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An efficient method for construction of an analytic 5 matrix from experimental data based on the
use of the statistical Pade approximation is proposed. The method is applied to the energy-
dependent phase-shift analysis of the elastic scattering of deuterons by alpha particles in the energy
range 0.87 & Ed & 5.24 MeV, and partial-wave phase shifts for l=0, 1,2 are obtained. In addition, the
energies and widths of the three known Li resonances are obtained, together with the energy of the
Li bound state and the vertex constant of the virtual decay Li —+ H+ He.

I. INTRODUCTION

In a series of papers' we have developed a very
efficient method for parametrizing experimental data by
means of a statistical Pade approximant (also known as a
Pade approximant of the third kind or PA-III), i.e., an
approximation in the form of a rational function whose
coe%cients are found by the least-squares method. This
technique makes it possible to construct an analytic pa-
rametrization of the experimental data which, under cer-
tain conditions, provides a stable extrapolation and ana-
lytic continuation of various quantities. The method
has been particularly useful for parametrizing the energy
dependence of the S matrix and phase shifts of elastic
scattering of light nuclei' ' and for parametrizing the
angular dependence of the cross sections. '

In the present work we apply the technique of statisti-
cal Pade approximants to the energy-dependent phase-
shift analysis of the elastic scattering of deuterons by He
in the energy range 0.88 (Ed (5.24 MeV. Moreover, we
construct an analytic S matrix for this process.

Numerous energy-independent (single-energy) analyses
of this system have been carried out, ' as well as one
energy-dependent analysis in the energy range 0.8 —1.6
MeV. ' The purpose of this paper is to report an energy-
dependent analysis carried out in a much larger energy
range, namely, 0.88 —5.24 MeV.

Two methods for phase-shift analysis and parametriza-
tion of the data are widely used at present: the R-matrix
approach' and the S-matrix approach. ' In the former
the function to be parametrized is the R matrix; in the
latter it is the scattering function gt(p) =p + 'cot5t(p) (in
the simplest case of neutral particles).

Many previous authors' have used the Pade ap-
proximation to parametrize the scattering function gt(p).
However, in the majority of cases only the Pade approxi-

mant of the second kind (PA-II) was used. ' [We recall
that the Pade approximant of the second kind, also
known as the cV-point Pade approximant, is the rational
function which coincides with the function to be approxi-
mated at X specified points, whereas the Pade approxi-
mant of the first kind (PA-I) is determined by the first X
coefficients of the Taylor series of the function at one
point. In this sense the PA-II generalizes the Lagrange
interpolation polynomials. ]

The PA-III has been used by Hartt' and Hartt and Yi-
dana' for parametrization of model phase shifts calculat-
ed with high accuracy.

In this paper we shall apply the PA-III technique to
the energy-dependent phase-shift analysis. Moreover, we
shall establish the conditions for analytic continuation of
the resulting S matrix. Since our technique for calcula-
tion of the PA-III differs from other similar ap-
proaches, ' ' ' we shall describe it briefly in Sec. II.
Section III is devoted to the energy-dependent phase-shift
analysis of H+ He scattering. This system is extremely
useful for our study because it has three sharp resonances
in the low-energy region, as well as a weakly bound state,
namely, the ground state of Li, and the determination of
the parameters of these states constitutes a stringent test
of our approach. The main results of our work are sum-
marized in Sec. IV.

II. CONSTRUCTION OF AN ANALYTIC
APPROXIMATION TO THE S MATRIX

There are two ways of constructing an analytic S ma-
trix, which is necessary for an energy-dependent phase-
shift analysis. In the first approach all nearby singulari-
ties, including the left-hand dynamical cuts, are taken
into account explicitly in the ansatz for the S matrix.
This modus operandi has been widely used by Amdt and
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co-workers in their celebrated papers on the energy-
dependent analysis of the NN system. Its main advan-
tages are a low number of adjustable parameters and
good stability. However, in our case this approach is not
useful because the presence of the Coulomb interaction
makes the structure of the left-hand dynamical cuts and,
in particular, the discontinuities across these cuts very
complicated. This is also true of the singularities due to
box diagrams. Moreover, because of the angular momen-
tum coupling between subsystems, the number of cuts is
large.

Therefore, in what follows we choose a second
compromise method. We shall explicitly allow for only
the closest and most important cuts and then take advan-
tage of the high Aexibility of the Pade approximants.
This approach makes it possible to simulate the contribu-
tion from the other cuts (i.e., those not included in our
original ansatz) either by an effective pole or by alternat-
ing zeros and poles of the Pade approximants (see the ex-
amples in Ref. 19). To begin with, we shall brieily discuss
the process of construction of an analytic S matrix in the
case of one-channel scattering. The interaction between
the particles is assumed to be a combination of a
Coulomb and a short-range part.

