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The dynamical treatment of the nonrelativistic three-body problem with Coulomb and short-
I aIlgc lntcl actiolls Is rcexalllincd. Thc scrccl1111g techlllquc 1s abandoned i11 favol of thc gcncI al

two-potential formalisln and a set of well-behaved three-body equations is derived. An approx-
imate Alt-Grassberger-Saudhas-type form of the new equations is also proposed that treats the
long-range polarizability forces to erst. order and preserves post-prior symmetry.

I. INTRODUCTION

Due to the increasing amount of information on both
bound and scattering states of the p-d system, lately
there has been an increased interest in the nuclear three-
body Coulomb problen1. In the present work we re-
examine the dynamical treatment of the three-body prob-
lem with charged particles and propose a new approxi-
1Tlate forn1 of thl ee-body equations with ccl'tain advan-
tageous properties that may make their numerical appli-
cations practical.

There exists extensive literature on the subject of
Coulomb scattering so we restrict ourselves only to a brief
summary of the most important developments.

In developing a consistent scat tering theory for a
nonrelativistic quantum system characterized by a self-
adj oint Hamiltonian, one riorn1ally starts with t, he time-
depcndent approach and establishes the existence of' ~vave

operators as well as the 3 matrix for the systen1. While
these and other properties, such as asymptotic complete-
riess, are of basic in1portance for a physically satisfactory
theory, for the application to real processes one has to
construct either the scattering operator of the system or
equivalently the resolvent of the total Hamiltonian. Thus
a transition to the stationary approach has to be made
and proper dynamical equations have to be derived which
yield the required quantities in a unique way.

For short-range interactions the stationary approach
has been widely used for various applications. However,
a full dynamical treatment of a scattering problem is by
no means trivial especially if the system has a multi-

channel structure. The rigorous mathematical theory of
the nonrelativistic three-body problem with short-range
interactions was developed by Faddeev in terms of ex-

act integral equations. The three-body integral equa-
tions were later reformulated by Alt, Grassberger, and
Sandhas" (AGS) so that, they yield immediately the phys-

ically relevant transition operators. If the short-range in-

teractions are represented by nonlocal separable expan-
sloBs, thc dimension of thc thlcc-body AGS equatlolls ls

reduced, and a set of multichannel Lippn1ann-Schwinger-

type equations is obtained whose numerical solution is

feasible for both bound and scattering states of the sys-
t CITl.

The situation is greatly con1plicated, however, when

two or more of the particles are charged. In the presence
of long-range Coulomb interactions the usual scattering
boundary conditions do not hold so that conventional
scattering theory for short-range interactions has to be
modified. T}iis is reflected iri the Faddeev formalism in

that the kernel of the Faddeev or ACS equations becomes
noncon1pact if Coulomb interactions are present.

The development of a time-dependent scattering the-
ory for systems with Coulomb interactions has been
pioneered by Bollard, who introduced an asymptotic
boundary condition in which the free motion of the par-
t, icles is modified to more closely approximate the hy-

perbolic orbits of' the classical trajectories. With this
net asyn1ptotic boundary condition Bollard could de-

velop a physically and matheniatically consistent time-
dependent scattering theory for charged-particle scatter-
ing. Another interesting, but equivalent, formulation was
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derived for two particles by Mulherin and Zinnes and
extended to X particles by Chandler and Gibson. ' Yet
another approach in terms of asymptotic observables was
developed by Amrein, Martin, and IVIisra.

The stationary approach to Coulomb scat tering
has been investigated by Chandler and Gibson, by
Zorbas, " and more recently by Merkuriev, Enns,
and Sasakawa and Sawada. However, even though some
important steps have been taken in the direction of solv-

ing the pure Coulomb problem, at the moment there is

no direct practical stationary approach to the few-body
Coulomb problem.

Another way of attacking the Coulomb problem is
to screen the Coulomb interaction so that the normal
short, -range theory can be applied and then to seek a
limiting procedure which leads to physically meaning-
ful quantities in the zero screening limit. The renor-
malization technique developed by Gorshkov works in
the two-body problem and can also be used to show
that general two-cluster to two-cluster transition oper-
ators can be defined this way. The screening technique
was used by Prugovecki and Zorbas to derive modi-
fied Lippmann-Schwinger equations for Coulomb-like po-
tentials. The three-body problem has been studied by
Veselova who investigated the Faddeev equations with
screened Coulomb interact, ions. After isolating the two-

body terms which generate the well-knowri Coulomb sin-
gularities in the zero screening limit, the corresponding
part of the Faddeev kernel can be explicitly inverted.
This method results in a set of three-body equations
whose kernel is well behaved, at least below the breakup
threshold.

