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Technique for evaluating the optimal path in adiabatic time-dependent Hartree-Fock theory
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A method of achieving the consistent solution of the adiabatic time-dependent Hartree-Fock
theory as the optimal path is discussed. The method is applied to evaluate the valley path in the
soluble three-level model.
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where V(q) and m (q) are the usual collective potential
and collective mass.

The adiabatic time-dependent Hartree-Fock (ATDHF)
theory for the microscopic description of the large-
amplitude collective motions of nuclei, e.g., soft nuclear
vibrations, fission, fusion, etc. , has been formulated by
Villars, ' by Baranger and Veneroni, and by Goeke and
Reinhard.

The formal identity of the above approaches has been
established in Ref. 4 and it has been argued there that
for consistent exploitation of the TDHF variation princi-
ple in the adiabatic limit, the second-order ATDHF
equation in conjunction with the zeroth- and first-order
equations, the latter two being usually called the Villars
equations, has to be taken into account. With the use of
a formal but analytic method involving operator algebra
it has been shown that for any adiabatic process the
simultaneous fulfillment of the Villars equations and the
consistency condition, the latter being derived from the
second-order ATDHF equation, lifts the non-
uniqueness ' inherent in the Villars equations and results
in a unique path following the bottom of the valley of the
many-body potential-energy surface. The canonicity con-
dition has been shown to be a normalization requirement
which, when taken into account, completes the above
proof that the solution of the ATDHF theory follows the
valley.

The ATDHF equations in the one-body form have
been cast ' in a representation in which the one-body
time-even density matrix is diagonal. The Villars equa-
tions are combined to yield ' a TDHF-like evolution
equation for the occupied (hole) single-particle states
iy, (q)&,

~0h(q) &
= tT(q) l0t, (q) & .— (1)

Bq

Here,

—tp(q) =c (q)(1 —po)e(q),

c (q) =m (q)/k(q),

The consistency condition is reduced ' to the form

(1 —po)~ly, (q) & =O,

where the consistency operator R is given by

R =[ho, e]+h, —(oo(q)ho .

Here,

(4)

A, =hq —
zh2

h =Tru[e, po],

(oo(q)= (A, /m) .
1

2A, dg
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The TDHF Hamiltonian in different orders of the adiaba-
ticity parameter p is given by

hp = t +Trvpp,

h, =Trv[ho po]

(6c)

(6d)

h2= TrU[(1 —po)hopo+poho(1 —po), [ho, po]] . (6e)

Here t and U are, respectively, the kinetic energy and the
two-body interaction potential. We thus have a represen-
tation of the ATDHF equations in which the occupied
single-particle states evolve in accordance with a TDHF-
like evolution equation (1) while in order to choose the
optimal valley solution from the infinite number of solu-
tions of the Villars equations (1) we are required to fulfill
a one-body consistency condition (4).

Though given a nonsingular initial condition, the
TDHF-like evolution Eq. (1) appearing here in ATDHF
theory can be solved in a manner similar to those fol-
lowed in TDHF calculations; the method of fulfillment of
the consistency condition (4) is not yet clear. In what fol-
lows we describe a method to achieve the optimal path
with the use of the consistency check (4) along with the
evolution Eq. (1), the knowledge of the Hartree-Fock
(HF) ground state, and the lowest-energy random-phase-
approximation (RPA) mode there. With the HF
configuration as the state to start with, the following pro-
cedure is suggested.

(i) Displace the HF state at H(q =qo) to a point at
Pt(q =qt ) by the generator of the lowest-frequency RPA
mo(le (PRpA).

(ii) In general, the point q =qt does not satisfy the
consistency condition (4). However, it is a nonsingular
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point of the differential equation (1). With q =qI as the
initial condition the evolution equation (1) is solved in the
forward (up-the-hill) direction along which V ( q ) in-
creases [A,(q) )0] to roll the system to a point P, (q =q, )

away from the valley.
(iii) At the point q =q, a kick' is given to the system

to reach a point P, (q =q,
~

with the generator P(q~ ) at the
state q =qi in the backward (down-the-hill) direction.
Along the kick q&q, the satisfaction of the consistency
condition(4) is checked at regular intervals at the points
P, (q =q, ), P2(q =qz), P3(q =q3), etc.

(iv) If in the interval qiq, [Eq. (4)] is satisfied to a
desired accuracy, say, at a point P, (q =q, ) then the evo-
lution Eq. (1) can be solved with q =q„asthe initial con-
dition down the hill along which the ATDHF solutions
are stable and thus obtain the segment of the valley q, qo.
If Eq. (4) is not satisfied to a desired accuracy, whence we
guess that the kick given in (iii) does not intersect the val-
ley as may be the case in three- and higher-dimensional
problems, then the measure of satisfaction of Eq. {4) can
be minimized at a certain point q =q &

which is nearest to
the valley in the kick qiq3. With q =q, as the initial
condition in place of q =q, for the kick of step (iii) the
processes (iii) and (iv) are repeated. We expect that after
a plausible number of such processes Eq. (4) will be
satisfied to a desired accuracy and we have a point q =q,
on the optimal path.

(v) With q =q, as the initial condition we solve the
evolution equation (1) up the hill to reach a point
P', (q =q', ). In general, q =q', will not be on the valley
path. However, with q =q& as the initial condition for
kick in step (iii) we repeat steps (iii) and (iv) to obtain fur-
ther segment of the valley I',P,'; in this way we can trace
the entire valley path and obtain the collective mass and
collective potential on it.

Goeke et a/. " ' have also used a trial and error
method for achieving the optimal path. However, they
have not used the consistency check which is required to
assure that the solution chosen is really the optimal val-
ley solution. Further, the trial and error method used by
Goeke et al. is eff'ective only when one has an idea of the
saddle configuration and uses a configuration near it as
the initial condition.

