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b, contributions to the parity-violating nuclear interaction
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A quark-model picture which incorporates SU(6)„symmetry is utilized to calculate the weak 5-
nucleon-meson and 6-5-meson parity-violating vertices for ~, p, and co mesons, thus extending pre-
vious work in the nucleon sector. The effective quark Hamiltonian is based upon the
renormalization-group-corrected Weinberg-Salam model. The calculated parity-violating vertices
are used to determine the coupling constants in an effective baryon Hamiltonian. We give "best"
values as well as estimates of the ranges of uncertainty.

I. INTRODUCTION

Over the years nuclei have served as a crucial source of
phenomenology for developing a deeper understanding of
the weak interaction. Within the past decade, however,
the Weinberg-Salam model has emerged as the accepted
model of the electroweak interaction and the tables have
turned toward using the weak interaction as a tool to aid
in the understanding of hadrons and their interactions
within nuclei. The most fundamental realization of the
weak interaction in the purely hadronic sector is parity
violation in the nucleon-nucleon interaction. Unfor-
tunately, the Weinberg-Salam model, which is written in
terms of quark and lepton degrees of freedom, is not easi-
ly applied to this problem since we still lack a reliable and
calculable model by which to describe hadrons in terms
of their quark-gluon degrees of freedom. Although QCD
is widely believed to be the correct theory of the strong
interaction, it is difficult to apply rigorously away from
the high-energy perturbative region.

Nonetheless, there have been a number of attempts to
describe the weak interaction between nucleons. Since
the range of intermediate vector bosons is much smaller
than the size of a nucleon, nucleons must be effectively
overlapping in order to interact directly via 8' or Z ex-
change between quarks. Because the nucleon-nucleon in-
teraction is repulsive at short distances, we expect such
contributions to the parity-violating interaction to be
small at low and medium energies. Thus most theoretical
descriptions of parity violation in this energy regime have
relied on the much longer-ranged exchange of light
mesons (tr, p, to, etc.) between nucleons. In this case a
simple one-meson-exchange weak nucleon-nucleon in-
teraction is constructed with one nucleon-nucleon-meson
(NNM) vertex being parity conserving and associated
with the strong interaction, while the other is parity
violating and arises from the weak force. All the weak-
interaction physics is contained in this parity-violating
NNM vertex. These vertices can be combined into an
effective parity-violating nucleon-nucleon potential,
which can be used to calculate parity-violating observ-
ables in this sector. '

Such attempts have been generally successful in
describing the available data, although in most cases

large theoretical uncertainties make it difficult to draw
definitive conclusions. In recent years, for example, there
has been considerable discussion of the weak XX+ cou-
pling constant f„—analyses ' of parity violation ob-
served in experimental studies of electromagnetic transi-
tions in ' F, ' F, and 'Ne suggest a XX~ coupling can-
siderably smaller than the "best value" given in the
theoretical approach of Desplanques, Donoghue, and
Holstein (DDH). Other theoretical models such as that
of Dubovik and Zenkin or the soliton model of Kaiser
and Meissner give considerably smaller values than
DDH. However, all of these other values of f fall
within the range of uncertainty estimated by DDH.

A measurement of particular current interest in testing
such models is the longitudinal asymmetry in proton-
proton scattering:

o(+)—o( —)

o(+)+o( —)

where o (+ ) and o (
—) are the total cross sections for

scattering of protons with positive and negative helicity
from an unpolarized target, respectively. In this reaction
the largest contribution is usually expected to come from
the vector mesons since the longer-range parity-violating
pion exchange between protons is forbidden (neutral
pions by Barton's theorem, charged pions by charge con-
servation). An experiment underway at TRIUMF at 230
MeV takes advantage of a cancellation between the 'So
and Po pp partial waves to emphasize the D-wave contri-
bution and thus to isolate a different admixture of p- and
co-exchange contributions than occurs in the lower-
energy measurements. Thus elastic proton-proton
scattering offers the possibility of separating some of the
various terms that contribute in the meson-exchange
models, without the nuclear wave-function uncertainties
which plague the ' F, ' F, and 'Ne analysis.

Recently, however, Silbar et al. suggested that strong-
ly produced virtual 6's may play an important role in the
analysis of these proton-proton scattering experiments
(see also Refs. 10 and 11). Since CP invariance allows a
parity-violating NX~—vertex, they included such a term
in the interaction combined with a strong hN~ vertex
and found the ~-exchange contribution to be about 40%
of the (2.4+1.1)X 10 asymmetry measured' at 800
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MeV. More recent calculations' with a different descrip-
tion of the strong-interaction physics obtained a smaller
yet still very significant contribution. These estimates
further suggest that a significant pion-exchange contribu-
tion may persist down into the energy regime of the TRI-
UMF experiment.

In order to be able to more fully assess the role played
by the 6 in weak interactions within the hadronic sector,
we have constructed parity-violating %AM and DAM
vertices with M=m, p, and co. These vertices are calcu-
lated within the model originally developed by
Desplanques, Donoghue, and Holstein for the XNM sec-
tor. This model employs a simple quark description of
the baryons and mesons and uses an effective Weinberg-
Salam model of the nonleptonic weak interactions which
incorporates gluon-exchange renormalizations. This
model and its extension into the 6 sector are described in
the next section. In Sec. III we present our results in
terms of effective couplings for X%M, NAM, and DAM
vertices. The intent is to provide these results in a form
which can readily be used within a coupled NA descrip-
tion of the strong-interaction dynamics such as that of
Kloet and Silbar' in order to calculate a parity-violating
observable such as AL (cf. Ref. 9). We conclude in Sec.
IV with a brief summary of the model ingredients and the
uncertainties which must be recognized in interpreting
our results.