The first formally exact approach to the nuclear three-
body problem with Coulomb interactions was proposed
by Noble. He included the Coulomb interactions in the
"free" Green's function and derived integral equations
for modified three-body operators from which the pure
Coulomb scat, tering has been removed. These integral
equations are mathemat, ically well behaved and in the
absence of Coulomb interactions reduce to the st, andard
t, hree-body equations. Noble's method is, in fact, a two-
potential formalism and for the complete solution it re-
quires the knowledge of the solution to the pure Coulomb
problem. If only two of the particles are charged, this so-
lution is known explicitly so that Noble s method yields
the exact solution.

For the general case of three charged particles No-
ble's equations contain unpleasant three-body op era-
tors which arise from the solution of the pure Coulomb
problem. However, as was shown by Bencze, if one
profits from the experience gained in distorted-wave-
Born-approximation (DWBA) nuclear reaction calcula-
tions and introduces the channel-distortion approxima-
tion (CDA), a manageable set of AGS-type equations can
be derived for the "distorted-wave" transition operators.
It turns out that the CDA is in fact equivalent to neglect-
ing the long-range electric polarization forces, which in
various transfer reactions play only a minor role.

So far the most successful practical integral equation
approach based on the use of the screening technique
has been developed by Alt, Sandhas, and Ziegelmann
(ASZ) and further generalized by Alt and Sandhas. "' It
relies heavily on the widely used quasiparticle approach,
sa that the three-body equations are transformed into a
set of multichannel two-body equations for finite values of
the screening radius. The zero screening limit is obtained
by the renormalization procedure.

It is important to emphasize that in practical ap-
plications all the approaches to the nuclear three-body
Coulomb problem discussed above, with the exception
of the case of only two charged particles, are essentially
of approximate nature. Even if formally exact integral
equations are obtained in a inathematically sound way,
the kernel and driving terms can be constructed only if
the solution to t,he pure Coulomb problem is known.

The present study has been initiated by some nagging
theoretical questions connected with the screening tech-
nique. Also, in the practical applications of the ASZ
method the limit of zero screening is taken numerically,
thus raising the question of whether the observed conver-
gence is a real one. Moreover, the numerical calculations
for the proton-deuteron scattering have (so far) always
involved the quasi-Born approximation of the Coulomb
t matrix, which has been a source of uneasiness among
practitioners.

In the present work we propose an approach for sys-
tems with repulsive Coulomb interactions, which avoids
the use of screening and thus involves no numerical zero
screening limits. By making use of the most general form
of two-potential formalism, a set of three-body integral
equations is derived, which reduce to the AGS form in
the absence of Coulomb interactions. In addition, an
approximation scheme is proposed that treats the long-
range palarization forces to first order in a consistent
way. As a result, the unpleasant post-prior asymmetry
inherent in the channel distortion approximation (CDA)
is 1ellloved.

The organization of the paper is as follows. In Sec. II,
for the sake of comparison, t, he screening technique is
briefly described. The general two-potential formalism
and the derivation of a new set of modified three-body
integral equations is found in Sec. III. In Sec. IV an ap-
proximation is proposed for the effective interactions ap-
pearing in the three-body equations. Finally, the conclu-
sions are summarized in Sec. V.

II. THE SCREENING APPROACH

In order to facilitate the comparison of our approach
with that based on the use of screening, we present here
a brief summary of the most important steps involved
in the screening technique, following closely the treat-
ment of Alt and Sandhas. -" In the present section it will
be assumed that the Caulamb int, eractions are screened
and that the normal Faddeev or AGS pracedures can be
used.
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Let us consider a three-body system with short-range
nuclear and screened Coulomb interactions. The Hamil-
tonian can be written as

H = IIp+ V+V (2 1)

where Hp denotes the kinetic-energy operator, R the
screening radius, and V and U the sums of short-range
and screened Coulomb interactions, respectively. Thus,

It is clear that the difIIculties are buried in the pure
Coulomb quantities Up' which normally diverge in thepv
zero screening limit. However, by means of the renormal-
ization technique the divergent phases can be removed
and a physically meaningful limit can be shown to exist.
All the other operators appearing in Eq. (2.13) have well-

defined values in the zero screening limit.
Equation (2.13) can be conveniently rewritten in a ma-

trix Lippmann-Schwinger form,

v=) v. ,
UR ) UR (2.2) TR»R + ) I .R tsc. ,RTR

Y

(2.15)

where the subscript n refers to the particle that is not in-
volved in the (pair) interaction. In addition, the following
assortment of resolvent operators can be introduced:

where

R R R R
Tp ——Gp, Up G „ (2.16)

