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Based on a hybrid mapping, the vector coherent state theory is revisited. The hybrid mapping of
a fermion state with N coherent (collective) fermion pairs and u unpaired (noncollective) fermions
leads to a hybrid state with N bosons and u fermions. The hybrid mapping is exact by which the
formidable problem of finding the matrix elements of a fermion operator for a (2N + u)-fermion sys-
tem is reduced to that for a u-fermion system. The Pauli effects are totally taken into account by
the overlap matrix (the K matrix) for the fermion states. The application to a fermion system with
the Sp(6) D U(3) dynamical symmetry is discussed where it is vividly seen that the occurrence of the
dynamical Pauli factors is related to the fermion pair<>boson transformation. The intricate proper-
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ties of the intrinsic operators and the K operator are discussed in detail.

I. INTRODUCTION

The vector coherent state (VCS) theory developed by
Rowe! ® and in slightly different form by Deenen and
Quesne* is a very powerful method for computing the re-
duced Wigner coefficients as well as the matrix elements
of the generators of both noncompact groups, such as
Sp(6,R),’ Sp(4,R),® and compact groups, such as Sp(4),’
SO(8), sO(7),8 Sp(6),’ and SU(3).1° Recently, this tech-
nique has been extended to the calculation of the matrix
elements of the operators lying outside the Lie algebras of
the relevant groups.'"!? This has greatly extended the re-
gions of applicability of the VCS theory and will thus be
named as the generalized VCS (GVCS) theory. However
the exploration of the physical implications of the VCS
has not kept up with the development of the technique.
Besides, there remain several puzzling questions which
make this elegant theory rather elusive. For example, the
VCS theory in Refs. 1 and 10 is based on the unitary
mapping y(0)=K ~'T'(O)K, while in Ref. 4 is based on
the dual basis. However both K ~! and the dual basis do
not exist when the basis vectors are linearly dependent.
How to derive the VCS theory in these general cases?
What is the essence of the intrinsic operators? In the
GVCS theory,!"1? the intrinsic operator is defined
through its left action on an intrinsic state. Is the left-
action definition necessary? Can the GVCS theory be
presented in a simple and physically oriented way which
makes contact with the popular fermion-pair— boson
mapping?

In this paper we will introduce a hybrid mapping H
which can be applied to a system whose states can be de-
scribed by a certain kind of coherent pairs and a few un-
paired fermions, which correspond physically to a certain
kind of collective excitation superimposed on some
single-particle excitations. The hybrid mapping H maps
a fermion state with N coherent fermion pairs and # un-
paired fermions into a hybrid state with NV bosons and u
fermions, and maps a fermion operator O into a hybrid
operator H(O) consisting of both boson and the pseudo-
fermion operators (in the VCS language, the intrinsic
operators). In general, the pseudofermion operator
differs from the true fermion operator in that it involves a
fermion-boson coupling, i.e., the coupling between the
collective and noncollective motions. Only when this
coupling term is zero or negligible does the pseudofer-
mion operator become a true fermion operator and com-
mute with boson operators. In light of this hybrid map-
ping, the VCS theory is rederived.

The Pauli effects are crucial for a fermion system. One
of the major advantages of the fermion dynamical sym-
metry model (FDSM) (Ref. 13) over the interacting boson
model (IBM) (Ref. 14) is that the Pauli effects in the
former can fully be taken into account, while for the
latter they are either totally neglected or taken into ac-
count only partially by a certain kind of mapping pro-
cedure. One of the Pauli effects is called the dynamical
Pauli effect reflecting the disappearance of certain irre-
ducible representations of the dynamical group due to the
Pauli principle.!>!® This was first recognized by Ginoc-
chio in the development of the Sp(6) S,D-pair model.!”
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We will show in this paper how the VCS theory is
tailored for attacking the seemingly formidable problem
of computing the Pauli effects in the FDSM in an analyt-
ic way. Therefore H provides an ideal mapping from the
FDSM to the IBM or IBFM (Ref. 18) (interacting boson
and fermion models). The advantage of the mapping is
that it is exact, unlike other approximate mappings.'®?°
The calculation of the matrix elements of a fermion
operator is carried out in three steps, and in each step the
essence of the physics is vividly reflected in the formula.
The three steps are as follows: 1. Switch from the fer-
mion space to the hybrid space by transforming the N
fermion pairs into N bosons. II. Calculate the matrix
elements of the hybrid operator H(O) in the hybrid space,
which can easily be factorized into the boson matrix ele-
ments and the “fermion” matrix elements between the
pairless states. III. Finally switch back to the u-fermion
space for computing the ‘“fermion” matrix element. In
this way the calculation of the matrix elements for a
(2N +u)-fermion system is reduced to that for a wu-
fermion system. The dynamical Pauli factors occur at
the first and third stages where fermion-pair<>boson
transformations take place. There is no dynamical Pauli
factor in the second stage where the boson and ‘““fermion”
operators are independent of one another. When the
shell degeneracy () becomes infinite, the ‘“‘pseudofer-
mion” becomes the real fermion and all the dynamical
Pauli factors become constants, V' Q¥, and a system with
N coherent fermion pairs and u unpaired fermions
behaves exactly as one with N bosons and u fermions.
That the FDSM is reduced to the IBM (for u =0) or
IBFM (for u > 0) serves as a special example.