II. MODEL FOR THE WEAK VERTICES

The earliest calculations of nonleptonic parity-
violating NNM vertices utilized very different techniques
to evaluate the vector meson and pion couplings, with the
former involving the use of factorization' and the latter
involving SU(3) plus partially conserved axial-vector
current (PCAC) in order to relate the desired
strangeness-conserving parity-violating pion vertices to
measured hyperon decay amplitudes. ' An important
step toward the goal of treating vector- and
pseudoscalar-meson vertices on the same footing was tak-
en by McIl ellar and Pick' who applied SU(6) symme-
try to the problem. Using this symmetry together with
the Cabibbo (charged-current) Hamiltonian, it was possi-
ble to express the various desired AS =0 NNM vertices in
terms of five reduced matrix elements, three of which
could be related to known parity-violating AS =1 ampli-
tudes. In 1980, Desplanques, Donoghue, and Holstein
were able to extend and improve the formalism in two
ways: (i) the two "unknown" reduced matrix elements
were shown to correspond to calculable (modified) factor-
ization diagrams, and (ii) the group-theoretical coupling
factors were shown to arise from a simple quark-model
picture of the process, allowing extension of this tech-
nique to neutral-current contributions, which could not
be handled within the group-theoretical formalism
without the introduction of additional reduced matrix
elements. It is this formalism which has formed the basis
of many of the nuclear parity-violation studies during the
past decade and which therefore we choose to adapt to
the calculation of ANM and AhM weak vertices.

Although our procedure is quark-model based, it is

useful to review the group-theoretical language which
was originally developed for the Cabibbo Hamiltonian by
McKellar and Pick in order to relate our results to theirs
and to those of DDH. The vector and pseudoscalar octet
constitute a 35-dimensional representation of SU(6),
while the charged-current pieces of H (65=1) and
H (AS=0) are members of common 35- and 280,280-
dimensional representations. In the SU(6) approach one
divides the full parity-violating Hamiltonian into two
pieces:

apv =IIpv+II'v
T

where

(2)

HT —Vo Ao V3 A3,

H~ ——
—,'(V A++ V+ 3 )

(3a)

(3b)

are given in terms of longitudinal and transverse com-
ponents of the product of the vector and axial-vector
currents. It is then straightforward to enumerate the
various ways by which to couple the two baryons and the
meson together in a CP-invariant fashion:

[(BB)35CS M35 ]2gp 2gp

[(BB)405™35]280, 280 '

[(BB)35M35]35

(4a)

(4b)

(4c)

leading to a group-theoretical picture involving five re-
duced matrix elements —aT and az [for the coupling of
Eq. (4a)], bT and bt, [Eq. (4b)], and cz [Eq. (4c)], where
the subscript T or V indicates whether the origin of this
term is from HT or H&, respectively.

Use of the quark model, besides allowing us to extend
the range of validity of the group-theoretical methods,
gives additional dynamical constraints. DDH demon-
strated that the couplings of Eqs. (4) can be associated
with the quark diagrams shown in Fig. 1. The fact that
bT and b~ can be related to a local four-quark matrix ele-

(a) (a')

(b)

(c)

FIG. 1. Quark diagrams that are evaluated: (a) and (a')
represent the factonzation term discussed in Sec. II A, (b) the
quark-model term of Sec. II B, and (c) and (c') the sum-rule term
of Sec. II C. The solid lines represent the propagation of
quarks, the dashed line that of a gluon, while the wavy lines
represent the weak Hamiltonian.
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ment implies by Lorentz co variance the relation
b~= —bz. Also, since a~ and a~ correspond to the fac-
torization diagrams, there exists in turn a relation be-
tween them which is simply a factor of —,

' introduced by
color matching after a Fierz rearrangement, i.e.,
a z- =a ~ /3. Thus the simplest unified description of
AS =0 parity-violating vertices can be written in terms of
just three independent reduced matrix elements. After
the approximate incorporation of neutral-current effects,
strong-interaction corrections, and SU(3) symmetry
breaking, the model developed by DDH has eight in-
dependent parameters and can be straightforwardly gen-
eralized to calculate the DAM and ATM vertices, as we
shall show.

In order to describe the details of our calculation
within the 6 sector, we brieAy review the DDH pro-
cedure. Since we are not developing this technique in any
novel fashion, we refer the reader to previous work for
motivation and justification. The model is most easily de-
scribed in terms of the diagrams shown in Fig. 1. In ad-
dition to the diagrams explicitly shown, the left-right
mirror images of the diagrams in Figs. 1(b), 1(c), and 1(c )

are implicitly included. The choice of diagrams and cer-
tain of the rules used to evaluate them are constrained to
agree with the SU(6) results. In principle, by utilizing a
quark-level weak Hamiltonian and a model for the quark
structure of baryons, one could directly evaluate the
baryon-baryon-meson vertices for each of these diagrams.
However, the crudeness of models and methods for
strong-interaction physics do not allow us to proceed so
straightforwardly. Rather, the model of DDH utilizes a
number of tricks which allow the evaluation of the need-
ed diagrams in terms of only a few simple matrix ele-
ments which are determined empirically by fitting the
AS=1 hyperon decay rates. We now proceed with a
description of our calculation on a diagram-by-diagram
basis.