G"(.) = (.—H")-',

Gp(z) = (z —Hp)

G, (z) =(z —H —U )

(2.3)

(2.4)

(2.5)

»R GR U&, &GR (2.17)

Let us now assume that the short-range interactions
can be represented by a separable nonlocal expansion. If
for the sake of simplicity only one term is taken in each
channel, one can write

G (z) = (z —Hp —V —U ) (2.6)
v~ = lx~) ~~(x~l (2.18)

GR ( ) ( H UR) —t (2 7)

UR GR —l(GR P GR)GR —1 (2 8)

The transition operators Up are defined in the usual

way,

and, as a consequence of Eq. (2.12), also

~;""= I») ~,"(z)(x.l

~, (z)—:V
' —&x~lG,.(z)l»)I '

(2.19)

(2.20)

UR P G—1+) P ERG UR (2 9)

and the AGS equations that determine them are the
usual ones,

By substituting Eq. (2.19) into Eq. (2.15), the matrix
equations for the transition operators are transformed
into a set of multichannel effective two-body equations
of Lippmann-Schwinger form

with bp = 1 —bp
The two-body transition operators t are split up into

the sum of the pure Coulomb t operator t"R and the
Coulomb-modified short-range part t~"

2".= V".+) V", ,"( )T...

where

&p" =—(xplTp" Ix ), &p = (xpl»p Ix ).

(2.21)

(2.22)

tR tc,R + (1 + URGR )tee, R(1 + GR UR) (2.10)

Here t'R and t"R satisfy the following Lippmann-
Schwinger equations:

tc, R UR + URG tc,R
Y

—
-y -Y 0 (2.11)

tsc, R y + y gR tsc, R
Y fc (2.12)

UR p.c,& + g Uc, R~R tsc,RgR UR
per p~ / p~ pc p pc pa~ (2.13)

where

After substituting Eq. (2.10) into Eq. (2.9), the part
of the kernel that contains the pure Coulomb t operator
can be explicitly inverted, yielding the following set of
equations:

It can be shown that the physical amplitude of a rear-
rangement process is given by the on-shell value of the
matrix element of the corresponding transition operator,

&p".(qp, q-) = (qpl&p". (E+ +)lq ) (2.23)

The derivation of Eq. (2.21) can be summarized as fol-
lows. Due to the screening of the Coulomb interactions
the I"addeev-AGS formalism can be used without any
modification. The partial inversion technique makes it
possible to separate the pure Coulomb interactions so
that the di%cult Coulomb operators appear as "efFective
interactions'" in the set of equations for the Coulomb-
modified transition operators. The nonlocal separable
representation of the short-range interactions in addition
reduces the dimension of the equations so that a set of
efFective two-body equations results,

Uc, R GR —l(GR P GR )GR —1 (2.14) 7-R yR + ppR~R (2.24)
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where ~o is the matrix of operators defined by

5p)n = 4 ~."(z) (2.25)

Vc'R = ~ ~n, R
Pcr — P A' ) (2.26)

in which the spectator particle of the channel interacts
with the charge of the other particles as if it was all lo-
cated at their center of mass. Associated with the matrix
V'R is a (diagonal) matrix t operator which is defined as
the solution to the Lippmann-Schwinger equation

Tc&RVciR+Vc)RRsT'C)R
~o ) (2.27)

where g& is the multichannel two-body propagator with
matrix elements defined by

(go")p (z) -=~n gp. (z) (2.28)

(plgp. (z) lq) =—&(r —q)(z —&."—Iql'/2M ) '.
(2.29)

Here E is the bound-state energy of the bound pair in
channel a, p is the relative momentum of the free particle
relative to the bound pair, and M~ is the appropriate
reduced mass. Next we subtract the eKects of V' andT", introducing the matrix operators

psc, R pRgR R —1 pc, R
o ~p (2.30)

and T and V are the matrices with elements defined in
Eqs. (2.22).

Let us now turn oK the screening. In the zero screening
limit the diagonal terms V in the effective interaction
have a characteristic Coulomb tail, so that, in the rnornen-
t,um representation the well-known Coulomb singularity
appears. The obvious way to circumvent this diFiculty
is to employ the subtraction technique, which is closely
related to but not exactly the same as the two-potential
formalism. Following a long-established precedent, which
is reviewed in Ref. 5, we introduce the (screened) channel
Coulomb interaction, III. THE TWO-POTENTIAI APPROACH

In the previous section the application of the screen-
ing technique made it possible for one to start with the
Faddeev-AGS stationary formalism. The resulting three-
body equations then had to be shown to yield amplitudes
that possess a physically meaningful limit as the screen-
ing radius tends to infinity.

