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Successive energy ratios in medium- and heavy-mass nuclei as indicators of
different kinds of collectivity
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The systematics of energy ratios of successive levels of collective bands in medium- and heavy-
mass even-even nuclei are studied. A measure of their deviation from the vibrational and rota-
tional limiting values is found to have diA'erent magnitude and angular momentum dependence in
the vibrational, y-unstable and rotational regions. The usefulness of this new criterion for distin-
guishing between diA'erent kinds of collective behavior is demonstrated in the case of intruder and
octupole bands.

R(J+2/J) (J+2)(J+3)
J(J+1)

In the vibrational limit the members of the band are

E(J)=aJ,

(2)

(3)

Energy ratios have been a useful tool in the study of
medium- and heavy-nuclei since their introduction by
Mallmann. ' Knowing the excitation energies E(J) of lev-
els with angular momentum J, one can form the ratios
R(J/2) =E(J)/E(2). It was shown by Mallmann that
R(6/2) and R(8/2) plotted against R(4/2) show a univer-
sal behavior for collective nuclei ranging from the vibra-
tional to the deformed limit. These ratios have been stud-
ied in the framework of the variable moment of inertia
(VMI) model and its extended versions, like the variable
anharmonic vibrator model (VAVM). In particular the
ratio R(4/2) has been widely used as an indicator of col-
lectivity, having the value 2 in the vibrational limit, 3 in
the rotational limit, and values around 2.5 for y-unstable
nuclei. Recently it has been suggested that plots of
R(6/4) versus R(4/2) show a smooth systematic behav-
ior, deviations from which indicate coexistence of collec-
tive and noncollective configurations.

In the present work we study the series of ratios
R(J+2/J), J=2,4,6, . . . . Using this series we con-
struct a quantity showing distinctly diA'erent behavior in
the vibrational, rotational, and y-unstable limits. There-
fore this series can be used for the safe determination of
the character of a collective band, especially in nuclei
where mixing of different bands occurs, in which case the
R(4/2) ratio might be seriously aA'ected (for an example,
see Ref. 6). The applicability and usefulness of this new
criterion in the case of octupole and intruder bands is
demonstrated.

We start with the study of ground-state bands. In the
rotational limit the members of these bands have excita-
tion energies

E(J) =AJ(J+ I),
where A is the rotational constant. Then in this limit we
find

so that the relevant ratio is

(4)R(J+2/J)„;, =

One can easily see that in both limits the ratio is decreas-
ing with increasing J. The same is true for the diAerence

R (J+2/J), ot
—R (J+2/J)„.b

=
J(J+1) '

which is always positive.
For a given band we construct for each J the quantity

R (J+2/J), „p
—R(J+2/J)„b

R (J+2/J) „Ot
—R (J+2/J) „;b

(6)

where R(J+2/J), „p is the experimental value of the ratio.
It is clear that this ratio should be close to one for a rota-
tional nucleus and close to zero for a vibrational nucleus,
while it should have intermediate values for y-unstable
nuclei.

These systematics should hold for ground-state bands
up to the point of backbending, which can be read from
the tables of Ref. 4. For other kinds of bands, as octu-
pole and intruder bands, a band head energy must be
taken away (for detailed examples, see below). In this
case Eqs. (2) and (4) must be modified as follows

(J+2)(J+3)—Jbb(Jbb+1)
(7)J(J+1)—Jbb(Jbb+ 1)

R(J+2 /J). b
= /+2 —Jbp

(8)

R(J+2/J)...=

where Jbg is the angular momentum of the band head. In
addition

E (J + 2) —E (Jbb)
R(J+2/J)exp (9)

Using Eqs. (7)-(9) in (6) we get results for these kinds of
bands.