A. Consideration of the threshold singularities

In the case of a short-range local interaction, the S ma-
trix has a kinematic square-root singularity at E =0 and
is a single-valued analytic function of the variable

p =(2(ME/A' )', where E is the c.m. energy and (M is the
reduced mass. The Ith partial-wave S matrix can be ex-
pressed in terms of the analytic scattering function

g, (E)=p '+'cot6, (p),
in the form

g ( )+ p"+'
S'l {p)=expt 2&&i(p) l

=
(E) p

2l + i

The poles of the S matrix (2) are equivalent to the zeros
of the function

f (p)=g (E)—ip

»+)„t~ { ), »+i

In the case of the short-range plus Coulomb interac-
tion, the second part dominates in the low-energy scatter-
ing of charged particles. In this case the threshold singu-
larity becomes more complicated, the function gl(E) in

Eq. (1) is no longer an analytic function of the energy,
and the effective-range theory suggests that the function
gl(E) should be replaced by the function

gl"{E)=p '+'Cl [Co(cot6(i ' i )+2riH{21—)]/Co,
which is now an analytic function of the energy, so that
the problem reduces to the case discussed above. Here
6&

' is the Coulomb-modified phase shift corresponding
to the standard decomposition of the total phase shift
5~ 6~ +7 I where ~1 is the pure Coulomb phase shift
and

g=ZiZ2e p/A p,
C() =2vrril(e " 1—),
Cl =Cl, (1+21 /1 ),
H ( 21 ) = itl(i 21 ) + —ln [ i ri sg—n( —Z i Z2 )],1

2l 7j

g(i21) = —C— 1
+i21 g [n(n +i21)]

where p is the reduced mass and C is Euler's constant.
The S-matrix poles are now equivalent to the zeros of the
modified function

r(c)( )
—C2 2!+ic t5(w .C2 2l+ i

=g "(E)—221p
'+ C, H(ri)IC (6)

h(21)= —C —In21+21 g [n(n +21 )]
n =1

B. Pade parametrization of the scattering function

We have seen that the S matrix can be represented in
terms of the analytic function gl(E) in the case of a
short-range interaction [or gl"(E) in the short-range plus
Coulomb case]. To construct the S matrix, it is therefore
sufficient to parametrize the scattering functions gl(E).

The simplest way of parametrizing an analytic function
is to truncate its Taylor-series expansion. The Taylor
series of the function g (E) in the variable p coincides in
our case with the effective-range expansion

g(E)= ——+ ,'rap ,(Pp —+——1

which is well known in scattering theory. [Instead of
simple powers, a system of orthogonal polynomials T„(E)
is sometimes used to generalize the effective-range expan-
sion:

g(E)=g a„T„(E) (9)

(see, e.g. , Ref. 26).] Such an expansion will be meaningful
only if g (E) is known a priori to be a smooth function of
energy, and it is suitable only near the threshold. An an-
alytic S matrix can be obtained by fitting the scattering
length a, the effective range ro, the shape parameter P,
etc., to the experimental data.

In many cases it is not su%cient to know the S matrix
only in the near-threshold region (e.g. , in extrapolating
the results of a phase-shift analysis to an energy region
where there are no experimental data, in making an ana-
lytic continuation into the complex p plane, in searching

All the expressions (1)—(6) are valid throughout the p
plane; i.e., they are valid on both the physical and un-
physical sheets (the sheets differ in the sign of Imp). At
positive energies the expression (4) can be simplified:

gl'(E) =p '+'Cl [cot5I '+2gh(21)/C() ],
where
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for distant singularities, in solving the inverse scattering
problem, etc.). In such cases the expansion (8) is useless
because its radius of convergence is limited by the nearest
singularity of g (E), which (mainly in the case of scatter-
ing of loosely bound composite particles) is often very
close to the origin. For example, in the case of the nd S-
wave doublet channel, the function g (E) has a pole at an
energy near —0.7 MeV. A similar situation occurs for
many other systems, such as H+ H or He+ He, where
the low partial-wave phase shifts pass through zero [i.e.,
gt(E) has a pole] at very low energies. In atomic physics
such a situation arises typically at an energy near 0.2 eV
(the Ramsauer efFect).

In order to allow for the nearest pole singularities, a
modified effective-range expansion has been pro-
posed 17,2o, 28 For example, as long ago as the initial
period of development of phase-shift analyses, the repre-
sentation

g&(E)= ——+ rop—+
2

1 1

Q 2 p —
p()

(10)

was used to analyze pp scattering. A similar ansatz was
applied to low-energy nd scattering. ' ' The pole term is
introduced here because the phase-shift analysis is carried
out near the energies where g&(E) has a pole, i.e., where
the phase shift passes through zero. In the case of nd S-
wave doublet scattering, the phase shift does not pass
through zero, but g&(E) has a pole at low negative ener-
gies, so that the scattering length cannot be inferred reli-
ably without a pole term. A more general Pade param-
etrization

(E) a +bP

which is a [1,1] Pade approximant.
A representation of the function g(E) which is niuch

more general than (10) or (ll), and which takes into ac-
count both pole and left-hand cut singularities, can be ob-
tained using the Pade approximant (PA) tech-

q .2, 18, 19,21

k+iP„S=
k iP„—k ia„—

has been proposed as a means of solving the inverse
scattering problem in the 'S XN channel. Such a parame-
trization makes it possible to describe correctly the 'S
NN phase shifts over a very wide energy range (including
the region where the phase shift changes sign).