In the present section, in order to develop a physically
and mathematically more transparent theory, we avoid
the use of screening. Instead, we invoke the very power-
ful two-potential formalism, which makes it possible
to define transition operators which can immediately be
seen to possess well-behaved stationary representations.
Once the stationary form of the modified transition op-
erators is introduced, the three-body equations can be
derived by purely algebraic manipulations.

Let us then start with the Hamiltonian

H = Hp+ V+ U, (3.1)

v=) v. , U = ) U. , (3.2)

where the notation is the same as in Sec. II with the im-
portant diA'erence that the Coulomb interactions are not
screened. We also introduce various resolvent operators,
which involve only unscreened quantities:

representation, (q& l7&" lq
+ ), where lq&+l) de-

notes the Coulomb wave function with the appropriate
boundary condition and the corresponding momentum
q.

It should be emphasized that the construction of the
effective interactions defined by Eq. (2.30) is by no means
trivial, since it involves the solution of the pure Coulomb
three-body problem. If there are only two charged parti-
cles in the system, the Coulomb transition operators can
be analytically constructed. ~ However, even in this case
the numerical evaluation of the corresponding matrix el-
ements is extremely diFicult so that one has to resort to
various simplifying approximations.

Tsc,R Vsc, R ~ Vsc, R c,R~sc, R
)

where g' is the (diagonal) matrix operator

(2.32)

Z-sc, R (1 + ~c,R R) —1(7RpR R —1 ~-c,R)

x(1+ gpRT' ")-' (2.31)

The Coulomb-modified transition operator T"R then
satisfies the following Lippmann-Schwinger equation:

G(z) = (z —H)

Gp(z) = (z —Hp)

G, (z) = (z —Hp —U)

G (z) =(z —Hp —V —U )

(3 3)

(3.4)

(3.5)

(3.6)

c R R+ R~cR R (2.33) G, (z) = (z —Hp —U ) (3.7)

Alt and Sandhas have shown2 that the zero screen-
ing limit R ~ oo can now be performed by means
of the renormalization technique and Eq. (2.32) has a
well-defined limit. The physical reaction amplitudes
will then be determined by the on-shell matrix ele-
ments of the transition operators in the Coulomb wave

G (z) = (z —Hp —V —U —l4' (3.8)

G, (z) = (z —Hp —U —W ) (3.9)

Here, in parallel with Eq. (2.26), the channel Coulomb



996 BENCZE, DOLESCHALL, CHANDLER, GIBSON, AND WALLISER 43

interaction W represents the (unscreened) interaction
of the spectator particle n of the channel with the charge
of the other two particles as if it was all concentrated at
their center of mass.

In the spirit of the two-potential formalism we intro-
duce the (two-body) channel Coulomb wave operator,

i{0~+Tv )t U ( ]) -jH t
CY t~+oo (3.10)

where H = Ho + V + U is the channel Hamiltonian
and UD (—t) denotes the Dollard operator for Coulomb
scat tering. The two-potential formalism then yields

Sp = bp~(u+*~ —2~i b(Eg —E;)Tp (3.11)

Here, Sp is the scattering operator, the asterisk denotes
adjoint, Ef and E; are the final and initial energies, and

Tp is the on-shell matrix element of a transition operator
Up defined by

third term on the right-hand side of the equation is pro-
portional to the long-range potential Up, rather than to
a short-range potential. This leads us to substitute the
resolvent relation

(3»)

into Eq. (3.17) and perform some simple algebraic ma-
n. ipulations, obtaining

[1 —(U~ —W~) Gp, ]Up

= [bp G,'+ bp (U~ —W~)]

+) [a&,G;,'+ a„(U~ —W')]G„V,G, U,.
(3.19)

+~
Up

——~p Up ~

Up = Gp'(G —bii G )G

(3.12)

(3.13)

Because

1 —(U~ —W~)Gp, = G, 'Gp„ (3.20)

1
Up

——bp G + Vp~+ ) Vp~G~U~
Y

and make a particular choice of Vp~,

Vp =bp V +bp U (3.15)

U~'=—U —U. —W .