A. Factorization diagram

The diagram in Fig. 1(a) represents the "factorization"
contribution. The evaluation of this amplitude is
straightforward and leads to a product of current matrix
elements. The full weak Hamiltonian is quite cornplicat-
ed due to the inclusion of strong-interaction renormaliza-
tion as discussed in Sec. II D. However, for purposes of
illustration we can consider the quark Hamiltonian given
by the charged Cabibbo model without strange quarks,

18

H, (ES=O)= —cos 8, dy„(1+y, )uuy"(1+y5)d,G

where the du pair is assumed to act at one quark vertex
and the ud pair at the other (four-quark operators
throughout this paper are assumed to be normal ordered).
Since the parity-violating pion coupling from Fig. 1(a)
vanishes in the SU(3) limit due to the conservation of the
vector current, we consider the n ~pp matrix element:

&p,p ~H,Pv~n &(.)= —cos'8, &p~W„'+" ~n &

6
2

where the axial-vector and vector current matrix ele-
ments are known from experiment.

Since a variety of other vertices can be related to that
just examined within SU(6), it is convenient to relate the
product of current matrix elements in Eq. (6) to the re-
duced matrix elements of the SU(6) approach. The
SU(6) couplings corresponding to the matrix elements
az- and a& have the same transformation properties as the
factorization diagram, and the relevant contribution to
the n —+pp vertex is the a& term, which is given by

(p, p iH, i &, = otO, .

Hence we obtain

a~= cose, sinO, (p~ A„'+"~n )(p ~
V". ..~0) .

10

The charged-current Cabibbo Hamiltonian of Eq. (5)
does not give rise to neutral meson vertices from the dia-
gram of Fig. 1(a). However, a factorization contribution
for neutral meson vertices can arise by considering the
Fierz-rearranged Hamiltonian. This is equivalent to in-
cluding the contribution from the diagram in Fig. 1(a ).
For example, the Fierz-rearranged Hamiltonian corre-
sponding to H, (b,S=0) is given by

H, (b, S= OFierz)

—cos 8, d 'y (1+y5)d~u Jy"(1+y, )u',G

where we show explicitly the color indices which were
previously suppressed. By evaluating the diagram in Fig.
1(a) using the Fierz-rearranged Hamiltonian, we obtain
the contribution from the diagram in Fig. 1(a ). As an ex-
ample, the factorization contribution to p ~pp is

(p,p'IH,"ip &(., )
———— cos'e, (p i W,'ip &

3 2

(10)

Evaluating this term and relating it to the SU(6) matrix
elements in a fashion similar to that used in obtaining
Eqs. (7) and (8), one may verify the relationship

T V

The charged Cabibbo Hamiltonian contains a product
of purely left-handed currents and upon Fierz rearrange-
ment retains its leftleft form. However, because the Z
couples to both right- and left-handed currents, both
symmetric ( VA + A V) and antisymmetric ( VA —A V)
products of currents enter. [It is the latter terms which
prevent one from using the SU(6) group-theory formal-
ism to calculate neutral-current contributions without in-
troducing new reduced matrix elements. ] Upon Fierz
rearrangement the antisymmetric products produce a
product of scalar and pseudoscalar densities, i.e.,
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VA —AV~2(SP P—S). Since the pseudoscalar operator
can connect the vacuum to the m field, one must intro-
duce a new parameter to represent such matrix elements
in the factorization diagrams. The parameter defined in
DDH for this purpose is

y =—2&~ ~d 'y, u'~O) &pu 'd'~n )
6

+ +

which, applying the quark equations of motion and
PCAC, can be written as

GF mQ
L

3 (m„+mz)
(12)

where S=&p~ud(n ).
By the use of quark-model symmetries among quark

operators and baryon states, one can calculate all needed
vertices from the factorization diagrams for any quark-
model Hamiltonian which contains either VA + 3 V or
VA —3 V terms. The exact quark Hamiltonian used in
this work will be described in the subsection on strong-
interaction corrections.

Finally, as an example of a factorization diagram con-
tribution to a vertex in the 6 sector, consider the contri-
bution from the charged Cabibbo model to the vertex
6+(J,= —,')~h++(J, =

—,')+p (J,=l). [For all
8~8 +M vertices discussed in this paper, the initial
baryon and the meson will be assumed to have the max-
imum positive values of J, .] The contribution from Fig.
1(a) is given by

&a++,p-~II,"~s+)...
cos'e, &a++~uy„y, d~b+)&p ~dy"u~a)

G

G—cos 0, &b,
++ A„'+' ~A+)&p 1V", ; ~o),

2

(13)

O

'a

0
0

C5

0
O
a
CS

Q

55

Ck

a

I

"a

I

+ ~

+

+

and by using the quark-model relationship

)=-'& A'+"~ )

we obtain

&
&++,p ~H, ~b,

+ )(. )
=—', cose, a~ .

(14)

(15)

Evaluation of factorization contributions involving m's

and ~'s proceeds similarly.