Apart from its pole singularities, the function g&(E)
generally has dynamical left-hand cuts associated with
two- and many-particle unitarity and with exchange pro-
cesses in the case of composite-particle scattering. In all
these cases the parametrization (10) proves to be inade-
quate. An attempt to simulate the cut by a single pole
was proposed for low-energy S-wave doublet n + H
scattering. ' It has been found that the approximation of
the one-nucleon-exchange cut by a single left-hand pole
leads to a representation of the scattering function g&(E)
(l =0) in the form

P~(E)
g(E) g (K,M}(E)—

Q~«) ' (12)

P~(E)—ip ' 'Qm(E) =0 . (13)

In the case of a short-range plus Coulomb interaction, in-
stead of Eq. (13), one must solve the transcendental equa-
tion

COP+«) 2''"+'Ci'~—(n)QM(E) =0 .

The residues at these poles are now easy to calculate.
The S-matrix residues C& carry independent physical in-
formation, for they in fact give the vertex constants
g&(s ~a+b) corresponding to the decay of bound or res-
onance states to a given channel. '

C. Calculation of the PA coe%cients
and construction of initial approximation

We shall determine the coefficients of the polynomials
P& and Q~ (a total of N +M+1 independent parame-
ters) in the parametrization (12) by fitting experimental
cross sections and vector and tensor analyzing powers us-
ing a nonlinear least-squares procedure in an energy-
dependent phase-shift analysis. Such a minimization is a
cumbersome problem, and since the form of the g sur-
face in parameter space is very complicated, it is very
important to find a good initial approximation for the
coefficients. To find such an approximation, any informa-
tion can be used, namely, phase shifts obtained elsewhere,
tentative results obtained by a low-order PA, spectro-
scopic information (energies and widths), results of

where Pz and QM are polynomials in E of orders N and
M, respectively. Under general conditions the represen-
tation (12) (known as an [N, M] Pade approximant) con-
verges with increasing X and M in the entire domain of
analyticity of g (E). It converges even in the vicinity of a
cut, which is simulated by the PA as a series of poles and
zeros. Its effectiveness has been demonstrated else-
where. ' ' ' ' For example, the effective-range expan-
sion for the Yukawa potential was used' to construct the
PA representation of the partial-wave S matrix. It was
found in that paper that the Yukawa cut of the Jost func-
tion lying on the negative imaginary k semiaxis was
reproduced by alternating zeros and poles of the PA (12).

Evidently, the Pade representation (12) can be used for
effective multiple-pole modeling of the dynamical left-
hand cu'ts (in the E plane) and pole singularities simul-
taneously.

The formulas obtained by this parametrization have a
very simple structure. For example, in case of a short-
range potential, the resultant partial-wave S matrix is of
the rational form

P~(E)+ip + 'QM(E)
&i(p) =

P (E) ~ 2!+iQ (E)

and the problem of finding its stable poles (i.e., energies of
bound states, energies and widths of resonances, etc. )

reduces to that of solving a very simple polynomial equa-
tion:



43 ENERGY-DEPENDENT PHASE-SHIFT ANALYSIS OF H+ He. . . 825

theoretical calculations, etc. These problems have been
discussed in detail in the numerous papers by Amdt and
collaborators (see, e.g., Refs. 26, 33, and 34) devoted to
the problem of XX phase-shift analysis. We shall there-
fore discuss here only the problems related to the Pade
parametrization of the S matrix. In the illustrative exam-
ples presented below and in Ref. 2, we assume that the
phase shifts 6;, obtained from energy-independent phase-
shift analyses or from theoretical calculations, are known
at certain energies E; with experimental errors E;. This
means that the values of the function g (E), g(E, ) =g, ,
and their errors c.; are known. Our task now is to find an
optimal (in the sense of the y criterion) PA for the func-
tion g (E).

Minimization of the functional

1 Px(E, )
X g

Q

2

(15)

k

~

[p( )(E ) g Q( )(E )]yE( )~2 (16)

where

The zeroth iteration coincides with that presented in
Ref. 22. This algorithm, unlike the procedure proposed
in Ref. 18, involves a calculation of all the coefficients of
the polynomials P~ and QM simultaneously, thereby re-
sulting in very rapid convergence, at least in most of the
cases we have studied.

Now we shall describe the method of fixing the order
[JV,M] of the optimal PA. On increasing the order of the
PA, we usually obtain a rapid (though not always mono-
tonic) decrease of y . When the approximated experi-
mental data are known with statistical errors, we restrict
ourselves to those values of X and M for which y /v(1
(where v is the number of degrees of freedom, defined as
the difference between the number of fitted experimental
points and the number of independent adjustable parame-
ters) because, without any additional criterion, all solu-
tions for which y /v&1 are equally acceptable, and it
makes no sense to attempt to reach values of g /v much
less than unity. We stress that a decrease in y does not
necessarily mean an improvement of the approximated
function g(E), and some other criteria, preferably of a
physical origin, must be employed. For example,
Levinson's theorem has been used' to discard incorrect
solutions in a calculation based on very precise input
phase shifts. In our case, however, the input experimen-

in the standard way, i.e., use of the conditions
8 y/Ba, =0, leads to a system of nonlinear equations for
the coeKcients of P~ and QM. Such systems are very
difficult to solve directly. To facilitate the solution of the
problem, several linearized versions of the problem have
been proposed. ' ' ' ' ' Here we shall brieAy discuss
only the very effective procedure described in Ref. 2.
Each step of the procedure involves the solution of a
linear problem resulting from minimization of the func-
tional

370

\

I
1

1

I
I

350—

6
Eg {',MeV)

10

FIG. 1. Approximation of the experimental H+ He phase
shift in the 'D, state by Pade approximants of the orders [1,0]
(dashed line with crosses), [1,1] (dot-dashed curve), [2,0] (solid
curve), and [2,2] (dashed curve).

tal data are rather inaccurate. Moreover, the results of
various experimental groups are not always mutually
consistent (they have systematic errors). This results in a
deterioration of the analytic properties of the approxi-
mated function more serious than the violation of
Levinson's theorem.

