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Unitarity consideration of pion production in relativistic heavy-ion collisions
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Pion production in relativistic heavy-ion collisions is examined with the use of the unitarity re-
lation. We show that the density of states for pion production in an absorptive nuclear medium is
not inversely proportional to the in-medium pion group velocity; it depends equally on the imagi-
nary part of the pion self-energy.

In recent years a great deal of experimental effort has
been devoted to using relativistic heavy-ion collisions to
create highly excited nuclear matter. As pions are the
most copiously produced particles, there has been consid-
erable theoretical interest in relating pion multiplicity and
pion production cross sections to nuclear temperature and
the nuclear equation of state. Because the density of final
pion states for calculating the N~+N2 N]+N2+z
cross section in free space is proportional to 8(EJv,
+E~,—E/y, E~, —ro—) =B(k —k~)Idro /dk~I ', it has
been proposed' that, as a result of the interaction
[through the pion self-energy II(ro, k )] between the pion
and the medium, the pion group velocity in the medium
will be modified and the density of states available for
pion production will be changed by a factor '

F= (Idro~/dk~ln =p)/(Idio~/dk~lnwp) .

The presence of the in-medium pion group velocity
Idro/dk~I«p in Eq. (1) has its origin in the replacement of
the free-space pion energy in the above 6 function by the
in-medium pion energy that satisfies the dispersion rela-
tion m„=m +k +ReII. A calculation based on this
dispersion relation indicated that at high nuclear density
(p~ 3pp) the in-medium pion group-velocity equals zero
at k,/m, =1.5 leading to an infinite F. It was further
shown that one could expect a large enhancement of the
pion-to-nucleon production ratio in relativistic heavy-ion
collisions in which very high nuclear densities are creat-
ed. ' Such theoretical considerations have subsequently
been employed in several calculations aimed at using
dilepton production as a probe of pion dynamics in
heavy-ion collisions. Again, it was noted that produc-
tion cross sections were significantly enhanced in kinemat-
ical regions where the in-medium pion group velocity is
very small. In a more recent calculation, it has been
pointed out that Eq. (1) can lead to singularities that have
to be regulated with the use of the imaginary part of the
pion propagator. However, the theoretical aspect of Eq.
(1) has not been discussed. Furthermore, the effects of
the coupling between channels of diferent pion multiplici-
ties on pion propagation and the contribution to pion self-
energies from true pion absorption on two nucleons were
not considered.

In this paper, we present a formal analysis of the densi-
ty of states for pion production and of the reactive content
of pion self-energy, using the unitarity relation. Our main
purpose is to present a general formulation for the density

+ —A t(E) [—1m[V,~,(E)]]Q(E), (3)

where Gp+ = (E —Ho+is) '. f is the elastic-scattering
amplitude and X, = (4z m „,d) ' when the plane-wave
states are normalized according to (k'Ik& =b'(k' —k), with
m«d being the reduced mass of the nucleus-nucleus sys-
tem. Furthermore, V,~t is the optical potential, E is the
total energy of the interacting system, and 0 = Q,~t is the
wave operator. Taking the forward-scattering matrix ele-
ment of Eq. (3) and multiplying both sides by 4x/k, we
obtain the optical theorem with the first and second terms
giving rise, respectively, to the total elastic and reaction
cross sections. Equation (2) implies, therefore, that the
density of states for the elastic and inelastic processes are,
respectively, given by —Im(Gp+ )/x and —Im(V, ~, )/x.

Thus, the unitarity relation connects the discontinuity
(or the imaginary part) of an optical potential to cross
sections for inelastic processes. Because the pion self-
energy employed in nuclear physics is an eff'ective interac-
tion between the pion and the medium in the sense of a
pion optical potential, we can anticipate that the imagi-
nary part (or the reactive content) of the pion self-energy
will affect the density of states for pion production. In the
following, we will relate Im(V, &&) to the pion self-energy.