B. Quark-model diagram

Although we employed a quark-level Hamiltonian in
our description of the factorization diagram [Fig. 1(a)],
this was not really necessary since all calculations reduce
to the evaluation of current matrix elements between
hadrons. The use of a quark model does lead to the in-
clusion of the Fierz-rearranged terms discussed in the
previous subsection [Fig. 1(a')]. However, the procedure
for evaluating Fig. 1(a ) is identical to that for Fig. 1(a)
aside from a counting factor from color matching and is
not dependent on details of the hadronic wave function.
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The remaining diagrams of Fig. 1, however, are directly
sensitive to the details of hadronic structure.

The diagram in Fig. 1(b) is termed the "quark-model
diagram, " and its evaluation requires the quark-model
spin, flavor, and color wave functions of the hadrons in-
volved; we list these in Table I to explicitly define our
conventions. We assume that the quarks are in S-wave
states. Then, as we will show below, we do not need to
know details of the spatial wave functions, since the radi-
al integral is just a common factor for all vertices in the
SU(6) limit. We need not explicitly evaluate this integral.
Rather, we determine it empirically from fits to parity-
violating hyperon decay data.

Given a weak quark Hamiltonian, to evaluate the dia-
gram of Fig. 1(b) one calculates matrix elements of the
form

{Ole' "(b "b b')(d'b')qy y,qqy"q(b™b""b')e "'l0) .

Here e'~"(b "b~b') comes from the final baryon, (d'b )

from the meson, qy„y~qqy"q is the four-quark operator
l

from the Hamiltonian, and (b™b"b"')e "' generates the
initial baryon. When we take the contractions of the
quark creation and annihilation operators appropriate to
the diagram of Fig. 1(b), we are left with c numbers mul-
tiplied by spin matrix elements g,g3g~4 or y, o y3 +2cr+4
For each baryon-baryon-meson vertex, we must sum over
the spins of the four interacting quarks. This is done for
each term in the Hamiltonian as well as for each term in
the baryon wave functions.

A subtlety in this calculation involves the inclusion of
an additional diagram which is the left-right mirror im-
age of the diagram in Fig. 1(b). As is discussed in DDH,
because of crossing symmetry, this diagram can be in-
cluded in a way consistent with SU(6) by calculating an
absorption diagram, i.e., (8'lH lBM ). For vector
meson vertices the absorption diagrams must be added to
the emission diagrams for consistency with SU(6), while
for pion vertices they must be subtracted. A similar pro-
cedure will be applied to the diagrams of Figs. 1(c) and
1(c') as discussed in the next subsection.

As an example of such an evaluation, we will consider
the contribution from the charged Cabibbo model to the
vertex 6++—+6++p+:

(b, +p+lH, lb, ++)~bI= —cos 0, (0l ,'e'1"(b—ktb "tb, i+2bk "b," b; t)(2dI"tbi" t)(uy„y, ddt„u+uy„ddT ~y, u)PV ++

X ie~b~(bt tbt tbt t)l0)a b c

= C —', e" e'"5;,b,b bq, [y"( T )y( 1 )y ( 1 )g( T )
—y ( 1' )o g( 1 ) g ( 1 )o g( T )

+g (1)g( 1 )g ( T )g( T ) —g (1)cry( 4 ).g ( T )op( T )]
= —4C [g"( T )y( l )g ( 1 )y( 1' )

—y ( T )o g(1).g (1)op( T )

+g (l)g(1)g (T)g(T) —g (l)og(l) g (T)og(T)] (17)

where C is a product of constants and the radial integral, which we take to be identical for all vertices which we consid-
er. Since Hv of Eqs. (2), (3a), and (3b) requires a spin flip, while HT does not, the first two terms in Eq. (17) corre-
spond to Mz, while the latter two terms correspond to HT . It can be seen that for the mirror image absorption dia-
gram there can be no charged-current contribution for this vertex. Then, by comparing Eq. (17) to the SU(6) predic-
tions,

& a+p+lH,"la++ &I, , =,'b, ,

«'p+lH"l~++& = b

(18a)

(18b)

we obtain the relationships

bT= —12&[y ( l )y( l )y ( T )y( 1')—yt( l )oy( 1 ) yt( T )op( T )]cotO, = —24C tan&, ,

12C [g ( T )g( l )g ( l )g( T ) —g ( T )op( 1 ).g ( 4 )op( T ) ]cotH, =24C tan8, = bT . —
(19a)

(19b)

The value of C can be obtained from measured parity-violating hyperon decay amplitudes, and with it we can evaluate
the diagram of Fig. 1(b) for all remaining baryon-baryon-meson vertices of interest.

C. Sum-rule diagram

The last diagrams to be considered are shown in Figs. 1(c) and 1(c ) and are related to the pion "sum-rule" calcula-
tion. There is no clear technique for evaluating this contribution in the quark model since it directly involves strong-
interaction effects. The prescription adopted by DDH is to contract two quark lines in the Harniltonian to represent
the virtual quark-antiquark pair inside the nucleon and insert an SU(3) color matrix. Thus the four-quark operator be-
comes an effective two-quark operator, i.e., q 'q'q q q ~q 'q A' .