Substitution of Eq. (3.15) into Eq. (3.14) yields

(3.16)

Up
——bp G„, + bp U$ + Up~ GpUp

+) (3.17)

AVhen Eq. (3.17) is considered as a set of coupled equa-
tions for the Up, it is troublesome that the kernel of the

Equation (3.13) is the symmetric form of the transi-
tion operator introduced in this context by Alt and
Sandhas; the post form was used by Bencze and
Zankel 3 and the prior form by Chandler and Gibson. ~

The essence of the two-potential formalism is that the
asymptotic states are redefined and no longer correspond
to freely moving clusters. Since this can be done in vari-
ous ways, the formalism is very ffexible. If, for example,
one replaces in Eq. (3.10) the channel Coulomb inter-
action 6"~ by U —U~, the w+ are in fact t, hree-body
Coulomb wave operators and Noble's formalism " is re-
covered. One could also imagine replacing W by a fold-
ing potential created from U —U . Our considerations in
this paper would apply equally well to this latter replace-
ment, though not to the former (because of the three-
body nature of the Coulomb wave operators in Noble's
formalism).

We now proceed to derive dynamical equations for
the "distorted" transition operator Up~. We begin with
Eq. (5.39) of Ref. 5,

where

I'~ (~) = G (~) —~~ G- (&) (3.22)

Finally, since V~G&
—t~ G~„with

= V~ ~ U~G~V~,

Eq. (3.21) can be rewritten in the form

(3.23)

Upc„= Gp,'Iip~G, + ) Gp,'I~p~ G, Gpc&"Gpc Up~.

(3.24)

Unlilce Eq. (3.17), the kernels of Eq. (3.24) are all pro-
portional to some short-range quantity (viz. , t").

The set of equations Eq. (3.24) determines the "dis-

torted" transition operators Up, whose matrix ele-
ments must be taken between the "distorted" asymptotic
states. In the case of separable short-range interactions
Eq. (3.24) can be transformed into a set of effective two-

body equations in the standard way. If the polariza-
tion forces are neglected, Eq. (3.24) is finally reduced to
the channel distortion approximation forni of' Bencze. "'

It also should be noted that in obtaining Eq. (3.24) no

restricting conditions on the Coulomb interactions have
been imposed, so that they are valid even if the Coulomb
interactions are attractive.

In order to derive equations for the operators Up
however, one needs to insert into Eq. (3.24) the identity

multiplying Eq. (3.19) by G&, G, yields

U,. = G;,'I', G„-,'+) G;,'I'.„G;,'G„V,G, U...
y

(3.21)
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just, to the left of U& . I"or this identity to be true there
must exist no Coulomb bound states between the parti-
cle p and the pair (n, P), considered as a single particle.
Therefore, from this point on, our treatment is restricted
to systems with only repulsive Coulomb interactions.

We sandwich Eq. (3.24) between the appropriate wave

operators as indicated in Eq. (3.12) and insert u+cu+*
y y

between G~, and U~ . The result is a set of equations
for Up

G. (&-,)Ig-, (&-.)) = I~-.) (3.35)

We can now rewrite Eq. (3.30) in an effective two-

particle form,

I
)AQ 7A

Here E„, is the bound-state energy and n~ denotes the
set of quantum numbers needed to uniquely specify the
bound state. Equation (3.34) implies that

Up = ~p+*(Gp,'I~p G,')cu

+ ) ~p+'Gp, I~p~t" G~,~+U~
'y

(3.26)
Here,

(3.36)

Because V& and ~+ act on diferent coordina. tes, they
commute:

T":" ( ) = (g, ( )IGp. ( )U ( )G ( )lg .( ))

(3.37)

V~~ = ~ V~. (3.27) and

In addition, the following intertwining relations are well

known:

Zp'."" (z)—:(g„,(z) IZp. (z) lg„(z))

where

(3.38)

Mp Gp: Gp 4)p ) (3.28)

clap Gp = Gp leap
. (3.29)

Combining Eqs. (3.26)—(3.29) yields

Up
——(Gp,'oJp+'l&p cu Gp,')

+ ) (Gp,'~p+'I~p~ ~+G,')G~, t"G~, U~

(3.30)

where

Zp (z) —= u)p+'I~p (z) ~+. (3.39)

(3.40)

The unitary two-body pure Coulomb scattering oper-

ator u+'u is present in Eq. (3.36) because of the way

Zp is defined. It can be removed and Eq. (3.36) imme-

diately recast in a Lippmann-Schwinger form,

Xp'" (z) = Zp
"

(z)
I) Zp'"'(z)7-„,„(z)X~' (z),

A y ) A

t,"—= V, + V, G, V, . (3.31)
by introducing the amplitudes

I'~ = ) . & .-.Ig .(z))(g",(z) I

) A I

(3.32)

As a consequence the transit, ion operators t" are also
separable and have the form

It is important to note that in Eq. (3.31) the only
Coulomb interaction included is internal to the pair (n, P)
and, hence, that the operator t" treats the particle p as
a spectator and is short range in the relative coordinates
of the pair (n, P).