A well-known decomposition of the optical potential is

V,p (Ei) =PVP+PVQ(E —QHQ+ie) 'QVP, (4)

where P and Q are the projectors that select, respectively,
the elastic and inelastic channel spaces, and V is Hermi-
tian. However, in order to analyze in detail the pion pro-
duction, we will generalize Eq. (4) by making explicit
various inelastic channel subspaces. %'e first consider the
simpler case where only one pion is produced. Because
pion production proceeds primarily through the elementa-
ry NN NNx process, we divide the reaction space into

of states and the pion self-energy for multipion production
in heavy-ion collisions.

The unitarity relation that clearly separates the elastic
and inelastic contributions to the total cross section has
the form

T,I —T,I = —2irrT ib'(E Hp) Te~t

+ n'(E)(V.„Vt„—) n(E),
or, upon using T,I = —kf,i,

Im[feI(E)] =XfeI [ Im[Gp+(E)]]f~~
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FIG. 1. Schematic diagram for the model space. The dashed,
solid, and vertical lines denote, respectively, the pion, the. nu-
cleon (or hole), and the channel space. The oval represents the
self-energy insertion. The uncalled box represents the bare iso-
bar.

(c)

FIG. 2. Born-term insertion to pion propagator. Same cap-
tion as for Fig. 1, except that the box containing the dot repre-
sents the physical h, . Diagrams having the pion lines crossed are
not shown but are included in the calculations.

three subspaces: (a) the elastic channel space; (b) the
doorway-state channel containing one pion and two nu-
cleons in the continuum; and (c) the subspace containing
all the other states; i.e., states having more than two nu-
cleons in the continuum. For the sake of having a simple
notation, we will not write explicitly the nucleon-nucleon
interactions or nucleon self-energies. Upon introducing
the projectors P„PI„P, with P, +PI, +P, —= 1, we can
rewrite Eq. (4) as'

V, g(pE) =U„+U,b(E+ Kb —Ubb) 'U—b, ,

where E+ —=E+I',e and the interactions U are defined by

U;J =V~J+ V(, (E+ K, —V„) 'V,J
—(i,j =a,b), . (6)

with U;~. P;UP~, V~= P;VP~ , and K—;=P;K.P; being —the
kinetic energy in the space i.

We illustrate the different channel spaces in Fig. 1,
where the shaded oval represents the pion self-energy. In
this doorway model, the reaction proceeds through chan-
nel b, i.e., V„=O. This model should be a good descrip-
tion of heavy-ion collisions at energies above the pion pro-

duction threshold. Consequently, Eq. (6) leads to U„
=V„, U,b =V,b, and Ub, =Vb, . In Eq. (5), Ubb =Vbb
+ Vb, (E —Kb —V„) V,b. We further write Vbb
=—V~~ + Vpp, with V&& and V&p being, respectively, the
interactions between the pion and the nucleons having the
momenta p] and p2 in Fig. 1. The second term of Uyg rep-
resents, therefore, the interaction between the pion and
the rest of the nuclear system; this gives rise to the pion
self-energy.

The insertions into the pion line are shown in Fig. 2.
The particle-hole excitation diagram in the first row rep-
resents true pion absorption on one nucleon. The 6-hole
excitation diagram in the second row is related to quasi-
free nucleon knockout by the pion. Finally, the diagram
in the third row depicts the contribution to pion self-
energy from two-nucleon true pion absorption through the
formation of a physical 6, having the experimentally ob-
served mass and width. Upon introducing into Eq. (6) a
complete set of states yb+, which are the solutions of the
equation (E Kb —

Vbb )—Zb+ =0, we obtain

—]

Vopt(E) V + drtdPVab IZb, &&Zb,.l E '
Kb Vbb V—bc y Vcb IZb, p)(Zb, pl Vba .

aJ E+ —E, —V„
(7)

Here, tr and p denote discrete as well as continuous vari-
ables needed to specify the state Zb+. One can show that
the eff'ect of the interaction VI,I,

' is to dress the bare isobar
in Fig. 2 to generate the physical mass and width of the
isobar. Thus, we have the relations V,b!Zb+) =t,blurb& and
(Zb+

l Vb, =(pb l tbta, where p denotes a plane-wave state and
I

t the pion production operator involving the physical 5
isobar.