A well-known problem which arises in this method is
that when the order of the PA is increased in order to
reduce y, doublets often appear. A doublet is a zero
with an accompanying nearby pole having a small resi-
due. Doublets usually appear on the real axis between
the experimental points and give a small contribution to

Sometimes, instead of doublets, a pole appears out-
side but very close to the studied energy range. The ap-
pearance of such poles and doublets in a particular PA
indicates that its order is too high and that the PA is
merely reproducing the noise in the experimental data.
Evidently, there exists an optimal order of the PA which
is achieved when the value of g is sufficiently small and
no doublets or unphysical poles are present. The lower
the accuracy of the experimental data and the degree of
their consistency, the lower the order of the optimal PA.

Figure 1 shows as a typical example the H+ He phase
shifts in the state D3 for energies in the range 2 + E ~ 10
MeV. The experimental data are not mutually consistent
in the energy range 2 —4 MeV, and they show a clear ten-
dency to decrease at higher energies. However, the phase
shifts at the two highest energies make it possible to con-
struct an approximation which increases at higher ener-
gies. The results of fitting these data by the PA (12) of
various orders [X,M] are collected in Table I. It was as-
sumed that all the data have the same relative error of
10%. The table shows the values of y /v and the posi-
tions of the zeros and poles of the scattering function
gI(E). By comparing Fig. 1 with Table I, we conclude
that the [1,0] Pade approximant (the effective-range ex-
pansion) yields reasonably good results only for E (7
MeV. The [1,1] PA gives significantly better results, with
a smaller value of y /v by more than a factor of 3; how-
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TABLE I. Fits to the data by various Pade approximants.

[N, M]

Zeros

Poles

[1,0]

5.2
1.62

1.5
1.26

16.9

[2,0]

1.1
1.13

—4.6

[2»l

2.3
1.2
3.66
3.71

18.5

ever, the high-energy trend of the phase shift is again
wrong. This behavior is caused by the penultimate exper-
imental point, which clearly lies outside the general
trend. The resulting solution, which is good in the ener-

gy range 2 —10 MeV, gives phase shifts which increase for
E ) 10 MeV (the scattering function has a false pole at an
energy —17 MeV). The [2,0] Pade approximant is the
optimal one. It gives the smallest g value, and its overall
behavior is correct. With further increase of the order,
the Pade approximant tends to reproduce the noise irre-
gularities of the experimental data. As a result, the [2,2]
PA has a doublet (a zero at energy 3.66 MeV and a pole
at 3.71 MeV) and a pole at 18.5 MeV. For even higher
orders of the PA, the distance between the pole and zero
of the doublet becomes smaller, and the solitary pole
moves outside the region under investigation. Therefore,
to generate an initial approximation for the energy-
dependent phase-shift analysis, we recommend the use of
an optimal PA satisfying the following two conditions:
(1) The value of y /v is sufficiently small; (2) there are no
doublets or false poles in the energy range investigated.

In many cases we also have at our disposal some spec-
troscopic information such as bound-state energies mea-
sured with high accuracy. Such information can be in-
corporated in our algorithm by slightly modifying the
form of the functional (16), while preserving its linearity.
If, for example, the system under consideration has a
bound state with energy Eo (0, the function f (p) [i.e.,
the denominator of the 5 matrix (2)] has a zero at
p =pa=(2pE0/A' )' in the corresponding partial wave.
We modify the functional (16) in the following way:

x g=x,'+ 4lf (po) I', (17)

where g~ f(po)~ is a penalty function (g)) 1 is the penalty
coefficient) which leads to a substantial increase of f &

at

f(po)%0. This modification improves the approximation
significantly.

III. ENERGY-DEPENDENT PHASE-SHIFT ANALYSIS
OF LOW-ENERGY H+ He SCATTERING

In this section we apply our method to a realistic case
which is of great practical importance, namely, the
energy-dependent phase-shift analysis of low-energy
H+ He scattering. Single-energy analyses of this prob-

lem have been carried out previously, ' and the reso-
nance parameters of Li have been obtained. An energy-
dependent phase-shift analysis has also been carried out
in the low-energy range 0.8 —1.6 MeV (Ref. 15); however,
because no filtration and selection of the data was used,
and the parametrization was rather simple, the results
must be treated as preliminary. In particular, the P-wave
phase shift obtained in this way is very large and does not
agree with the results of other authors. In our approach,
using a correct parametrization of the partial-wave am-
plitudes, we obtain small values of these phase shifts in
good agreement with other results. Numerous single-
energy phase-shift analyses of the H+ He system have
already been carried out up to an energy of 13 MeV on
the basis of very complete data on differential cross sec-
tions, vector and tensor polarizing powers, etc. ' Unfor-
tunately, such analyses usually do not yield a unique solu-
tion, but give several equally acceptable solutions. More-
over, the parameters of resonances obtained in this way
depend on the particular parametrization of the partial-
wave amplitudes, of the background phase shift, of the
energy dependence of the width I (E), etc. Finally, the
main advantage of the energy-dependent phase-shift anal-
yses over the single-energy analysis consists in the fact
that for low-energy scattering of spin-1 particles (deute-
rons), where the data on the vector and especially the ten-
sor analyzing powers are meager and rather imprecise,
the energy-dependent phase-shift analysis permits simul-
taneous use of a much larger amount of data than the
single-energy analysis. Also of importance is the correct
allowance for the threshold singularities.

