis of all available data on
elastic electron scattering from '2C. Although the energy
dependence we observed in the region of the form-factor
minimum (1.6< geg <1.95 fm~1!) is an order of magni-
tude larger than the predictions of Friar and Rosen, their
calculations are reasonably compatible with the energy
dependence observed outside the minimum. In order to
avoid ambiguities from the large discrepancy in the re-
gion of the minimum, all cross-section data points in this
region were omitted in the analysis. This procedure still
yields an accurate estimate of the charge distribution for
12C because the cross section in the minimum is strongly
correlated with the cross section outside that region by
the Coulomb corrections.

A. Fourier-Bessel analysis results

The present data were analyzed in conjunction with
the data of IKO [33], Mainz [9], NBS [32], and Stanford
[8]; a total of 275 data points were available, covering a
gert Tange 0.1< gegr <4.0 fm~1. As has been discussed
above, all data in the region of the first diffraction min-
imum (1.6< geg <1.95 fm™!) were excluded from the
analysis.

The best-fit charge density was deduced from the com-
bined data set in a x? analysis with the phase-shift pro-
gram MEFIT [25] using a Fourier-Bessel parametrization
for the ground-state charge density. Possible discrepan-
cies in the normalizations and momentum-transfer scales
of the different data sets were resolved before applying
dispersion corrections. A total of three fits were per-
formed; the results of these fits are presented in Table IX
and are discussed, in turn, below.

In the first fit the normalization of each data set, in-
cluding the absolute data sets, was permitted to vary,
constrained only by the overall normalization of the
charge distribution. The relative normalizations of the
NIKHEF-K data sets were coupled through the analysis
described in Sec. III. The overall quality of the fit (Ta-
ble IX, column 1) is reasonable (x2/v = 360.6/252). The
change in the normalization factor for the absolute NBS
data is within the estimated 0.37% uncertainty [32], that



44 ENERGY DEPENDENCE OF THE FORM FACTOR FOR ELASTIC. ..

for the absolute Mainz data is just outside its estimated
0.4% uncertainty [9], while the IKO normalization factor
has changed by an amount that is three times its esti-
mated 0.24% uncertainty [33].

The x? per point for the Mainz and NIKHEF-K data
sets above g=1 fm~! is larger than those of the other sets.
A comparison of the data in the minimum—which were
not included in the fit—revealed that the form-factor
minimum in these data sets occurs at different geg val-
ues. It is quite likely that this is the result of errors in
the absolute energy calibrations of the experiments. The
position of the minimum as described by the Stanford
data also does not coincide with the fit, although this is
not apparent from the x2 values for these data. To inves-
tigate the energy calibration of these high-q data sets, we
performed a second fit in which the incident energies of
the Mainz data above ¢g.g=1 fm and Stanford data were
varied relative to their nominal values. The NIKHEF-K
energies were fixed in this fit and the energy of the abso-
lute Mainz data was not varied since recalibration of the
incident energy is strongly correlated to the normaliza-
tion factor at low ¢ values.

Variation of these energies results in a substantial im-
provement in the quality of the fit (Table IX, column 2;
the x2/v value drops from 1.43 to 1.11). The positions
of the minima as described by the cross section values of
various data sets coincide after the recalibration of the
momentum-transfer scale. The incident energies of the
Mainz data determined by this fit show small, system-
atic deviations of about 0.09 to 0.25% from their orig-
inal values; for the Stanford data the fit resulted in a
0.18(7)% energy change. In both cases the deviations
are somewhat larger than the systematic errors quoted
by the authors, 0.12% and 0.1%, respectively.

The use of the NIKHEF-K data sets as a reference for
the recalibration of the momentum scale above geg=1
fm~1 is justified by the energy-calibration method used
at NIKHEF-K, which is considered to be more accurate
than the methods used in the Mainz and Stanford ex-
periments. Our method consists of measuring the recoil-
energy differences and excitation spectra for different nu-
clei along the focal plane (see Sec. II B). The incident
energy and the spectrometer constants were calibrated
in a single, consistent framework using measurements
performed during the actual data taking. In the cali-
bration procedures of the other two laboratories either
the incident energy (Stanford) or the spectrometer con-
stants (Mainz) were determined separately from the 12C
measurements. This can introduce systematic errors in
the energy calibration. The energy-calibration procedure
used for the NIKHEF-K data has been checked by vary-
ing the low-energy and high-energy calibrations in two
separate fits. The differences between the energies ob-
tained by this procedure and that of our absolute cali-
bration were well within the estimated systematic error
of 0.08%.