In Fig. 1 we show the results of the calculation for the
ground-state bands of ten nuclei (data taken from Ref.
10). In 1(a) three vibrational nuclei are shown. The first
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point in the figures corresponds to R (4/2), which is known
to be between 2 and roughly 2.3 for vibrational nuclei.
For each nucleus the ratios start with a small value and
then increase with J, more rapidly in the beginning and
slower at higher J's. In 1(b) we show results for four y-
unstable nuclei. In all cases the ratios obtain values
around 0.4-0.6, increasing in the beginning and decreas-
ing later on. It is known that for these nuclei the R(4/2)
ratio has values roughly in the region 2.4-2.8. Finally, in
1(c) we show three examples of rotational nuclei. Nuclei
in this region have R(4/2) ratios between roughly 2.9 and
3.33. In all cases the ratios start with a value very close to
one and then constantly decrease. We remark that in the
three regions both the magnitude of the r(J+2/J) ratios
and their dependence on J differ drastically. In particular
(i) the magnitude is confined in the region 0.1-0.35 in the
vibrational limit, takes values between 0.4 and 0.6 for y-
unstable nuclei, and lies in the area between 1.0 and 0.6 in
the rotational limit. (ii) More importantly, the ratios as
functions of J increase in the vibrational limit, show the
opposite behavior, i.e., decrease, in the rotational limit,
while they exhibit intermediate behavior (first increasing
and then decreasing) in the y-unstable case.

The same conclusions are drawn from the study of all
ground-state bands given in Ref. 10. More examples of
vibrational, transitional, and rotational nuclei are given in
Tables I-III, respectively.

The clear separation in magnitude [observation (i)] as
well as the clearly different functional dependence on J
[observation (ii)) can be used for the characterization of a
large variety of bands. So far we have examined levels of
positive parity. In addition to them, levels of negative par-
ity also exist. In some cases the positive-parity levels of
the ground-state band and the negative-parity levels of the
lowest EC=I band form a band with octupole deforma-
tion. Some examples are the Th (Ref. 13) and Ba (Ref.
14) isotopes. Results for the negative-parity levels of
some Th isotopes are shown in Fig. 2. In this case Jbh =1
was used, since the negative-parity levels form a K =1
band starting with J=1. Clearly rotational behavior is
seen in all cases. The same is true for the Ba isotopes
(Ref. 14), not shown in the figure. For low J the experi-
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FIG. 1. (a) Examples of r(J+2/J) ratios as functions of J in
the vibrational, (b) y-unstable, and (c) rotational regions. All
data are taken from Ref. 10.

TABLE I. r(J+2/J) ratios for ground-state bands of even-even vibrational nuclei. The R(4/2) ra-
tios for these nuclei are between 2. 14 and 2.33. All data are taken from Ref. 10 except for '7~pt (Ref.
»).
Nucleus r(4/2) r(6/4) r(8/6) r(10/8) r(12/10) r(14/12) r(16/14)

'4se
'4Kr

82S

116X

152Gd

1540@

156Er

158yb

176pt

0.1106
0.1678

0.2371

0.2493

0.1455

0.1737

0.2349

0.2472

0.1023

0.2281

0.4294

0.2966
0.2836
0.2078

0.2313
0.3032

0.3032

0.1737

0.2625

0.5491

0.3183
0.2850

0.2367

0.2491

0.3361

0.3294

0.2839

0.2904

0.5977
0.3294

0.3231

0.2410
0.2475

0.3389
0.3255

0.3649

0.3615

0.2459

0.2546

0.4132

0.3944

0.2609

0.2586

0.4321

0.4099

0.2692
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TABLE II. r(J+2/J) ratios for ground-state bands of even-even transitional nuclei. The R(4/2) ra-
tios for these nuclei are between 2.38 and 2.84. All data are taken from Ref. 10.