The diagram of Fig. 1(c ) is equivalent to that of Fig. 1(c) for a Fierz-rearranged Hamiltonian. Looking at Fig. 1(c ),
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its contribution would seem to be zero since TrA=O. However, gluonic renormalization leads to terms in an effective
~einberg-Salam Hamiltonian which result from the exchange of a gluon parallel to the Wand Z bosons. (~e will dis-
cuss gluonlc renormalization in Sec. II D.) As was the case for the factorization diagram Fierz rearrangement of the
VA —A V terms in the Hamiltonian leads to a new parameter g, which is defined as

&B M~)2(SI JS—)~B)„,
&B m~(VA —Av) B), ,

20

As an example of a sum-rule diagram calculation, we will consider the contribution from the charged Cabibbo model
to the vertex b, ++(J,= —,

'
)—+6++p+. This time we cannot ignore the strange quarks in the Hamiltonian because it is

possible for the intermediate qq in Fig. 1(c) to be an ss pair. Thus the Hamiltonian that we use is

H, (AS=0)= —[cos 0, dy„(1+y~)uuy"(I+y, )d+sin 0, sy„(1+ys)uuy"(1+y, )s] .
2

(21)

It is straightforward to see that the resulting effective two-quark operators are (uu+dd )cos 0, and uu sin 0, . Only dd
can contribute to the diagram in Fig. 1(c) and only uu to the corresponding absorption diagram. In the former case the
result is proportional to

6—cos 0 &0~ 'e" (b—„"tb"tb (+2b" tb "ib t)(2d tb" t)d6d 'e'"'(b "—tb ""bt"t)~0)

z—e' 'e'"5,,5,„5„,cos 0, &6) = —&2G cos 0, &6), (22)

while for the latter we obtain

(cos 0 +sin 0 )&0~ ,'e""(b""b—"tb t+2b "tb" ib "t)u6u(2b, ""d,"t),'e'"'(bt"—tbt"tbt" t)~0)

abc i'k 2 2——e' 'e""5;,5 b5&, (cos 0, +sin 0, )&6)= —v'2G(cos 0, +sin 0, )&6) . (23)

Here 6 is an unknown operator which represents the contraction into a two-quark operator. & 6) is thus an unknown
matrix element, but it will be the same for all of the vertices that we consider. Adding these two contributions, we have

.p IH, lb )~,)= —v'2G(2cos 0, +sin 0, )&6) .

Using the SU(6) prediction

&b, +,p+~H, ~h )(, )= —
( —,'cotO, + —,'tanO, )cv,

(24)

(25)

we identify

ci, =3&2GcosO, sinO, &6) . (26)

Thus we are able to evaluate the common factor &6) in terms of the reduced matrix element c„and hence to evaluate
the sum-rule diagram for all other vertices of interest.

D. Strong-interaction effects

The steinberg-Salam model has proven to be a remarkably successful theory for the electroweak interaction. One
can obtain an effective four-quark Hamiltonian with the Weinberg-Salam model by integrating out the intermediate
vector bosons, and it is such a Hamiltonian that we have considered to this point. However, this is not totally appropri-
ate in the hadronic sector where strong-interaction effects can be considerable. To try to take such effects into account,
we use an effective Harniltonian based on the %'einberg-Salam model, but modified to include gluonic renormalizations
through the use of Wilson's operator product expansion' and renormalization-group techniques. ' In the notation of
DDH, this efFective Hamiltonian is

6 2

Hws(AS=0)= —cosO, sinO, g Ia, , O(A, , A, )+13,, 0(A, t, A, t )+H. c. ]v'2 I=1

2

+ g [y, O(B, ,B, )+5,,0(B,t",B,t")]. (27)

where
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O(M, N) =q—y„y5Mqqy"Nq, (28)

S

0 1 0
0 0 0
0 0 0

1 0 0

0 0 1

0 0 0
0 0 0

1 0 0

(29)

B]: 0 1 0 B~: 0 1 0
0 0 1 0 0 —1

(30)

and the t are SU(3) color matrices normalized to

t AtB 2gAB (31)

The a' s, P's, y's, and 5's are functions of a parameter which depends on the strong-interaction coupling constant and
renormalization scale and is defined as

2 2 MwE=l+ g (P )bl
16~ p

(32)

where g is the color gluon coupling constant, p is the renormalization point, and b = 11——', X, with N the number of
quark flavors. In terms of this parameter, we have

a» =cotg, (K +2E ")/3,
cx22=tan 0, cx/],2

P„=cotg, ( K+E— ) /4,
P~2=tan g, P

—,'sin2g, y &&
= (3—2 sin g„)(0.056K —0.051K ' —0.067K ' +0.062K ' },

—,'sin2g, y&2= —
—,'sing ( —0.049K ' +0.190K '" —0.426K ' +0.274K },

—,'sin2g, yz&= —
—,'sing (0.086K ' +0.146K +0.623K '' +0.151K ' ),

—,'sin2g, yzz=(1 —2 sin g )(0. 167K +0.333K ),
—,'sin2g, 5»=(3 —2sin g„)(—0.042K +0.028K ' —0.025K ' +0.039K ),
—'sin2g, 5&2= ——'sing ( —0 113K ' —0 099K +0.129K '' +0.079K ),
—,'sin2g, 5z&

= —
—,'sing„(0. 063K —0. 126K —0.084K '' +0.148K },

—,'sin2g, 5z2=(1 —2 sin g )( —K ~s+K 0 ~4)/8 .