The charge density distribution inferred from this sec-
ond fit in which the energies of the Mainz and Stanford
high-q data were varied was used as a reference for the
study of the influence of dispersive effects. First, all
cross sections were “corrected” for dispersive contribu-
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tions using the theory of Friar and Rosen [12] and the
parametrization of Sec. IV D. Then, a third fit was per-
formed in which the normalizations and incident energies
were again treated as free parameters. Although the dis-
persion correction used is based on a closure approxima-
tion and therefore less reliable at low incident energies,
we applied this correction to the IKO and NBS data as
well; the correction is very small (<0.2%) at the mo-
mentum transfers of these data. The validity of the cor-
rection for the high-¢ Stanford data at 747 MeV is also
questionable because Friar and Rosen [12] used a two-
proton correlation function, calculated in the harmonic-
oscillator shell model, which is not expected to provide a
good description for high-¢q data. However, the statisti-
cal uncertainties in these data are much larger than the
corrections applied (<2.5%).

The correction for dispersive contributions does not
improve the total x? (Table IX, column 3) of the fit sig-
nificantly, but it does result in small changes in the 2
values of individual data sets. Since the dispersion cor-
rections contribute most to low-energy data sets mea-
sured at relatively high ¢ (NIKHEF-K and Mainz data
at Ey = 240 MeV), it may be significant that their x2
values improve slightly while the x? values of the other
data sets increase.

The fit results given in columns 2 and 3 of Table IX
indicate that the normalization factor for the NIKHEF-
K data is 0.999(4) and 0.995(4), respectively. Taking the
average of these values and adding the total systematic
error of 2.4% (see Table VIII) quadratically yields an
absolute normalization factor for the NIKHEF-K data
sets of

NOTMNIKHEF-K = 0.997 + 0025 .

This value supports the normalization presented in
Sec. II1 E, which was determined independently from the
fits to the data.

B. Ground-state charge distribution

The coeflicients, a,, describing the “reference” charge
distribution (determined from the second fit, column 2
of Table IX) are listed in the second column of Table X.
In the third column of this table the charge distribu-
tion coefficients that were extracted from the dispersion-
corrected data sets are given; if the theoretical calculation
of dispersive effects is correct, these represent the “true”
charge density. The first nine coefficients in both sets
were determined directly from the combined data sets
(gmax=4.0 fm~1); the remaining coefficients were deter-
mined by the high-¢ assumptions discussed earlier. The
changes in the expansion coefficients due to dispersion
corrections increase with order v. This is not surpris-
ing since the magnitude of the dispersion corrections in-
creases with the momentum transfer, and the value of
a, is determined by the form factor in the vicinity of
g, =vrm/R.

The effect of dispersion corrections on the extracted
charge distribution is shown in Fig. 16. The application
of dispersion corrections shifts charge from the center of
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TABLE X. The Fourier-Bessel coefficients a, determined from the fits. The values in the second column (without dispersion
corrections) represent the parametrization of the reference charge distribution (fit 2, Table IX). The values in the third column
were deduced from the analysis of the dispersion-corrected cross sections (fit 3, Table IX). The statistical errors in both sets of
coefficients are given in the fourth column, and the change in the coefficients between the fits with and without the inclusion
of dispersion corrections are listed in the last column. The rms radii of these charge distributions and their statistical errors
are also given. The cutoff radius for the fits was at R=8 fm.

Without dispersion

With dispersion

corrections corrections Error Aa,

v ay (fm™?) a, (fm™?) (%) (%)
1 1.5721%1072 1.5709% 1072 0.05 0.08
2 3.8723%1072 3.8610%1072 0.11 0.29
3 3.6616x1072 3.6418%1072 0.17 0.54
4 1.4390%10~2 1.4293x 1072 0.20 0.68
5 -4.5062x1073 -4.4628x%1073 0.25 0.97
6 -9.9771%10~3 -9.8420x1073 0.28 -1.37
7 -6.7970%10~2 -6.6518x107° 0.77 -2.18
8 -2.7632x10~3 -2.7066x1073 1.96 -2.09
9 -5.8502x10* -5.6697x10* 7.68 -3.18