The paper is organized in the following way. In Sec. II
we review the transformation from a linearly dependent
basis to an orthonormal basis for a fermion system with
N coherent pairs and u unpaired fermions. Here it is
pointed out that only the left inverse of the K matrix ex-
ists. In Sec. III a hybrid mapping H is proposed to cir-
cumvent the difficulty imposed by the Pauli principle in
computing fermion matrix elements. Section IV shows
the relation between the hybrid mapping H and the VCS
mapping I'. The master equation of the VCS theory is
rederived via the hybrid mapping. Section V emphasizes
the importance of the K matrix, which takes care of all
the Pauli effects and ensures that the hybrid mapping is
free of the spurious-state problem. Section VI deals with
the calculation of the matrix elements of the hybrid
operators, I'(O), by the use of Racah algebra, and shows
that the appearance of the K matrix is related to the
fermion-pair<>boson transformation. Section VII is de-
voted to an understanding of the intricate properties of
the intrinsic, or “pseudofermion’ operators. In Sec. VIII
we discuss the relation between the nonunitary mapping
approach and the conventional unitary mapping ap-
proach to the VCS theory. The mapping from the FDSM
to the IBFM, and the difference between the hybrid map-
ping and other mappings are discussed. The distinction
between the operator K and the matrix K is carefully
made. Finally, the new perspective presented by the hy-
brid mapping is exploited in a proposed new approach to
the spectroscopy of real nuclei.

II. THE K MATRIX AND ITS LEFT INVERSE

The theory for the hybrid mapping to be discussed in
this paper is general and does not depend on any group
structure the fermion system may have. For easier acces-
sibility, in presenting the general theory we often refer to
the Sp(6)DU(3) case as illustration. We therefore begin
by introducing the generators for the Sp(6) group. In line
with the Ginocchio model'” and the FDSM,!? the shell
model single-particle angular momentum j is decom-
posed into the pseudo-orbital angular momentum k and
pseudospin i, j=k-+1i, and the k =1 case leads to the
Sp(6) dynamical symmetry for the system. The same no-
tation as in Ref. 12 will be used here without explanation
except that the creation or annihilation operator in the
k-i basis' is changed from b,:rmk,-ml_ —>a,;rmk,-mi,
bim, im,—>@km, im,- The generators of Sp(6) in the coupled

and uncoupled bases are given below.?!
Generators of Spg (coupled basis) { AL, 45, PL}:

AE'=3Sv'Q,/2[alal X, L=0,2, (2.1a)
i
PM:E\/Qi/z[aLali]JLu%: L=0,1,2. (2.1b)
i
Generators of Sp(6) (uncoupled basis):
{ ArIzm" Amm”Cmm’}
i—m,
A;m'z 2(_) laIm,imiaIm’,i—mi ’
[m,.
m,m'=1,0,—1, (2.2a)
Cmm’= 2 a1l-m im. @ 1m'im, —ﬂsmm’ ’ (2.2b)
im,. T T 3
Qi=%l—-)—, Q=3 Q, . (2.2¢)
i

The operators AL" or 4 . will be called collective
pair-creation operators, since they are a coherent mixture
of two-particle excitations. The following operators are
said to be noncollective:

T EaT (233.)

akmkiml. i
T, -1\%0 _ t 1 1%
A gy e =aa 1 I 1.

= 474,i"), I#0, (2.3b)

where a shorthand notation has been used; a; represents
single-particle excitation, while 4 %(i,i’) is an irreducible
tensor of the group SU(3) X SO'(3) with o, as the SU(3) ir-
rep label, and is called a noncollective pair. A state with
u nucleons which is totally free of coherent pairs is called
a pairless state, )
ALM|Ua,I,u>=O R
for all possible sublevels a and LM , (2.4a)

where the orthonormal pairless state |oa,Iu) is classified
according to the irreps of the group U(3)XSO'3),
o=[o]=[0,0,04] is U(3) partition label for the u un-
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paired fermions with

u=0,to,to;, (2.4b)

a are the subgroup labels for U(3), while u is called the
heritage (or generalized seniority).

A nonorthonormal fermion state with N collective
pairs and u unpaired nucleons can be constructed as

¢, )=[Z"(4 )X[U)[”’

=|(nXo)[w]lp,a) , (2.5a)

where the square brackets denote U(3) coupling [a right
to left coupling order will be used henceforth unless oth-
erwise stated, as in (4.14) and (6.7)], Z™( A') is a homo-
geneous polynomial of A4 ,{;T of order N belonging to the
UQ3) irrep n=[n]=[n,n,n;] with

=2 (2.5b)

2 b
and p is the multiplicity for c Xn—w. In (2.5a) we omit
the quantum numbers Iy in the pairless state and use the
shorthand notation |¢,). We use a single index n to
denote ([n],p) and assume that there are altogether N,
sets of quantum numbers ([n],p),

n=([nl,p)=12,...,N, .