(33a)

(33b)

(33c)

(33d)

(33e)

(33f)

(33g)

(33h)

(33i)

(33j)

(33k)

(331)

We can recover the simple Weinberg-Salam Hamiltoni-
an in the absence of strong interaction effects by tak-
ing K=1 (g =0). In this limit, 5;.=/3;;=y&&=y&&=0
for all i,j, and the remaining terms simplify to
0.'» =cotO„az2=tanO„y2, = ——', sin 0 csc20„and
y2~=(1 —2sin g )csc2g, .

The four-quark operators which multiply each of the
coefficients a&&, uzi, etc. , can readily be obtained from
Eq. (27); for example, the coefficient a» multiplies
the combination of operators u 'y„y ~d'd y "u
+d 'y„y, u 'u Jy"d'. Note that the P, , and 5, terms in the
Hamiltonian contain SU(3) color matrices and exist as a
consequence of a gluonic renormalization in which a

gluon is exchanged parallel to the vector gauge boson.
The P;; and 5; terms multiply combinations of four-
quark operators with the same Aavor indices as do the a;;
and y, , respectively, but their color indices differ. One
can obtain the relevant four-quark operators multiplying
the P and 5 terms by replacing q 'q 'q ~q ~ with
2q 'q q q' ——', q 'q'q q in the a and y terms, respectively.
For example, the P» coefficient multiplies the combina-
tion of operators u 'd d u' ——', u 'd'd~u +d 'u u d'

3
d 'u 'u d ~. Thus our effective Hamiltonian is written

as a series of four-quark operators and the techniques of
Secs. IIA —II C can be applied in order to evaluate any
required NXM, ANM, or hhM vertex.
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III. RESULTS

At this point we are in a position to evaluate the five
diagrams of Fig. 1 (and the corresponding absorption dia-
grams) for all b,S=O 5-wave vertices involving 6's in
terms of the parameters aT, ai„bT, bi„ci„y, K, and g.
We list general expressions for 11 independent vertices in
Table II. Any other matrix elements may be obtained
from these as may the coupling constants of the effective
weak Hamiltonian that we introduce below. The a,j, P,&,

y, , and 6, that appear in Table II are the functions of E
defined in Sec. IID. The a," and P; terms correspond to
charged-current contributions, while y, and 6; represent
neutral-current contributions. If one sets K = 1 (no
strong-interaction renormalization) and y,"=6;~ =0 (no
neutral currents), Table II reduces to the SU(6) results
that one would obtain using the effective Hamiltonian'
of McKellar and Pick.

As discussed in Sec. II A, the parameter y appears only
in the pionic vertex, while the parameters aT arid a~ only
appear for vector-meson vertices. A11 the vector-meson
vertices are calculated for the J, =1 case. From Eqs. (3a)
and (3b), one can see that Hv corresponds to the ex-
change of weak gauge bosons with J, =+1, while HT
corresponds to J, =0 exchange. The aT terms in Table II
result solely from the evaluation of the diagram of Fig.

1(a') and the a i, terms from that of Fig. 1(a).
The reduced matrix elements aT, ai, bT, bz, and c~,

being defined in terms of hyperon decay, all have an iden-
tical coso, sinO, dependence on the Cabibbo angle. It is
then easy to see that in Table II the charged-current
terms [a,, and P, , of Eq. (29)] and the neutral-current
terms (y,, and 5;~) have the proper 9, dependence.

As was discussed in Sec. IID, some of the terms in the
effective Weinberg-Salam Hamiltonian [I3,, and 5,, of Eq.
(29)] contain SU(3) color matrices. These terms exist as a
consequence of strong-interaction renormalization. For
the contribution of four of the five diagrams of Fig. 1 to
the baryon-baryon-meson matrix elements, the
coefficients multiplying the I3,; and the 5; terms are not
independent of those multiplying the a, , and y;; terms,
respectively —i.e., the contribution from these diagrams
can be written in terms of linear combinations of o, ;; and
P, , and of y; and 5, . In Table II we have adopted short-
hand notation for these combinations, i.e.,
3;J=a;~+—3'P;~. . Figure 1(c') is the exception where, as
was stated in Sec. III C, the contribution from this dia-
gram would be zero without gluonic renormalization of
the Weinberg-Salam Hamiltonian.

The amplitudes for the baryon-baryon-meson vertices
can be used to determine effective coupling constants in
the effective weak parity-violating Hamiltonian:

pv 1—few A'«X 0")oP
2

+NNa) 4(hN1vcu lv +hN1vcur04'v )y ysf ~

&Xi it'[h~~~r P—,+hive. ge+hvxi. (3rogz r Pv)/2v'6]y ysP,
H ~~~ = h ax ggV" +H. c. ,

a', xi, h', xp A„,q'&——'+h ~xp A"„oe"'+h,'xp(qy„, e A„q &+ —qr'y&, q'&')+—H. c. ,