A. Parametrization of the
low-energy scattering data for H+ He collisions

In the case of low-energy H+ He scattering, the mea-
sured cross sections and vector and tensor analyzing
powers can be expressed in terms of the partial-wave am-
plitudes 3 ~ as

r

i'+/A /'+/A /'+ —iA /'+ fA

i(T» ) = +2/31m A00A io+ Aoi A ii
—Ai i

dO

dQ

2
dcT

dQ
(18)
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& T2, &= —&2/3Re AOOA f()+do,
80
dA

&T»&=«2~»~ f&
—l~~ol' ~3 8cT

dA

6I =arccot
P~ (E)

2l+ Ig!,J(E) ( 2

2rih(g)
Co

(20)

The mixing parameter c.
&

can be expressed as

tane, =F~(E)/G~(E), (21)

where Fz and GM are polynomials in E, and Fz(0) is ap-

The formulas for the scattering amplitudes in terms of
the collision matrix UI &

are given in Appendix 1 of Ref.
6; the signs of the terms containing off-diagonal S-matrix
elements, however, must be reversed. The S-matrix ele-
ments UI &

are expressed in terms of the phase shifts 6I
and the mixing parameter c.

&
of the S and D channels as

Uoo =cos E&exp(2i5 )+sin c, &exp(2i5ii),

U„=exp(2i 5, ),
Uo2 = U~o= —,

' sin(2E&)[exp(2i5 )
—exp(2i5~)],

U22 =sin E,exp(2i5 )+cos E,exp(2i5&),

U»=exp(2i 5, ), Uzz=exp(2i 52),
U', , =exp(2i '5, ), U2~ =exp(2i 5~) .

Here l and l' are the orbital angular momenta of the en-
trance and exit channels, respectively, J is the total angu-
lar momentum, and 5 and 6& are the eigenphases, which
redue in the limit v~0 to the phase shifts '6o and '62 of
the states S, and D, . It is assumed that l (2 in (19).

An alternative form of energy dependence of the phase
shifts can be obtained from Eqs. (7) and (12):

proximately equal to the quadrupole moment of the Li
bound state.

All the parametrizations were obtained by minimizing
the functional

(X X"—Y ')
S 1 I

X gg &Y( g
S l

(22)

where Y ' are the experimental values of the cross sec-
tions, polarizations, etc. , hY ' are the corresponding ex-
perimental errors, X,"are the values of the observables
given by the fit, and X, is a normalization factor for the
sth set of data.

B. Data set and construction of the initial approximation

Our analysis is based on a large number of diverse ex-
perimental data (cross sections and vector and tensor
analyzing powers) obtained by many authors
in different energy ranges (see Table II). These data are
of variable accuracy, and before the energy-dependent
phase-shift analysis is attempted, the data must be made
mutually consistent. Consistency is achieved by filtration
of the data, which consists of the following selections.

(i) All the subsets for which y /v is greater than 9 (cor-
responding to more than three standard deviations) are
discarded.

(ii) In the remaining subsets we discard all the points
which contribute more than 9 to y /v, provided that
these points are isolated, i.e., that the poor fit to them is
not due to a poor fit to the points at neighboring energies.

(iii) In order to allow for different normalizations of the
data, we have introduced the normalization coefficients

TABLE II. Description of the data set used in our analysis.

Data
set

index
Reference Data type

Energy range
(MeV)

Initial
number
of data
in each

set

Final
number
of data

after
filtration

1

2
3—5
6
11
12
13-15
21
22
23-25
31
32
33-35

6
36
9

15
7

37
8

36
38
39
40
41
42

do /dQ
do. /d0
&T20&, &Tzi
do. /dO
do. /d 0
i(T„)
& Tao &, & T2i
do. /d A
i&T„)
&T2o& &Tzi
do. /dQ
i&T„)
( T20 &» & T21

), (T~~)

), (T~~)

), (Tpp)

), & Tpz)

0.919—1.228
0.88—1.6

0.993—1.6
0.872 —1.433
2.935—4.955

3.0—4.81
2.32—5.24

1.6—3.51
2.5 —4.96

4.25 —5.21
3.4-5.2

2.38—4.95
2.225 —5.23

218
10
45
88
74
30
57
40

8
12
53

7
18

218
9

45
88
57
22
50
30

8
8

46
6
5
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N, [see Eq. (22)]. If the value of N, for a particular group
of data is larger than 1.3 or smaller than 0.7, the data
group is discarded.

