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The enhancement of two-step processes is analyzed for cases where the intermediate states and

final states are inAuenced by a residual interaction which splits the intrinsic configurations without

changing total strength.

In nuclear and atomic collisions, a variety of two-step
processes are observed, which are enhanced relative to the
expectations of two independent sequential steps or are
underestimated by a "calibrated" second-order Born ap-
proximation. If the probability of a single step is P~, the
enhancement factor (EF) of the two-step process P2 can
be defined by the simple equation

P2 =EF(Pi)

Examples of such observations are the enhanced two-
nucleon transfer between nuclei' and the removal of two
electrons (double ionization) in ion-atom collisions. 3 4

Using the nomenclature of atomic physics (ion-atom
collisions) there are two distinct mechanisms of enhance-
ment, the static correlations leading to configuration mix-
ing and the dynamic correlations. The first is well known
in nuclear physics and virtually absent in atomic physics.
The second is a "newly discovered" field of research in
atomic physics; it is not completely unknown in nuclear
physics. Dynamically induced correlations are particular-
ly strong in the case of mixing of configurations of
different parity, known as hybridization. It leads to
enhancement because of strong distortions in the geome-
trical shapes of the configurations. The direct one-step
population of the final state, caused by a field which acts
on a collective ensemble of particles, will give an addition-
al contribution. It is an independent process which con-
tributes to the cross section and causes additional
enhancement. The origin of the enhancement, the in-
teraction which causes correlations among the particles
(or excitations), can be directly the interaction between
the constituents (short-range pairing interaction, Cou-
lomb interaction) or their participation in the formation
of a collective state.

The discussion of enhancement in the cases presented
here will be simplified by two assumptions: (i) the proba-
bilities for one step are ~ 0.1, in which case essentially
first-order approximations are used in each step; and (ii)
final states are populated only via unique amplitudes, i.e.,
without interference effects from different dynamical
routes which can be due to variations in dynamical coordi-
nates (impact parameter, etc.) and which can be well
treated in semiclassical models. ' We use the semiclassi-
cal approximations for scattering problems as they have
been used in Coulomb excitation and transfer reactions
using heavy ions. '

The various situations which will be discussed here are

further, we have for the probability to reach state 2

P2 lao21 =laos xai21'

and for lao~i=lai2l weobtain
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FIG. 1. Schematic illustrations of two-step transitions. Case
I: one intermediate state, one final state; Case II: N intermedi-
ate states, one final state; Case III: N intermediate states and M
final states.

illustrated in Fig. 1. Starting with state 0, the amplitude
to reach state 1 is defined by aol, the second step from
state 1 to state 2 is reached by amplitude a|2. The
differential cross sections are obtained from the product of
the scattering cross sections asc(8), and a probability
P, (e).

For case I illustrated in Fig. 1, we have only one state 1

and 2, the probability for the transition P~ is given by

laos I
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For case II illustrated in Fig. 1, the intermediate state 1

is split into N substates and the total transition probability
is kept unchanged by defining the probability for the sum
of the N final states

"li,"which implies one configuration, the final probability
summed over K and N is incoherent, and Eq. (3b) be-
comes

N

Z laoi I (3a)
(4a)

P~ is the same as in Eq. (la), if we assume that the split-
ting distributes the strength equally, Iapi, I

= (I/
~N) Iap~ I. The population of the final state 2 is obtained
by a coherent sunt where all N configurations responsible
for the splitting of state 1 are collected into one Jlnal state
2; we use the definition

aoli a li2 aoi2 (apl ') = (aoi(

With these definitions we have

N

P2 I Z (aoli + a li 2) I
=2 —

I ap~ I + intf. terms

(3b)

The interference term contains amplitudes like ap~ a& 2

&&ap~ja~j2,. the phases of these amplitudes will depend on
the mechanism of the splitting. Three extreme situations
can be identified: (i) Systematic splitting with a continu-
ous change of the phase, e.g. , from —8 to b; (ii) random
phases: In both cases we expect that the interference term
vanishes and P2'=(P~) =laoil, the result of case I is
recovered if the total transition strength stays normalized.
(iii) Maximum coherence: All phases are the same and
will give the maximum possible cross section.

P2' =2 —
I aoil +

N I aoi I ". (3c)

and we have an enhancement factor EF given by the num-
ber of intermediate states,

P2' =N(P~), EF =N; for case II. (3d)

pl j2 Zla Ij 2K I

= laosj I
'

K

If the final states "2EC' are reached only by one route

The phases may also induce a destructive eff'ect of the
interference terms, a cross section which is 1/N of the one
in case I may be obtained. Further, we may mention that
the splitting of the intermediate states can be possible in
more than one dimension giving rise to a very large num-
ber of states N. Mechanisms to ensure a constructive be-
havior of all phases are not very common, but will be gen-
erally connected to a phase transition.

For completeness we discuss case III (Fig. 1). Here the
second step may populate M final states, which collect the
total strength in states with diff'erent quantum numbers
spanning the whole space of the variables characterizing
the intermediate states (e.g. , spins from the coupling of
the quantum numbers of the intermediate steps). We
define (total strength kept unchanged) for a transition
from intermediate state j, going to M "substates" of chan-
nel 2, an incoherent sum of states 2:

and we recover the result of case I because the coherence
effect discussed for case II was not included.