Let us assume now that the short-range interactions
can be adequately represented by a nonlocal separable
form

Xp~" (z)—:Tp~" (z) ~ '~+. (3.41)

Note that if the Coulomb interactions are set equal to
zero in Eq. (3.40), the AGS quasiparticle equations are
immediately recovered.

The transition operator f'or the breakup process is

Uon = Go ~o+*G~ G (3.42)

where the wave operator ~0+ is the "free" three-particle
Coulomb wave operator rcf. , Eq. (3.10)]. The usual
manipulationss lead from Eq. (3.42) to

Uo —~~+'cu G '+~o+*~ V +) ~o'~~t~G~, U~

y

t ( ) = ) lg-, ( )) -,-;( )(g-;( )I
IA Q )A

(3.33) (3.43)

(z„,)) = v, lv„, ) (3.34)

While the form factor ~g„(z)) may have a rather general
energy dependence, we do assume that they have been
chosen so that every bound st, ate ~&p„„) is related to one
of the form factors through the equation~"

The breakup matrix element

T.".(z) = (pqlUo-(z)G-(z) lg-. (z)) (3.44)

where (pq~ denotes a free breakup state with Jacobi mo-

menta p and q, is then obtained from Eq. (3.43) in a
straightforward way:
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I

+0" (~) = 4'&l~o '~
Ig (~)) + ) (&q14'o '~+lg, (~))~ ', (~)+v ' (~).

P Ap)A C

(3.45)

Note that the driving term in Eq. (3.45) corresponds to
a pure Coulomb breakup process caused by the polar-
ization forces, arising from the potential Ui' ', that are
included in the breakup channel wave operator ~0+.

Merkuriev has pointed out that the kernel of
Eq. (3.40) is compact below but not above the breakup
threshold. Our preliminary analysis of the kernels Z&

"
leads us to believe that this lack of compactness manifests
itself in the appearance of integrable singularities. Should
this belief be sustained by more complete analysis, care-
ful use of singularity subtraction techniques35 should be
adequate for the numerical solution of the equations.

IV. A PPROXIMATION QF THE EFFECTIVE
INTERACTION

pol polG, = Gp. + Gp, Upp G, = G, + G, VP G „ (4.1)

and combine them to obtain the following two equivalent
expressions:

G, =G, +Gp, Ug 'G .+Gp, Up G.Ug G,
= Gpc+ GpcUp G~c+ GpcUp GeU~~ Gee

(4.2)

(4 3)

Since the polarization potentials are generally weak and
only their interference with other forces may be impor-

The matrix elements of the eA'ective interactions Zp
are in general very complicated. While it is possible
that they might be calculable for special cases by tak-
ing advantage of closed forms that have already been
obtained, in most practical applications approxima-
tions have to be invoked.

The most obvious simplification is the t,otal neglect of
polarization forces, i.e. , only the channel Coulomb distor-
tloll ls fakell into accollllf, (CDA). Tllls approxllTlatlon
is generally accepted in nuclear reaction theory, In fact,
DWBA calculations for cluster transfer reactions at en-
ergies near and above the Coulomb barrier indicate that
the role of long-range interactions in both the distortion
of the relative motion of the fragments and the coupling
between the channels with difI'erent fragmentation is neg-
ligible. The situation might be different, however, in
inelastic-scattering processes, where Coulomb excitation
as well as excitation by nuclear forces may interfere.
In breakup processes, due to the interplay of short-range
and long-range forces, there might be more pronounced
efI'ects, so that electric polarization forces may have to
be fully included. Finally, at very low energies the inter-
play of Coulomb and other long-range electric polariza-
tion forces is known to produce singular behavior.

It is therefore desirable that the approximation of
t, he eA'ective interaction is carried beyond the channel
Coulomb distortion approximation. We start with the
resolvent relations

tant, one may neglect the last terms in Eqs. (4.2) and
(4.3):

G, = G, + Gp, Ug G, = Gp, + Gp. Up~ G, . (4 4)

Now if Eqs. (3.22), (3.39), and (4.4) are combined, the
following approximate form for the eA'ective interactions
emerges:

&p = &p ~p+'(G, + Gp, Ug" G, )~+

+&p ~p+'Gp, Up 'G, ~+. (4 5)

Finally, if the int, ertwining property in Eq. (3.29) is em-

ployed, one a,rrives at the form

Zp = bp (~p+'~+ + Gp, ~p+" U)' 'sr+)G,

+bp G, ~+*UP'~+G, . (4.6)

V. CONCLUSIONS

The present work has been devoted to the study of the
three-body problem with charged particles. Since the
Hamiltonian of the system is assumed to include short-
range two-body interactions as well, it may be more con-
veniently referred to as the nuclear three-body problem.
In nuclear physics applications the short-range nuclear

The approximate forms in Eqs. (4.5) and (4.6) preserve
the post-prior symmetry of the efI'ective interaction, a
property not present in the channel-distortion approxi-
mation. The CDA form of the effective interaction can
be immediately recovered if one sets Ui' ' to zero in both
Eqs. (4.5) and (4.6).