To facilitate the energy-dependent phase-shift analysis,
we carried out separate preliminary analyses in two ener-

gy ranges, namely, 0.87—1.6 MeV (Ref. 35) and 2.35—5.24
Me V. In the first range we used six data groups
s =1,2, . . . , 6 (see Table II), including a total of 361 data
points. After filtration of the data as described above,
one point was eliminated. The initial approximation was
constructed on the basis of the phase shifts given in Ref.
15. The results of the g minimization in the lower and
upper energy ranges are given in Tables III and IV, re-
spectively. Let us consider first the results obtained by
using the data in the lower-energy range. Evidently, all
the measurements of the differential cross sections in that
range (s =1,2, 6) are in good mutual agreement, as the
normalization coefficients N, differ from unity by less
than 1%. On the other hand, the data on the analyzing
power disagree not only with each other, but also with
the cross-section measurements; the coefficients N, differ
from unity by 16—26%%uo. The overall value y /v=1. 36
indicates that as a whole the data are correctly described.
For details of the analysis, see Ref. 35.

In the energy range 2.35—5.24 MeV, we have used 299
points (s= 1 1 —35; see Table II). Following Ref. 11, we
have used a constant normalization coefFicient N, =0.92
for the data group with s =12 (if this coefficient is al-
lowed to vary and the g minimization is carried out, we
obtain the value N, =0.96).

To determine initial values for the coefficients of the
Pade approximants, we have used the phase shifts given
in Ref. 11. As a result of the filtration process, the points
with y /v) 9 were discarded together with the data sets
24, 34, and 35, for which the normalization coefficient
differed significantly from unity (N2~=0. 1, N34=0. 44,
and N&& =0.65). The results based on the remaining data
(239 points) are collected in Table IV. The small overall
value y /v=2. 1 indicates a reasonably good description
of the data.

The normalization coefficients N, are also very close to
unity for the measurement of the cross sections
(s = 11,21,31) and of the vector analyzing powers
(s = 12,22, 32). For the measurements of tensor analyzing
powers, these values differ from unity by 14—25 %%uo.

The initial data set for the energy-dependent phase-

shift analysis over the whole energy range 0.87—5.24
MeV was constructed from the two data subsets obtained
as described above by filtration of the data within the
subranges 0.87—1.6 and 2.35 —5.24 MeV and consisted of
592 points.

It is known from a recent single-energy analysis'" that
in this energy range the mixing and absorption parame-
ters are very small and that the phase shifts with / & 2 are
negligible. Therefore, we restrict ourselves in our
energy-dependent phase-shift analysis to real phase shifts
for l=0, 1,2 and neglect the mixing of the channels S&
and D&. Initial values of the coefficients of the Pade ap-
proximants were obtained by using the phase shifts in the
energy subintervals 0.87—1.6 and 2.35 —5.24 MeV, which
we obtained in the first stage of our analysis. The phase
shifts were approximated by low-order Pade approxi-
mants (see Table V), using the linear iterative approach
[Eq. (16)]. For a description of the data over the whole
energy range, we used Pade approximants with only 19
independent parameters (see Table V); i.e., the number of
degrees of freedom was 573.

C. Energy-dependent phase-shift analysis
in the range 0.87—5.24 MeV of deuteron energies

The full analysis consists of several steps. First, we set
all N, =1 and minimize the g functional in order to find
the values of the Pade parameters. The resulting values
of y /v are summarized in Table VI. The second column
contains the results for the initial approximation, and the
figures in the third column are the results of the complete
minimization. The minimization reduced the value of
y /v from 169 to 3.1. It was also found that all data sets
except the one with s = 15 correspond to values
y (s)/v(9. According to the criteria discussed above,
we should eliminate this set. However, this is one of the
few sets containing the results of measurements of the
tensor analyzing power ( Tz2 ), and we have already elim-
inated one such set (s =35, with y /v=78. 1). We there-
fore decided to retain this data set in the hope that the in-

TABLE IV. Results of the fit in the energy range 2.35—5.24
MeV.

Data set index

N,

Data set index

Resultant y /v

0.9907
0.9911
0.7640
1.2658
1.1681
1.0059

1.4
2.2
0.7
1.5
1 ~ 1

1.1
1.36

TABLE III. Results of the fit in the energy range 0.87—1.6
MeV.

11
12
13
14
15
21
22
23
25
31
32
33

Resultant y'/v

0.9704
0.9974
0.8066
0.8397
0.7485
1.0
0.9661
0.8209
0.8179
1.0034
1.0240
0.8539

2.7
1.9
2.0
2. 1

2.2
2.0
1.9
1.3
0.28
1.3
2.5
0.43
2. 1
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FIG. 2. DifI'erential cross section as a function of the c.m.
scattering angle. FIG. 3. Difterential cross section as a function of the energy.
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TABLE V. Orders of the Pade approximants used in the energy-dependent phase-shift analysis in
the energy range 0.88 —5.24 MeV.

Channel
2S+ 1LJ 3g 3p 3p 3p Dl D 3D

PA order
[X,M]
Number of
parameters
Np =N+M+1

[2,0] [2,0] [2,0] [1,0] [1,0]

troduction of a variable normalization parameter N, im-
proves the situation.

In the next stage we allow the normalization
coefficients to vary while the Pade coefficients are held
constant. The y values obtained after such minimization
are given in the fourth column of Table VI together with
the corresponding values of the normalization parameters
X, (fifth column). The value of y /v for each data set, in-
cluding the set with s =15, is less than 9; i.e., all the sets
fulfill our selection criterion. The value of y /v for
s = 15 is 2.1, but the corresponding normalization
coefficient is N&5 =0.7363, which is at the limit of accep-
tability. The overall value of y /v was reduced to 2.0 as
a result of this procedure.