Without loss of generality, we will evaluate Eq. (7) us-
ing the nuclear-matter approximation. We can further
cast the effective one-body propagator in the relativistic
form. The forward-scattering matrix element of Eq. (7) is

(kl+ Vop Qlk) (kl+ V, +lk)+g dk+p&dp2dq&dq2b(k +p&+p2 qi q2)(klztt tbl(bb)

where H is the pion self-energy. Further,

&k- p~ p~. q~ q2IZb &&(bbltb. &lk&

8' —[m +k2+II(IV, k )]

W=E mc, (Vb'b ) —E&(p'i) ——Ejv(p—2)+hjv(q&)+h~(q2)=—IV' —E~(p~) —Ejv(p2),
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with (Vbb ) denoting the energy shift caused by the pion interaction with the nucleon of momentum p2, and E& and hjv
the nucleon and hole energies, respectively. We emphasize that the off-shell pion energy 8'is a variable depending on
many-body kinematics. Because V„ is real, the first term of Eq. (8) does not contribute to Im(Vopf). Consequently, the
density of states for pion production is given by the imaginary part of the second term in Eq. (8), namely

—Imrl(W, k.)/~——ImG =
2 9[IV' —k.' —m.' —Reri(W', k.) ] '+ [Imrl(W, k.) ] ' '

which only becomes

B[W' —m —k —Re(II)] =Bjg"—Ejv(pj) —Ejv(pz) —[rrr 2+k +Re(rl)] '~ ]/2IV
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FIG. 3. The —ImG„as a function of 8' and k, calculated
with p =3po and g'=0.4. Results obtained with the inclusion of
the contribution from two-nucleon pion absorption are given as
the solid and dash-dotted curves for 8'=5m and 7m, respec-
tively. Those without the inclusion of two-nucleon pion absorp-
tion are given as the dashed curve (W=Sm ) and the dotted
curve (&=7m ).
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in the limit that ImH 0, a limit that is necessary for ob-
taining Eq. (1) but does not exist in relativistic heavy-ion
collisions. In the limit of a very large imaginary part of
the self-energy, Eq. (9) decreases as (Im?I) '. The phys-
ical meaning of this result is clear: the greater the absorp-
tiveness of the medium, the less is the probability that the
pion can emerge from the collision region. If we do not
use the nuclear-matter approximation, the pion self-
energy will be nonlocal in pion momenta, in a way similar
to a nonlocal momentum-space pion optical potential.
One sees easily that this nonlocality will not change the
role of the Im(G ).

In Fig. 3, we show —Im(G ) at p =3po as a function of
k and the oA-shell pion energy 8'. Following Refs. 1 and
3, we incorporate the density dependence of the interac-
tions through the use of a density-dependent Fermi-gas
model. Clearly, studies of better models for density-
dependent interactions are called for. In evaluating the
II(W, k„), we have summed the series generated by the
Born diagrams in Fig. 2, using" f~jvtv = 1.009, f ~rv

a=2. 156, A ~~=A &~=1200 MeV/c, and g'=0.4. As
we can see, the results depend strongly on the off-shell
pion energy 8' which is a variable of integration in the
many-body problem. The fact that the curves are all very
different from what one would expect from a &function
dependence proposed in Ref. 1 confirms numerically that
Eq. (1) is not a good approximation to the exact result of
Eq. (9). We also note that the contribution to pion self-
energy by two-nucleon pion absorption is very important.
Hence, they must not be neglected in the calculations.