Nucleus

76S

"Kr
' Kr
118X

122X

124X

124B

126B

a
130B

158Er

160Yb

162Hf

192'

182pt

184p,

186pt

188p

196pt

222Th

r(4/2)

0.2851

0.3299
0.3454

0.3014
0.3761

0.3617
0.6309

0.5832

0.5156
0.3917
0.5575

0.4696

0.4225

0.6150
0.5250

0.5065

0.4196
0.3938
0.3491

0.2995

r(6/4)

0.3332
0.4936
0.4446

0.3736

0.4517
0.4365

0.6417
0.6227

0.5723

0.4445

0.5684

0.4947

0.4556

0.6266

0.5973

0.5525

0.4830
0.4400

0.4025

0.3422

r(8/6)

0.2937

0.5666

0.4727

0.3967

0.4689

0.4517
0.6081

0.6152
0.5840

0.4483

0.5413
0.4743

0.4405

0.6188
0.5924

0.5470

0.5131
0.4512
0.3774

0.3276

r (10/8 )

0.2332

0.5845

0.4378

0.3868

0.4346

0.3965

0.5299

0.5701

0.5698

0.3996
0.4964

0.4209

0.3907

0.5968

0.5752

0.4939
0.4809

0.4227

0.2813
0.3108

r (12/10)

0.5237

0.3443

0.1115

0.4290

0.5876

0.5518

0.4193
0.4454

0.3051

r (14/12)

0.3036

mental ratios overshoot the rotational value.
An interesting category of bands are the intruder

bands. The equivalence between their description in
terms of particle-hole excitations across a closed shell in
the spherical shell model and a description starting from
the Nilsson model has been recently demonstrated. ' For
recent experimental findings and theoretical approaches
see Refs. 16 and 17, respectively. The results for some in-
truder bands in Hg isotopes are also shown in Fig. 2
(Refs. 10 and 18). We used Jbh=0 in these cases, since
these are K =0+ bands, starting with J=0. Clearly ro-
tational behavior is seen in all cases, as expected. Be-
cause of strong mixing, ' the E(2) and E(4) levels are
severely influenced, so that the R(4/2) ratio is not a useful
indicator in these cases. For the same reason, r(4/2) has
been left out from the figure.

We should remark at this point that the ratios proposed
in this paper should be used in parallel with the well-
known methods of classifying bands and not as a substi-
tute. It is clear, for example, that in order to decide which
levels form a band, 8(E2) transition probabilities should
be checked, requiring that levels of the same band are
connected by strong 8(E2) transitions. The usefulness of
the present method shows up mainly after one has decided
which levels form each band. The r(J+2/J) ratios oA'er

a criterion for the characterization of a band as rotational,
vibrational, or y unstable, which is much more general
than the usual criterion of the R(4/2) ratio. While the
latter criterion cannot be used in cases in which E(2)
and/or E(4) are inIIuenced by mixing, as in the case of in-
truder bands, the criterion based on the r(J+2/J) ratios

gives the right answer. In short, the r(J+2/J) ratios
oA'er a criterion for the characterization of a band as rota-
tional, vibrational, or y unstable, which depends on all the
levels of the band and not just on the first two levels of the
band, as the R(4/2) ratio.

The different behavior observed in the vibrational and
rotational limits can be qualitatively understood as fol-
lows. Rotational bands are known to be well described by
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FIG. 2. Examples of r(J+2/J) ratios for odd-spin levels of
octupole bands for "Th (Ref. 13) (plusses), "6Th (Ref. 13)
(solid triangles), ' 'Th (Ref. 13) (open circles), as well as for
levels of intruder bands for ' Hg (Ref. 10) (solid squares),
'" Hg (Ref. 10) (crosses), '""Hg (Ref. 18) (solid circles).
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TABLE III. r(j+2/j) ratios for ground-state bands of even-even rotational nuclei. If for a given
nucleus more than seven ratios are known, the extra ratios are given in the next line, in increasing order
[i.e., the second line contains the ratios r(18/16), r(20/18), . . . ]. The R(4/2) ratios for these nuclei are
larger than 2.93. Data for Pu are taken from Ref. 12, while for the rest of the nuclei from Ref. 10.