We shall now use the aforementioned method of ex-
ploring the optimal path for evaluating the valley path in
the three-level model. We shall only use the knowledge
of the Hartree-Fock minimum and the lowest-energy
RPA mode in the model as input and the solution of Eq.
(1) which represents the lines of force orthogonal to the
equipotential surfaces as the guide in exploring the valley
path designated by Eq. (4).

Since the description of the three-level Lipkin model is
discussed extensively in the literature' and the ATDHF
formulation in the framework of the model has also been
discussed in Refs. 5, 6, 14, and 15, we shall omit the
necessary steps for arriving at the equation of the path
and shall cite these references at appropriate places.

In the three-level model there are three N-fold degen-
erate states having N particles distributed between them
in accordance with the interaction among N-particles,

=0, t =1,2. (8)

Here U is the first-order gradient function defined as

2

U=~gradV~ = g M,

and coo(q) is an arbitrary Lagrange multiplier given in Eq.
(2d). Equations (8) are essentially the same as Eq. (4).
Equations (8) express the fact that the first-order gradient
function is minimal for excursions along the equipoten-
tials and thus Eqs. (8) are the conditions for valley path.

V(9, , 8z) and M; '(8„0z)for the three-level model can
be explicitly calculated"' as functions of (0„82)and are
given in Refs. 15 and 16 and we would not repeat it here.

Equation (7), representing the solution of Villars equa-
tions, can be written ' ' ' as a first-order ordinary
diff'erential equation,
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FIG. 1. The entire topography in the three-level model
(~=3.0, n =1) of the roll and kick method of exploring the op-
timal path described in the text. H, M, and S are, respectively,
the minimum, maximum, and saddle point of V(0&, 0~). HPI is

the lowest-frequency RPA mode. HP, P,' . . is the optimal val-

ley path.

which is assumed to be only of monopole-monopole na-
ture.

The solution of the zeroth- and first-order Villars equa-
tions or equivalently Eq. (1) can be written' in the model
as a system of partial differential equations,

BO;
c '(q) = gM;

Bq . ,
" BO,

Here 8; (i =1,2) are a set of real numbers required to
parametrize the time-even Slater determinants in the
three-level Lipkin model. q is the collective coordinate
designating the collective path. M~ (0„8z)(i,j =1,2)
and V(8i, 92) are, respectively, the mass matrix and the
many-body potential function. c (q) is given in Eq. (2b).

It can be shown easily following the steps used in Ref.
4 that the simultaneous fulfillment of the second-order
ATDHF equation leads, in the model, to the condition



914 BRIEF REPORTS 43

TABLE I. The numerical results of the application to the three-level model of the roll and kick
method of exploring the optimal path described in the text. The nomenclature of different points used
is the same as those used in the text.

Reference
point in
Fig. 1

Pr

P,

P2

P3

P4

P5

P,

P„

P1

P,'

P„'

0,
(rad)

0.615

0.615

0.873

0.798

0.723

0.648

0.573

0.498

0.569

0.673

0.448

0.521

02
(rad)

0.0

0.3

0.55

O.S21

0.492

0.463

0.434

0.406

0.433

0.808

0.614

0.677

F(01,02)

55.23

178.69

134.05

107.62

49.93

1.9

—20.48

0.0002

147.83

—21.73

0.0009

Obtai. ned from
the earlier point
with the use of

Initial point

Lowest-frequency
RPA displ. at 0
Forward roll with
Pr as the initial
condition

Backward kick at
P1 with PATDHF(q1)

Backward kick at
P1 with PATDH„(q1)
Backward kick at
P, with PATDHF(q1)

Backward kick at
P, with PATDH„(q, )

Backward kick at
1 w h ATDHF(q 1 )

Backward kick at
P, with P„TDHF(q1)

Forward roll with
P„asthe initial
condition

Backward kick at P',
with PATDHF(q1)

Backward kick at P',

PATDHF(q1 )

Remarks

Static
Hartree-
Fock pt.
Away from
the valley

Further
away from
the valley

Nearer to
the valley

Nearer to
the valley

Nearer to
the valley

Nearer to
the valley

Opposite
side of
the valley

Converges
on the
valley

Away from
the valley

Opposite
side of
the valley

Converges
on the
valley

dg, X,(8„82)
d82 X2(8„82)

(10)
B(u, u) Bu BU

B(x,y) Bx By

clzE BU

By Bx
(14)

where the functions X;(8I,82) (i = 1,2) are given by

2

X;(8„82)=g M,~
', i =1,2 .

F(8„82)=0, (12)

where the function F(8„82)is given by

B(U, V)F(8„82)=

Here the Jacobian is given by

The lines of force are therefore the solution to the first-
order differential equation (10).

Eliminating the Lagrange multiplier coo(q) between the
two Eqs. (8) the valley condition reduces to

We are required to solve the differential Eq. (10) satis-
fying the consistency check (12). To achieve this we ap-
ply the method of exploring the optimal path described
earlier in this paper. The numerical results are given in
Table I and Fig. 1, in which the minimum value of
F(8&, gz), for which we conclude that the point (8I, 82) is
on the valley, is chosen to be 10 . Even though the
solution of Eq. (12) can be obtained in a straightforward
manner without using the said method, we observe from
Fig. 1 and Table I how for nontrivial problems the above
method converges on the valley path.

We conclude the present paper with the notion that an
eKcacious method for exploring the optimal path has
been successfully applied for evaluating the valley path in
the soluble three-level model.

The author thanks Dr. T. K. Roy for help in computa-
tion.
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