Piti (P ) EF—:1; for case III.
The reality may often be represented by a case inter-

mediate between cases II and III; some states of class 2,
with index K may collect amplitudes via states of class 1

as in case II. This is indicated in Fig. 1 by the additional
double lines, some states (e.g. , the low lying 0+,2+ states)
may thus collect several coherent contributions. In this
case parts of the summation with index i in Eq. (4a) will
be under the vertical bar. An enhancement larger than 1

is expected in this case, however, smaller than N.
Before discussing two examples, other possibilities for

enhancement have to be mentioned, which will originate
from the properties of a one-step amplitude a02. In the
case of two-particle transfer, the pairing field acting on
the center of inass of a correlated pair gives an additional
one-step amplitude; this amplitude will depend on the
geometry of the two-particle wave function which can be
strongly infiuenced by configuration mixing. Mixing of
configurations with different parity may induce, in addi-
tion, an extreme localization (hybridization) in config-
uration space and strongly enhance the one-step ampli-
tude due to geometric effects. Further, coupling of two
multipolarities (e.g. , in collective two-step excitation) al-
lows the total multipolarity of the ap2 amplitude to be
lower and give dynamically favored conditions for the
latter. Finally, the enhancement may in some cases be at-
tributed to a collective state of the total system, which will
be enhanced at a particular relative velocity, for example,
in the formation of a resonance.

The total enhancement according to Eq. (1) can be re-
lated to the strength of a single-particle state in cases
where single steps can be measured and defined. Thus an
enhancement in single-particle units can be defined.

We come back to the previous discussion and look at
two examples. The first is for nuclear collisions, the one-
and two-neutron transfer between tin isotopes, " Sn
+ ' Sn, below the Coulomb barrier. ' The relevant reac-
tion routes for one of the nuclei (target "2Sn) is shown in
Fig. 2; these routes (amplitudes) have to be multiplied
with the corresponding scheme of states for the projectile,

Sn, which encounters almost the same intermediate
states. The first step (one neutron transfer on the 0+ tar-
get) populates single-particle states which are split by the
diA'erent shell-model quantum numbers and the strength
in population is smeared out by the pairing interaction
(the sum over all these states was measured in the experi-
ment as P ~ ). The second step representing P2 shows dom-
inantly three states (0+,2+, 3 ) among these, the 0+ can
collect all configurations (lj), the 2+ state 70%, and the
3 is —15%. The measured ratio, P2/(Pi) = 3 =EF,
shows a value intermediate between cases II and III. This
value of the enhancement can be attributed to the
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FIG. 3. Scheme of states contributing to the double ioniza-
tion of ' Ni in a collision with 2osPb at 1.5 MeV/nucleon.
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FIG. 2. States contributing as intermediate amplitudes in the
two-neutron transfer in the reaction "2Sn("OSn, '"Sn) "4Sn at
an energy below the Coulomb barrier.

coherent phases introduced by the pairing interaction in
the sequential two-step amplitudes. Larger values for EF
are found for proton-pair transfer, which can be attribut-
ed to a one-step contribution due to a true pair-transfer
situation.

The second case concerns double ionization in atomic
collisions. The particular case considered is shown in Fig.
3 and discussed in Ref. 4(a); it is Ni+ Pb at 1.5
MeV/nucleon. From the figure we can see that a con-
structive interference in the second final level (EC

L3 '), which can be populated by two different routes,
should produce an enhancement. In the spirit of the dis-
cussion given above we compare the total strength in the
first step [denoted by Q(1) in Ref. 4(a)] and the second
step [denoted by P(2)]. The result of the experiment
given in Fig. 3 of Ref. 4(a) for an impact parameter
range of 300-400 fm is Q(1) =P~ =2.5X10 ' and
P(2) =P2=3.0X10 . The result would give EF=0.48

instead of unity (expected possibly here). This is due to
the treatment in first order which is not applicable for
large probabilities (larger than 0.1). We proceed as in
Ref. 4(a) and define P&+2Pz=Q(l) by adding back the
fiux which has been removed from P~ due to the two
second steps leading to double ionization. Now the result
is P~ =1.9X10 ' and P~ is 3.6&&10, and the net result
is now EF=1. This means no enhancement is observed in
this case. The more elaborate discussion in Ref. 4(a) pro-
duces an enhancement of factor 3.2 by comparing the
summed probability of all three final states with the prob-
ability of a single step which must be three, as can be de-
duced from the discussion given above. This result, how-

ever, is not an enhancement.
To summarize, the enhancement in two-step processes

can suitably be defined for conditions where the total
strength in a multiparticle aggregate for a single step can
be well determined. The splitting into intermediate states,
if causing specific phase relations, can be seen as the ori-
gin of enhancement. In the particular case where phase
transitions occur (superfluid phase, deformed phase in nu-
clei) a definition of enhancement in appropriate single-
particle units' can be made and will be in these cases a
quantitative measure of the collectivity of the total transi-
tion probability, which often will contain an additional
one-step contribution.
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