The large initial value of y (s)/v for s =31 indicates
that the estimate of the error in these data is probably too
low. The situation is less favorable for the data sets
s =21 and 32, for which the introduction of variable nor-
malization parameters reduces the value of g /v only

0,7—

0.5—

03—

0.1—

-0.1

-03—

-05—

-0.7
0,7—

0.3—

I 1

O, =10&.1

8, ~= 66.0

TABLE VI. Results obtained with variable normalization
coefFicients.

-0.3—
Zeroth
approx. Full fit With variable N,

1

3
4
5
6

11
12
13
14
15
21'
22
23
25
31
32
33

Resultant y /v

y (s)/v
7.1

2.7
1.6
1.1
0.7

83.9
16.6
16.7
7.4

34.0
74.0
40.3

5.2
81.1

1916.4
97.6
4.8

169.5

y (s)/v
1.4
2.1

1.7
1.1
0.9
7.7
5.2
3.4
4.5

10.2
5.0
6.4
2.7
5.6
3.4
8.3
1.1
3.1

y'(~) /v
1.4
0.7
1.5
1.1
0.8
2.5
2.6
2.6
1.5
2. 1

4.8
1.5
1.2
0.4
3.3
7.5
0.7
2.0

N,
0.9986
0.7623
1.2666
1.1575
1.0126
0.9645
0.9587
0.8545
0.8103
0.7363
1.0065
0.9408
0.8423
0.8212
1.0011
0.9883
0.8847

-0.7—

0,5—

0.3—

0.1

-0.1

-03—

x Bc~-55 3
&& 0 =55.3

gx
X

X
x&

I I

3
Ed (MeV)

'In the final analysis the data set s =2 was combined with the
set s =21. FIR. 4. Analyzing power ( T, , ) as a function of the energy.
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TABLE VII. Pade parameters' for the scattering function gl'(E) [see Eq. (12)].
2S+ 11J

51
3p
3p
3p
3D

D2
D3

ao

—3.2508 x 10-'
—1.2783
—0.192 63

2.0780
3.1069x 10
2.3701 x 10-'
5.9730X 10

a1

6.1872 X 10
0.815 08

—1.2221
—0.903 58
—1.0220 X 10
—4.8650X10 '
—8.0840 x 10-'

a2

—0.17094
0.227 71
0.13504

—4.3373X10 '

—0.130 53

'The parameters are defined by P~(E)=g, Oa;E;, QM(E)=1++, bJE'

0.5

03-
x 0c

0,. =66.5

0.1

-0.1

-03—

-0.5 ' I I I

2 3 4
Ed (MeV)

0.5—

0.3—

0.1—

-01—

slightly. The data set s =21 is an old measurement ' of
the difFerential cross section; however, the data in this en-
ergy range are very scarce, and we cannot eliminate them
completely. The same situation pertains to the data set
s =32, containing measurements of the vector analyzing
power. By comparing the values of X, for various s, we
conclude that (i) the data on the cross sections are in very

good agreement with each other; (ii) the agreement of the
polarization data with each other as well as with the
cross-section measurements is less satisfactory, and the
polarization data are probably subject to a systematic er-
ror.

The value y /v=2 for our final minimization indicates
a very good description of the data. The quality of our fit
can be judged also from Figs. 2 and 3, which show the
diA'erential cross section as a function of the energy and
c.m. scattering angle, and from Figs. 4—7, which show
the vector and tensor analyzing powers.

The main results of our analysis, the S and D phase
shifts, are displayed in Fig. 8, and the P phase shifts are
shown in Fig. 9. The results of single-energy analyses"
are also shown in these figures. We see that our results
for the S and D waves are in very good agreement with
the results of Schmelzbach et al. ;" however, our curve
for the P wave is much smoother than theirs, and our
phase shifts are also smaller. The dashed curves in Figs.
8 and 9 show the extrapolation of our phase shifts to en-
ergies below 0.87 MeV and above 5.24 MeV. Clearly, our
analytic S matrix yields a correct extrapolation to dis-
tances far from the initial energy range, and this indicates
that we have correctly taken into account the basic ana-
lytic properties of the S matrix. The values of the Pade
coefficients for the modified scattering function gi'(E)
(giving the phase shifts displayed in Figs. g and 9) are
given in Table VII.

For all channels except the S& and D3 channels, a
good description of the data is achieved by means of a

pei 03

0.3—

01—

-0.1—

ac.m.=120 '
0.5

0.3—

0.1—

-0.1—

-05—
I I I

3
Ed (MeV)

-0.3—

-0.5 I I I

2 3 4
Ed (MeV)

FICx. 5. Analyzing power ( Tzo ) as a function of the energy. FIG. 6. Analyzing power ( Tz, ) as a function of the energy.
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FIG. 8. S and D phase shifts as functions of the energy.

FIG. 7. Analyzing power ( T2z ) as a function of the energy.

polynomial approximation of the function gf(E) (see
Figs. 8 and 9 and Table VII). For the S, and D3 chan-
nels, a Pade approximant must be used because of the
sharp decrease of the S& phase shift with energy and be-
cause of the presence of a narrow resonance in the D3
channel.