We now turn in more detail to the question of how
justified is the approximation of Eq. (4.6). For ener-
gies below the breakup threshold, the operators G, are
bounded and G~, tg„) behaves like a state in which par-
ticle a is free and the other particles are bound. For such
energies, in the context of the matrix element Z& ",the
polarization potential U~ ' eAectively behaves, as one
would expect, as a function of the relative coordinate
between the free particle and the center of mass of the
"bound" pair. Hence, one can argue that the approxi-
mation is reasonable since the polarization potential is
relatively weak. Above t, he breakup threshold G, is no
longer bounded (for real energies), and G,~g„„) behaves
as a scattering state in all variables. For these energies
the polarization potential Ui' ', even in the context of
the matrix elements Z&~", cannot be expected to fall
oA' for large interparticle distances. For these energies,
therefore, the accuracy of our approximation remains to
be established, much as does the quasi-Born approxi-
mation of the Coulomb 2 matrix in screened Coulomb
calculations. ~s
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interactions are expected to play a dominant role. How-
ever, the Coulomb interactions are by no means negligi-
ble and their presence gives rise to serious mathematical
difh�culties.

We have developed, in Sec. III, an approach to this
problem based on a generalized two-potential formalism.
Careful consideration of the asymptotic conditions ap-
propriate to a scattering theory with charged particles
led us, in a physically and mathematically clean way, to
a set of dynamical equations for the stationary Coulomb
modified transition operators. These equations are di-
vergence free and involve no screening, and hence also no
limit process to remove the screening. The treatment in
Sec. III was restricted to repulsive Coulomb interactions.

If the short-range interactions are represented by a
nonlocal separable expansion, the three-body equations
can be reduced in a well-known way to a set of effective
two-particle equations. However, our approach leads to
a difkrent set of multichannel two-body equations than
that of Alt et a/. , which were presented in Sec. II. The
difference reflects the fact the two sets of equations deter-
mine different off-shell extensions of the Coulomb mod-
ified transition operators. Our off-shell extension is dic-
tated by our treatment, at the outset, of the asymptotic
conditions and our subsequent use of the two-potential
formalism, while the oA'-shell extension of Alt et a/. is
dictated by the way they remove the two-body Coulomb
singularities from their equations.

The kernel of our equations is not compact for energies
above the breakup threshold, with the consequence that
Fredholm theory is not applicable. We anticipate, but
have not yet firmly established, that singularity subtrac-
tion techniques35 will still prove to be adequate for the
numerical solution of the equations.

In Sec. IV a new approximation scheme is suggested
for the three-body equations for the Coulomb-modified
transition operators. This scheme goes further than the
channel distortion approximation (CDA) and treats elec-
tric polarization forces to first order, much as do Alt ei
aI. As a result the post-prior asymmetry inherent in the
CDA is removed. Throughout the derivation of the ap-
proximate form of the equations an effort was made to
preserve their AGS form. In this way it is hoped that
computer codes developed for the solution of the AGS
equations can be modified with reasonable effort to in-
clude an approximate treatment of Coulomb effects.

ACKNOWLEDGMENTS

We gratefully acknowledge the support of the Hungar-
ian Academy of Sciences and the U.S. National Science
Foundation (Grants PHY8802774 and INT8800898). We
also acknowledge with pleasure many interesting and con-
structive conversations with E. O. Alt, G. H. Berthold,
B.J. Fisk, J. L. Friar, B. F. Gibson, Z. C. I&uruoglu, W.
Sandhas, and A. J. Waters.