pvH~~ = —f~~ 4'"'(EXP )o'Ii„, ,v'2

~~~.=q'"'(h ~~ 4".+h ~~.rA:)y'ysq'„;

H~~p=+"'[hqqpr P +ha~pK)+ha~i (3roK) r P, )/2 6]y ys

+ h ~~ ( ~P "+r Pi'; y sy ql„, —0' " r+ Pi,' y sy'iIj„, +H. c. ),

(34)

where 4" is a Rarita-Schwinger spinor with p the time-space index and i the isospin index, g is the nucleon Dirac spi-
nor, and P, P"„and P", are the field operators for the n, ai, and p fields, respectively. The hb, M Hamiltonian looks very
similar to the 2VXM Hamiltonian with the Dirac spinors replaced by Rarita-Schwinger spinors. One new term h&&
enters, but only the isovector neutral-current terms in the diagram of Fig. 1(b) contribute to it, and it is, therefore,
small. This term is the only contribution to the b, b,M Hamiltonian from the diagram of Fig. 1(b).

The coupling constants of the hadronic Hamiltonian are related to the 11 vertices in Table II by the following rela-
tionships:

h,'~ =+ ,' &pco~IIpv~n+ &, —

=-'(&np-~a' ~S-
& &pp+~a" ~~++ &—),

= —-'(& np-[11"(~- &+(pp+ (11"(S++
& ),

h~~, =V' ,'&pp'l~"~~+&+h~-~, —h~x,

g„.=v'3(a+p+ja' ~S++ &,

(35a)

(35b)

(35c)

(35d)

(35e)



43 5 CONTRIBUTIONS TO THE PARITY-VIOLATING NUCLEAR. . .

oo l~
I

II

+

II

+

II

0
~ vH

0

05

0
cn 0

~ W
Ch

ch

11

cga

gq
CO

tugq

III
~
o

+

Q o
~ rK

t~™

~ l~

Il

0

g

p II

~ ~

Q
+

~ ~

+
+

&I

CV

+

+

+

+

+
+

+
+

I ~
+

gq

+
+

+ ~ gq

+ ~ +
I

+ 4 +

I

I

+

+

I

++

I

+
& t~™

I

gq +

I

I

+ eel~

~ ~

Q.
+

~ ~

+

+
+

~ ~

+

&I

+

+
I

I

+
oQ

t~

+ 4
+

= +

+
++

+w -'.

+

i~
I

+

tM-l~ I

+

oQ

I

c

+

+
oQ

Kl
+
4

I

I

C4

+

I

I

+

+

gp

+

+

~l~
I

oolm

I

CO

+

I

I

I

+
oQ

&j~

+
CV

+

+

+

I

+

I

l~

+

+

I

I

t~™
I
~ og

+

+

+

I

~l~
I

oo les

I

~ ~

+

I

+
CrQ

cV

I

4„

+

+

+

I&

+

~ ~

+

&I

~ ~

+

&I

+

I

I

+

+

+=
I

+

+
cv

+
+

O)~

+

I +

++
I

I

gl
I +

+

+

I

I

~ l~
I

I

+
~l~

+ +
(Q

+
GQ

+

I

I

cv

+
I

+
I

I

+ I I

~ ~

+

I

I

=+
+

t~ +
+ ev

I

+
I

I

aq

+ I

+

~ ~

+



872 FELDMAN, CRA%FORD, DUBACH, AND HOLSTEIN 43

h' „=—
—,'~ —,'(&b, colH ~b, &+&6,++colHP la++&),

=-'+-', ( &
a-~lH' ls-

&
—

& ~++~lH "l~++ &),

=-'Q2(&a++p'lH"la++& —&a 'lH"ls &)—'(&a+p+lH' la++&+&a' —H" s-&)
= —

—,'~—', (&b, +"p'lH la++ &+ &b, p'lH b, &)

v'6
[&s+ +lH"la++&+&a' lH' ls &

—+'(&s++ 'H"la++& —&s- 'lH"ls &)],

(35f)

(35g)

(3511)

(35i)

(35j)

-(&&+ +lH"l~++& —&&' IHPvI& &) .hhP 4~2 P p (35k)

It is straightforward to evaluate the SU(6) reduced
matrix elements aT, ai„bT, bi„and ci, . Equation (8) is
used to evaluate a~ and aT. The matrix element of the
axial vector between two nucleons can be taken from beta
decay, and the matrix element of the vector current be-
tween a p and the vacuum can be obtained from e+e
annihilation at the p resonance. Values for bT, bv, and
cz [or equivalently C of Eqs. (19) and &8& of Eq. (26)]
may be obtained by fitting hyperon decay amplitudes to
SU(6) predictions. The experimental values, the SU(6)
calculations, and the fitted values of these amplitudes are
all given in DDH. Following this procedure, we obtained
the following values for the reduced matrix elements:
aT=a&/3=1. 38X 10, bT= —b~=8.8SX10, and

c~ =6.90X 10
Evaluation of the remaining parameters is more ambi-

guous. The strong-interaction parameter K is given by
Eq. (34), but values for the QCD constant g, and for the
ren or malization point p, are not well defined. The
coefficient y is defined by Eq. (12), but there is model
dependence in the choice of quark masses and in the
determination of the matrix element S. The reduced ma-
trix element g, which comes from a Fierz rearrangement
of the VA —A V terms evaluated for the sum-rule dia-
grams, is not well defined since we do not know the pre-
cise mechanism for generating the cz terms.

As mentioned above, values for bT, bz, and c& were
obtained from experimental AS =1 hyperon decay ampli-
tudes. Possible SU(6) symmetry breaking will affect
vector-meson vertices and pionic vertices differently as
discussed in DDH. Therefore, to account for possible
SU(6) symmetry breaking, we introduce the parameters i)
and g'. For the vector-meson vertices, cz is multiplied by

whereas b T and b z are multiplied by g. For
strangeness-conserving pionic vertices, several options
are discussed in DDH; in this work we choose not to
scale the bT, b~, and c~ contributions.

Since there are considerable uncertainties for the
values of some of these parameters, we have, following
DDH, generated for each weak coupling both a "best
value, "which is based on a defined value for each param-
eter, and a range, which is obtained by varying parame-
ters over reasonable values. Our best values and approxi-
mate ranges are shown in Table III in units of 3.8 X 10
The best values are obtained for the strong-interaction
parameter E =4, the bT, bv, and cz scaling factors
i) =rI'=0. 5, and the reduced matrix element /=0. For y

4 aTy=
3V'2 sin 9,cosO,