We now generalize the above analysis to include the

case in which the production of two pions becomes ener-
getically possible. Since the one-pion and two-pion chan-
nels can couple to each other through pion absorption and
creation processes, it is of interest to examine the eff'ects
of channel coupling on the production amplitude and on
the density of states for pion production. We divide,
therefore, the subspace b into two parts, one for the lm
doorway state (denoted bi) and the other for the doorway
state having two pions and either two or three nucleons in
the continuum (denoted b2). The V,„, then has the
decomposition

Vop&(E) = V«+ U,b~Gb~Ub, p+ W, b gb2Wb2p, (10)

where Gb, =(E+ Kb, —
Ub,

-b—
, )

' and gb, =(E+ Kb, —
—

Wb, b, ) '. Further, 8',b
= Uob, + U—,b, Gb, Ub, b,

Wb, b, = Ub, b, +—Ub, b, Gb, Ub, b, (We re. call that in the door-
way model U,b,

= V,b„etc.) The first and second terms of
W,b, are, respectively, the amplitudes for one-step 2' pro-
duction and two successive 1z productions. In 8'b,b„ the
first and second terms represent the contributions to pion
self-energy arising from simultaneous absorption of the
two pions and from two sequential one-pion absorptions.
This last term prevents us from approximating the propa-
gator in the 2z channel by a product of two single-pion
propagators. Had we started our analysis by simply as-
signing the subspace b in Eq. (5) to the 2ir channel and in-
cluding the lx channel in the subspace c, the above cou-
pling eA'ects would have been obscured. It is only in the
limit of weak coupling (i.e. , small Ub, b, and Ub, b„we have
W U and g G. Equation (10) indicates that the den-
sity of states for Iz production is —Im(Gb, )/rr and that
for 2z production is —Im(gb, )/rr This result . represents
an extension of Eq. (9) and can be readily generalized to
include higher pion multiplicities. This formal structure
of the density of states will also not be aN'ected by the in-
clusion of temperature dependence of the nuclear state in
the analysis.

In summary, the density of states for pion production in
an absorptive medium is given by —Im(G)/n, with G be-
ing the relevant many-body pion propagator. Hence, Eq.
(1) should not be used. Realistic evaluation of Im(G) re-
quires a detailed calculation of pion self-energy, this must
include the contributions from one of the most important
inelastic channels, the true pion absorption on two nu-
cleons.

This work was performed under the auspices of the
Division of Nuclear Physics, Office of High Energy and
Nuclear Physics, U.S. Department of Energy. W-H. M.
would like to thank the hospitality of Group T-2 at Los
Alamos National Laboratory.



R938 L e. uU ~NO ~EI-HSING MA

'Permanent address: Institute of High Energy Physics,
Academia Sinica, P.O. Box 918, Beijing, People s Republic of
China.

'G. E. Brown and V. Koch, in Proceedings of the Eighth High
Energy Heavy Ion Study, Berkeley, California, November,
1987 [Lawrence Berkeley. Laboratory Report No. LBL-
24580, 1987 (unpublished)].

Strictly speaking, the 8 function involving co gives more than
just the ~dc0 ldk

~

' because the momentum conservation
makes the momentum of one of the other nucleons depend
also on k, . This detail is, however, not essential to the discus-
sion.

3G. E. Brown and V. Koch, in Proceedings of the Texas A. and
M. Symposium on Hot Nuclei, College Station, Texas, De-
cember, 1987, edited by S. Shlomo, R. P. Schmitt, and J. B.
Natowitz (World Scientific, Singapore, 1988).

4C. Gale and J. Kapusta, Phys. Rev. C 35, 2107 (1987).
sL. H. Xia, C. M. Ko, L. Xiong, and J. Q. Wu, Nucl. Phys. A

485, 721 (1988).
C. M. Ko, L. H. Xia, and P. J. Siemens, Phys. Lett. B 231, 16

(1989).
7D. J. Ernst, C. M. Shaken, and R. M. Thaler, Phys. Rev. C 9,

1374 (1974).
sL. C. Liu and C. M. Shakin, Phys. Rev. C 20, 2339 (1979), and

the references contained therein.
9H. Feshbach, Ann. Phys. (N.Y.) 5, 357 (1958); ibid 19, 2. 87

(1962).
'oL. C. Liu, Phys. Rev. C 23, 814 (1981).
''B. K. Jain, J. T. Londergan, and G. E. %'alker, Phys. Rev. C

37, 1564 (1988). The model for the width of 5 is taken from
R. S. Bhalerao and L. C. Liu, Phys. Rev. Lett, 54, 865
(1985).