10 -2.6986x10* -2.7453x107*

11 -1.8522x107* -1.7093%107*

12 1.0510%10~* 1.2433%107*

13 -3.8843x107° -4.8496x107°

14 1.2243x107° 1.5675x107°

15 -3.4788x107° -4.5194x107°

16 9.0889%10~7 1.1920%107¢

17 -2.2015x10~7 -2.9065%10~7

18 4.9631x1078 6.5845%x1078

(r2y*/? (fm) 2.4711(55) 2.4776(55)

the nucleus

to the edge, in qualitative agreement with

the results of a similar analysis of a more restricted data

set by Friar

and Negele [36]. In that analysis, which also

used the calculation of Friar and Rosen [12], the effect
of dispersion corrections on the charge distribution was
only half that found in the present analysis. However,
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The influence of dispersion corrections on the

reference charge distribution. The statistical and incomplete-
ness error and the uncertainties due to systematic errors in
angle, incident energy, and normalization are also shown.

in Friar and Negele’s analysis the dispersion corrections
were treated as a systematic effect, and taken to be in-
dependent of other systematic uncertainties. In a fit in
which dispersive contributions are neglected, some of the
dispersive effects will be absorbed in both the inferred
charge distribution and the concurrently determined nor-
malization factors. To compensate for this feature of the
uncorrected fit, the normalization factors should not be
kept fixed, but allowed to vary when cross sections whose
absolute normalizations are not known are corrected for

dispersive contributions.

The normalization of the cross sections in our analysis
of the combined data set was determined by the data with
the highest accuracy, those of IKO, Mainz, and NBS,
while the momentum scale was defined primarily by the
data sets of NIKHEF-K and to a lesser extent by those of
IKO and NBS. The influence of systematic errors in the
normalization and the momentum scale was investigated
by varying the parameters describing these data sets one
at a time from their nominal values (fit 2, Table IX) to
their systematic extremes. The systematic uncertainties
in normalization, scattering angle, and incident energy
are given in Table XI for each of the relevant data sets.

Figure 16 displays the uncertainties in the reference
charge distribution due to the systematic errors in the
momentum-transfer scale and in the normalization to-
gether with the statistical and incompleteness error. It
is clear that for radii greater than 1 fm the uncertainty
in the charge density comes mainly from systematic ef-
fects. The effect of dispersion corrections (as calculated
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TABLE XI. Systematic uncertainties considered in the
analysis.
Data Norm (%) AE/E (%) Af (deg)
IKO 0.24 0.3 0.03
Mainz 0.4
NBS 0.37 0.07 0.008
NIKHEF-K 0.08 0.015

by Friar and Rosen) on the inferred density is comparable
to the effect of the experimental uncertainties.

C. rms charge radius

The rms radius of the charge density inferred from a
static analysis of the data is 2.471 fm; it increases to
2.478 fm after dispersion corrections have been taken into
account (see Table X). The statistical error in the rms
radius is 4+0.006 fm for both analyses; the systematic
uncertainties are larger. Systematic variation of the nor-
malization and the momentum-transfer scale results in a
systematic error in the rms radius of £0.007 fm. Calcu-
lations by Friar [42] in a Goldhaber-Teller model suggest
that dispersion corrections cause changes in the rms ra-
dius ranging from 0.002 to 0.007 fm, depending on the
approximations applied. This change in the rms radius is
in agreement with that obtained from the present analy-
sis.

The rms radius determined from the present work is
listed in Table XII together with other recent results ob-
tained from electron scattering and muonic x-ray experi-
ments. The rms-radius values corrected for higher-order
effects (i.e. for dispersive effects in electron scattering
data and for nuclear polarization effects in muonic x-ray
experiments) are also given where available. Our value
for the RMS radius agrees, within uncertainties, with val-
ues obtained from earlier analyses of different data sets.
The analyses by Reuter et al. [9] and by Sick [44] also es-
timated the influence of the dispersion corrections calcu-
lated by Friar and Rosen [12] on the rms radius. In both

TABLE XIL
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cases a smaller increase of the rms radius was reported:
0.004 fm by Reuter et al. [9]; and 0.002 fm by Sick [44].
Our analysis yields an increase of 0.007 fm. The smaller
increase found by the Mainz group can be attributed to
the fact that they fixed the normalization of the data sets
to the values determined before the dispersion corrections
were applied. The reason for the difference with the re-
sult of Sick [44] cannot be traced, because the details of
his analysis are not presented.