(36)

We have also calculated the NNM coupling constants
using both our method and that of Desplanques. Those
results are given in Table IV. Despite the similarity be-
tween the two methods, there are considerable differences
in some of the coupling constants. Also, there is a con-
siderable difference between our "best" values and those
given in DDH due to a difference in how the "best"
values are defined. Notably, our value for f is sinaller
than that of DDH, and it is more consistent with other
determinations, both experimental ' and theoretical. '

There is clearly considerable uncertainty in our predic-

TABLE III. Range and two sets of "best values" for hNM
and Ab, M effective Hamiltonian coupling constants. Values are
in units of g =3.8X10

Coupling constant Best value Desplanques Range

f~~.
1~ AN(u
0~ A%p
1~ b, %p

A ANp
0~ hb, ni
1~ Abco

~ b, hp
1h gQp
r]

A gQp
2h bbp

—20
11
20
20
0

41
12

—17
3
0

34

—20
10
30
20
0

52
11

—5
2
0

34

—51 —0
5 —17

—54-152
17—26

—0.5 —2
—20-85

5 —18
—51-71
—3 —8
—1 —3
30-45

we use Eq. (12) with m„+md =11.7/Z MeV, where Z is
a renormalization factor, and S =Z =—,', yielding

y =4.63 X 10 . The ranges correspond to variations in
E from 1 to 7, g from 0 to 1, g' from 0 to 1, and y from
zero to its value with S=Z = 1 and m„+ md = 11.7 MeV,
viz. , y =1.18X10

In Table III we also compare these "best values" to
those calculated following a similar prescription
developed by Desplanques. The only differences be-
tween the two methods are Desplanques' choice of (=1,
a slight change in the strong-interaction enhancement of
the cz term, and a different way of calculating the factor-
ization contribution for the pion couplings, which is
equivalent to replacing Eq. (12) with
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TABLE IV. Range and three sets of "best values" for NNM effective Hamiltonian coupling con-
stants. Values are in units of g =3.8 X 10

Coupling constant

NN rr
lhero

~ NNp
1h NNp
2

~NNp

Our method

7
—6

—10
—1

—18

Desplanques

7
—6

—16
—1

—18

DDH

12
—3

—30
—0.5

—25

Range

0—17
—10——3
—82-28
—3 —1

—25- —16

tions for these coupling constants. The ranges given are,
however, very conservative, since they represent the
greatest excursions from the "best" value found for the
large variations taken for K, g, g', and y. Finally, it
should be emphasized that the values for the coupling
constants given in Tables III and IV are not uncorrelated.
The model we have used is much more predictive than
the ranges given in Tables II and IV would seem to indi-
cate since these couplings are, in fact, all determined
from choosing only four parameters. The expressions
given in Eqs. (35) and Table II can be used to examine the
parameter dependence in more detail.

IV. CONCLUSIONS

We have carried out quark-model calculations of
parity-violating weak vertices between 6's, nucleons, and
mesons, generalizing the work of Desplanques,
Donoghue, and Holstein to include the 6 sector. The
quark-level Weinberg-Salam weak Hamiltonian including
strong-interaction renormalization was employed. Evalu-
ation of the relevant matrix elements of this Hamiltonian
could be broken into three separate terms representing
different topologies of Feynman diagrams, the "factoriza-
tion" diagram, the "quark-model" diagram, and the
"sum-rule" diagram. This treatment requires ten param-
eters. Five of these, the SU(6) reduced matrix elements
(only three of which are independent in our model), could

be related to known processes and were obtained from Ats

to data. A sixth, related to the pseudoscalar production
of pions in the factorization term, could be estimated
based on the quark equations of motion and PCAC. The
others, used to approximate the effects of SU(6) symme-

try breaking, to set the scale for the strong-interaction re-
normalizations, and to estimate the scalar-pseudoscalar
matrix elements in the sum-rule diagram, could only be
estimated based on physical insight and experience in the
nucleon sector. This treatment enabled us to evaluate the
coupling constants for an effective one-meson-exchange
parity-violating interaction involving both nucleons and
6's. The procedure for fitting and "guessing" the various
parameters of the model led us to specify both a set of
"best values" for these couplings based on the preferred
values of the parameters and a set of ranges based on
reasonable variations in each of the parameters. Expres-
sions were given to allow further exploration of the pa-
rameter dependence and interrelationships between the
calculated coupling constants.

The resulting effective parity-violating interaction is in-
tended for use with models of the nucleon-nucleon in-
teraction which include 6 degrees of freedom. It will be
applied to the description of parity violation in proton-
proton scattering in a subsequent publication.
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