D. Resonance analysis and extraction of low-energy parameters

As we have already noted, our S matrix based on mea-
surements in the energy range 0.87 —5.24 MeV describes
the phase shifts in a much broader energy range (0—12
MeV); i.e., it makes it possible to carry out a stable extra-
polation to the region containing four Li states, namely,
the ground state in the S&(1+) channel and three reso-

TABLE VIII. Parameters of the Li resonance levels with T =0 obtained by various authors in chro-
nological order.

LJ

D3

D2

Levels

3+

Ez (c.m. )

(Mev)

0.709
0.709
0.715

0.711+0.002
0.713
3.395
3.1

2.81
3.2

2.835+0.022
3.07+0.02
2.88+0.04

2.81

r {c.m. )

{MeV)

0.026
0.024+0.002

0.030

1.34

1.7+0.2
1.6+0.02

1.32+0.04
1.07

Reference

7
9
10
44

present work
7
8
10
11
44
13
14

present work

4.765
4.2
3.54
4.2
4.2

4.175+0.05
4.35+0.06
3.82+0.1

3.88

2.7

1.5+0.2
1.75+0.06

1.9+0.1

2.62

7
8
10
11
12

13
14

present work
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TABLE IX. Low-energy parameters of the even partial waves.

10- LJ

Sl
D3
D2
Di

30.8
—167.4
—42.2
—32.18

1.88
—0.23
—0.15
—0.032

P
—2.54

0.92

10-

20—

I I

E (M eV)

FIG. 9. P phase shifts as functions of the energy.

After that we determined the value of the residue Co,
which is related to the vertex constant G as

Co= —(i/~)(pc/fi) , G

We found the value G=0.33, which is 30%%uo larger than
the value obtained by the discrepancy-function method.

IV. CONCLUSIONS

nances in the channels D3(3+), D2(2+), and D (I1+).
These states are found by solving Eq. (14) in the complex
p plane. Our results for the energies Ez and widths I of
the resonance states 3+, 2+, and 1+ (E~ =ReE„,
I = —2ImE, where E is the complex energy at which
the S matrix has a pole) are compared with the results of
other calculations in Table VIII.

This table shows that various calculations give practi-
cally the same energy of the D3 state; however, the re-
sults for the width differ by 20%. This state was also cal-
culated in our previous analysis in the energy range
0.87—1.6 MeV, where we found Ez =0.713 MeV and
I =0.022 MeV. Thus our phase-shift analysis over the
larger energy range has given a significantly larger reso-
nance width, with little change in the resonance energy.

The results for the 2+ and 1+ states are much more
scattered than those for the 3+ state. Our results com-
pare well with the results of Ref. 10, obtained by means
of an S-matrix parametrization.

The parameters of the effective-range expansion, i.e.,
the scattering length a, effective range r, and shape pa-
rameter P, are collected in Table IX. The values of the
effective range r are in all four cases at least an order of
magnitude larger than the value of the first term —1/a of
the efFective-range expansion and are comparable with
the value of the shape parameter P. Therefore, the use of
the shape-independent approximation is unjustified. Of
great interest is the value of the residue at the S-matrix
pole corresponding to the ground state of Li. This resi-
due is closely related to the value of the vertex constant
of the virtual decay Li~ He+ H. Various values of the
vertex constant have been published (see, e.g. , Ref. 32).

In order to determine this quantity, we again solved
the equation f&J(p) =0 and found that the S matrix has a
pole in the SI channel at an energy Eo = 1.38 MeV.
This value compares well with the exact value 1.47 MeV.

Our main results can be summarized as follows.
(1) The Pade parametrization of the S matrix (a special

case of which is the polynomial representation) consti-
tutes a very eKcient means for carrying out an energy-
dependent phase-shift analysis based on the data on the
differential cross sections and analyzing powers.

(2) By allowing for the analytic properties of the S ma-
trix, provided a sufficient amount of experimental data is
available, the phase shifts obtained from the data in a cer-
tain energy range can be extrapolated to a larger energy
range and also analytically continued to the unphysical
energy sheet, thus making it possible to find the reso-
nance poles (and residues) of the S matrix.

(3) Our low-energy results, when combined with the re-
cent very accurate results' of the single-energy phase-
shift analysis in the energy range 6—43 MeV, make it pos-
sible to construct a full description of H+ He elastic
scattering from the threshold to 43 MeV.

(4) Our P wave phase s-hifts are relatively small and
behave smoothly at energies below 7 MeV.

(5) Our resonance energies compare well with the re-
sults of other calculations and are probably more accu-
rate than the latter. This is especially true for the states
3+0 and 2+0, which lie entirely in the energy range in
which the experimental data are available, since we use a
single analytic S matrix not only for parametrization of
the phase shifts, but also for the analytic continuation to
the unphysical energy sheet. This means that we have
made a direct determination of the S-matrix poles on the
unphysical sheet without recourse to the fitting of Breit-
Wigner formulas. The use of Breit-Wigner formulas al-
ways raises the question of the energy dependence of the
width I (E).

The authors express their gratitude to Professor I. Ya.
Barit for critical discussions, to Dr. N. M. Sobolevsky for
help with the error analysis, and to L. N. Brovkina for as-
sistance in the numerical calculations.
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