E. O. Alt, W. Sandhas, and H. Ziegelmann, Nucl. Phys.
A445, 429 (1985).
G. H. Berthold and H. Zankel, Phys. Rev. C 34, 1203
(1986).
G. H. Berthold, A. Stadler, and H. Zankel, Phys. Rev. Lett.
61, 1077 (1988); Phys. Rev. C 41, 1365 (1990).
C. Chandler, Nucl. Phys. A353, 129c (1981).
E. O. Alt, in Few-Body Methods: Principles and Applica-
tions, edited by T. I&. Lim et al. (World Scientific, Singa-
pore, 1986), p. 239.
J. M. bauch, W. O. Arnrein, and K. B. Sinha, Scattering
Theory in Quantum Mechanics (Benjamin, Reading, Mas-
sachusetts, 1977).
L. D. Faddeev, Mathematical Aspects of the Three Body-
Problem in Quantum Scattering Theory (Israel Program of
Scientific Translations, Jerusalem, 1965).
E. O. Alt, P. Grassberger, and W. Sandhas, Nucl. Phys.
B2, 167 (1967).
J. R. Dollard, 3. Math. Phys. 5, 729 (1964).
D, Mulherin and I. I. Zinnes, 3. Math. Phys. 11, 1402
(1970).
C. Chandler and A. G. Gibson, 3. Ma. th. Phys. 15, 291
(1974).
W. O. Amrein, Ph. A. Martin, and B. Misra. , Helv. Phys.
Acta, 43, 313 (1970).
A. G. Gibson and C. Chandler, j. Math. Phys. 15, 1366
(1974).
3. Zorbas, Rep. Math. Phys. 9, 309 (1976).
S. P. Merkuriev, Yad. Fiz. 24, 289 (1976) [Sov. 3. Nucl.

Phys. 24, 150 (1976)];Theor. Math. Phys. 32, 680 (1977);
Dok. Akad. Nauk 240, 68 (1978) [Sov. Phys. Dokl. 23, 467
(1978)]; Lett. Math. Phys. 3, 141 (1979); Theor. Math.
Phys. 38, 134 (1979).
S. P. Merkuriev, Ann. Phys. (N. Y.) 130, 395 (1980); S. P.
Merkuriev and L. D. Faddeev, Quantum Scattering Theory
for Feis Body System-s (Nauka, Moscow, 1985) (in Russian).
S. P. Merkuriev, in Few-Body Problems in Physics, edited
by L. D. Faddeev and T. I. Kopaleishvili (World Scientific,
Singapore, 1985), p. 269.
V. Enns, in Schrodinger Operators, edited by S. Gra%
(Springer, Berlin, 1985), p. 39.
T. Sasakawa and T. Sawada, Phys. Rev. C 20, 1954 (1979).
V. G. Gorshkov, Zh. Eksp. Teor. Fiz. 43, 1714 (1963) [Sov.
Phys. 3ETP 16, 1211 (1963)].
A. M. Veselova, Theor. Math. Phys. 3, 542 (1970).
E. P rugovecki and 3. Zorbas, Nucl. Phys. A213, 541
(1973).
A. M. Ueselova, Theor. Math. Phys. 35, 395 (1978).
3. V. Noble, Phys. Rev. 161, 945 (1967).
Gy. Bencze, Nucl. Phys. A196, 135 (1972).
E. 0, Alt, W. Sandhas, and H. Ziegelmann, Phys. Rev. C
17, 1981 (1978).
E. O. Alt and W. Sandhas, Phys. Rev. C 21, 1733 (1980).
L. P. Kok, Nucl. Phys. A353, 171c (1981); in Fera Body-
Problems in Physics, edited by L. D. Faddeev and T. I.
Kopaleishvili (World Scientific, Singapore, 1985), p. 252.
H. van Haeringen, Charged Particle Interach ons (Coulomb'
Press, Leyden, 1977).



BENCZE, DOLESCHALL, CHANDLER, GIBSON, AND WALLISER 43

Gy. Bencze, Lett. Nuovo Cimento 17, 91 (1976).
'Gy. Bencze, G. Cattapan, and V. Vanzani, Lett. Nuovo
Cimento 20, 248 (1977).
E. O. Alt and W. Sandhas, in Few Body Systems and Nu-
clear Forces I, edited by H. Zingl et al. (Springer, Berlin,
1978), p. 373.
Gy. Bencze and H. Zankel, Phys. Lett. 82B, 316 (1982).
C. Chandler and A. G. Gibson, in Atomic Scattering The-
ory, Mathematical and Computational, Aspects, edited by 3.
Nuttall (University of 1Vestern Ontario, London, Canada,

1978), p. 189; in Mathernntica/ Methods and Applications of
Scattering Theory, edited by J. A. DeSanto et al. (Springer,
Berlin, 1980), p. 134.
B. Noble and S. Beighton, j. Inst. Math. Appl. 26, 431
(1980).
G. R. Satchler, Direct Nuclear Reactions (Clarendon, Ox-
ford, 1977).

"Gy. Bencze, C. Chandler, J. L. Friar, A. G. Gibson, and G.
L. Payne, Phys. Rev. C 35, 1188 (1985).