Earlier comparisons [10] of rms radii determined by
electron scattering and muonic x rays in the region of the
Fe, Ni, and Zn isotopes indicated that the muonic-atom
results were systematically higher by about 0.011(26) fm.
A similar difference for 12C was obtained by Ruckstuhl
et al. [11] who reported a difference of 0.0124(53) fm rel-
ative to the 12C rms radius determined from earlier elec-
tron scattering experiments in 12C. The average '2C rms
radius inferred from the muonic-atom data presented in
Table XII is 2.4827(19) fm; this value is in perfect agree-
ment with the dispersion-corrected rms charge radius de-
termined in this work from electron-scattering data. We
find

()% — (r)1/2 = 0.005 + 0.009 fm .

This agreement suggests that the deviations reported
earlier are probably due to either the neglect or the un-
derestimation of the effect of dispersive contributions on
the rms radius derived from electron-scattering data in
previous analyses.

VI. CONCLUSIONS

The study of elastic electron-scattering cross sections
from !2C in a static analysis demonstrates the existence
of a form-factor energy dependence. This energy depen-
dence increases smoothly as a function of momentum
transfer and incident energy in the region covered by the
experiments (1.0< gegr <2.3 fm™1, 240< Eo <690 MeV).
Outside the first diffraction minimum the discrepancy
between the form factors deduced from data obtained at
different energies can be as large as 5%; in the minimum

rms charge radius of !'>C as determined from electron scattering and muonic atom experiments.

THD=Technische Hochschule Darmstadt. SIN=Schweizerisches Institut fir Nuklearforschung. ETH=Eidgendossische Tech-

nische Hochschule.

Without dispersion

With dispersion

corrections corrections
Method Reference Data (r?)/? (fm) (r?)1/? (fm) §(r*>)*/? (fm)
(e,€) [31] IKO+NBS+Stanford 2.472 0.015
(e, €) [9] Mainz 2.464 2.468 0.012
(e, €) [42] IKO+NBS+Stanford 2.471 2.473 0.0055*
+THD
(e, €) This work IKO+Mainz+NBS 2.471 2.478 0.009
+NIKHEF-K+Stanford
p atom [43] Fribourg/SIN 2.472 0.015
p atom [11] ETH/SIN 2.4829 0.0019

*Empirical information on the properties of nuclear wave functions at large radii is used to reduce the uncertainty in this

analysis.
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itself discrepancies as large as 18% have been observed.

This form-factor energy dependence has been inter-
preted in terms of dispersive effects which arise from vir-
tual nuclear excitations in the scattering process. Com-
parison with the dispersion calculations of Friar and
Rosen [12] shows fair agreement outside the diffraction
minimum at lower energies. In a light nucleus such as
12 the imaginary part of the dispersion amplitude has
a minor contribution outside the diffraction minimum.
This suggests that the size of the real part of the calcu-
lated dispersion amplitude is compatible with the exper-
imental data but its energy dependence is not. In the
minimum, however, the calculation is nearly an order of
magnitude too small. This is probably due to an under-
estimate of the imaginary part of the dispersion ampli-
tude, which dominates in 2C only near the diffraction
minimum. The imaginary part of the dispersion am-
plitude can be investigated further by performing mea-
surements on a heavy nucleus where it is also enhanced
outside the minimum through its interference with the
Coulomb distortion amplitude; such a measurement on
208P} is underway at NIKHEF-K [45].

The energy dependence, size, and sign of the dispersion
correction are well established in the minimum by mea-
suring the form factor. However, neither the size nor sign
of the correction outside the minimum can be deduced
unambiguously from our measurements. Here, additional
information from the comparison of elastic electron and
positron scattering from 2C will give a conclusive answer

[46].
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The discrepancies observed in the static analysis of the
present data indicate that one should no longer neglect
the effect of dispersive contributions in the analysis of
high-precision elastic electron-scattering data. The ef-
fect of dispersive corrections on the ground-state charge
distribution inferred from the '2C(e,e) data is compa-
rable to that of other experimental uncertainties. The
rms charge radius of '2C inferred from the electron scat-
tering data increases by 0.007 to 2.478+0.009 fm when
dispersion corrections as calculated by Friar and Rosen
are included in the analysis. This RMS radius is in excel-
lent agreement with the value from muonic x-ray studies;
inclusion of dynamic corrections in the analysis of both
(e,e) and muonic-atom data removes discrepancies re-
ported earlier.
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