Nucleus r(4/2) r(6/4) r(8/6) r(10/8) r(12/10) r(14/12) r(16/14)
'"Sm
'54Gd

156Gd

156Dy

162D

164E

166F

168+b

170@b
174Hf

176~

178'

236U

238U

242p

244p

248C

0.7568

0.7610
0.9296
0.6992
0.9703
0.9576
0.9665
0.9497
0.9696
0.9514
0.9070
0.7636

0.9629
0.6974
0.9779
0.7477

0.9780
0.7560

0.9804
0.7995
0.9778
0.7817
0.9885
0.7871

0.7150
0.7242

0.8816
0.6770

0.9412
0.9194
0.9307
0.9043
0.9457
0.9082

0.8352

0.6840

0.9254
0.6708

0.9541
0.7108

0.9500
0.7202

0.9623
0.7715
0.9439
0.7440

0.9560
0.7444

0.6795

0.6857

0.8335

0.6434

0.9087

0.8775

0.8851

0.8505

0.9097
0.8562

0.7786

0.6159
0.8881
0.6518

0.9252
0.6759

0.9243
0.6803

0.9409
0.7414

0.9299
0.6936
0.9437
0.7038

0.6478

0.6493

0.7814

0.6078

0.8?28

0.8325

0.83 l0
0.7840

0.8713

0.7975

0.7036

0.5719
0.8453
0.6308

0.8953
0.6484

0.8924
0.6477

0.9107
0.7054

0.9057
0.5938

0.9210
0.6695

0.6206

0.6174

0.7295

0.5740

0.8433

0.7897

0.7719
0.7319
0.8238

0.7338

0.6357

0.5497

0.8043
0.6259

0.8605
0.6302

0.8615
0.6142

0.8851
0.6453

0.8798
0.4745

0.8950
0.6455

0.5948

0.5838

0.6682

0.5392

0.8021

0.7297

0.7096

0.6632

0.7488

0.6628

0.5744

0.5400

0.7641
0.6069

0.8071
0.6193
0.8255
0.5938

0.8569

0.8465

0.8632
0.6341

0.5439

0.6101
0.4511

0.7706

0.6537

0.6026

0.6277

0.6075

0.5248

0.5245

0.7271
0.5760

0.7887
0.6104
0.7919
0.5846

0.8282

0.8160

0.8270

an expansion of the form

E(J)=AJ(J+I)+B[J(J+I)] +C[J(J+1)]
+D[J(J+I)]'+. . . , (10)

in which A is positive, 8 is negative and roughly 3 orders-
of-magnitude smaller than A, C is positive and roughly 6
orders-of-magnitude smaller than 3, D is negative and
roughly 9 orders-of-magnitude smaller than A. ' Using
typical values of A, 8, C, D (as these given in Ref. 12) in

Eq. (10) and then using the results in Eq. (6), one easily
verifies that r(J+2/J) ratios decreasing with increasing J
are obtained. It is well known that rotational stretching is
the physical mechanism making the higher-order terms in
the expansion necessary. Therefore the decrease of the
r(J+2/J) ratios with increasing J is due to stretching.
An expansion alternative to Eq. (10) is the Harris expan-
sion, in terms of even powers of the angular velocity co.
The equivalence of the Harris formula to the VMI model
has been demonstrated long ago ' and a fully microscopic
foundation has been given.

In the vibrational limit one can use the formula

E(J) =AJ+BJ +. . . .

In this case one can easily check (using the data of Ref.
10) that 8 is positive and roughly I to 2 orders-of-

magnitude smaller than A. Using such values of the pa-
rameters in Eq. (11) and then using the results in Eq. (6)
one obtains a sequence of ratios increasing with J. Anhar-
monicities is, therefore, the physical reason behind the in-
crease of the r(J+2/J) ratios with increasing J in the vi-

brational limit.
In conclusion, we have shown that the energy ratios

R(J+2/J) and the quantities r(J+2/ )Jare useful tools
for the characterization of collective bands. r(J+2/J)
shows diA'erent magnitude and J dependence in the vibra-
tional, y-unstable, and rotational limits. They are partic-
ularly useful in cases in which the first few levels of a band
are strongly influenced by mixing, so that the R(4/2) ra-
tio is not a reliable indicator, as in some cases of intruder
bands.

The extension of the present method to superdeformed
bands, as well as to odd-mass and odd-odd nuclei is
receiving attention. Similar systematics for 8(E2) values
can also be instructive.
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