=n;+n,+n;,

Now we turn to the general case but keep the Sp(6)
concrete case in our mind. Suppose we have a fermion
system with N coherent fermion pairs A,Ib defined in
some way and u unpaired fermions. The quantum num-
bers ab can be understood either as the quantum numbers
mm’ in (2.2), or LM in (2.1). The states for such a system
are denoted by

6, )=F,(ADo), n=1,2,...

where f,(A4 AN is a homogeneous polynomial of the pair
creation operators A, of order N and |0 ) are the pair-
less states,

Aab|0>=0 5

N, , (2.6a)

for all possible sublabels o and ab , (2.6b)

where the quantum number o is now understood as
merely an index enumerating all possible states for the u
unpaired fermions. The orthonormal states |o) are
called the intrinsic states in the VCS theory.

The N, basis vectors |¢,) are not only nonorthogonal
but also may be linearly dependent due to the Pauli prin-
ciple. Their overlap is defined by

(¢, |¢,)=KK"), ., mn=12,...,N, .
Let VW=V, vy,.
the Hermitian matrix KK

(KKHVI=2, v,

(2.7

VI{ )eo1 D€ the eigenvectors of

(2.8a)
and suppose that there are N, nonzero eigenvalues,
A;#0, for j=1,2,...,N,. (2.8b)

The integer N, gives the number of linearly independent

Jfermion states, evidently, N, <N,. The N, vectors v,
j=L2,...,N,, form an orthonormal complete set,
N, Ny
S vOvyt=s,, 3 VIVI'=8,, . (2.92)
n=1 j=1
The existence of N, —N zero eigenvalues signifies that
there are N, —N spurious states, or N, —N/ linear rela-
tions among the N, basis vectors,
Np
S V¢, »=0, j=N,;+1,...,N, .

n=1

(2.9b)

Let U be the unitary matrix formed by the N, column
vectors VY, ie., U, ;=V{. Then Egr] (2.8a) can be
rewritten as UKKTU=A or UTK(UTK) =A, where A is
a diagonal matrix, A=diag(A, .. AN ,0,...,0). The

solution X i 1s not unique and can be chosen in such a way

so that U'K is real. Therefore U'k=A!2 or
K =UA!”2, Deleting the null columns we get
=\/7\; V'(Ij) ,
j=12,...,N; n=1,...,N,. (2.10a)

K is an N, XN, rectangular matrix and the inverse of K
does not exist. However, the left inverse of K, designated
as K[’, exists,

1 - %
(K ) —_ () ,
VR
j=1,2,...,Nf, n=1,...,N, . (2.10b)
From (2.10a) and (2.9) we see that
N
t 4 Ny iH* -1
(KK ") = Eij,,{ V', Kp ' K=1. (2.10c)
ji=1
However
KK '#1, unless N,=N, , (2.10d)
i.e., KL_1 is the inverse of K only when it is on the left, but

is in general not true when it is on the right. (In all previ-
ous publications‘*12 on the VCS theory, it has not been
emphasized that K ~! in general does not exist. The ma-
trix element K ~! defined in® 12 should be understood as
K, I for further discussion, see Sec. VIII.)

It is easy to verify that the orthonormalized states can
be expressed as

N

|¢j>= Eb (Kzl)j,nl¢n>

n=1

Ny
S ville,), j=12,...,N,. (2.11a)

'\/A.j n=1
Notice that here k=K * is introduced for avoiding an ex-
tensive use of K* in later equations. For most applica-
tions K is real and the distinction between K and « van-
ishes.
In the fermion space, the N states |¢; ) form an ortho-
normal complete set
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Ny

j=1

(2.11b)

By multiplying (2.11a) with \/T, V,(,{)*, summing over j
from 1 to N,, and using (2.9a) we obtain the inverse of
(2.11a),

N
S
|¢n>=2Kn,j|¢j>’ n:1,2,...,Nb.

(2.11¢)
j=1
From (2.11¢c) we have
K=k, ;)*={¢, ;) 2.11d)
Notice that from (2.11a) and (2.11c) we have
Ny
1, 0="3 K, (kL )j b ) (2.11e)

j=1
However from (2.11e) we cannot infer KK; '=1 or

N, »
2 Kn,j(KL )j,m :Smn ’

i=1
unless N,=N,, since |¢,,) is linearly dependent if
N, <N,. Notice that if there are no collective pairs at
all, one has

lv;)=l¢,)=lo), K,,=1, j=n=1. (2.12)

Suppose that under a fermion operator O the
nonorthonormal basis is transformed as

0l¢,)=30,,¢,) . (2.13)

Notice that here n and n' may range over a different set
of quantum numbers. In contrast to (2.6a) we have

g, Y=f(AD)]c"y, n'=1,2,...,N, .

Now let us calculate the matrix elements of the opera-
tor O in the orthonormal basis [¢;). Using (2.11a) and
(2.13) we have

Oly; )= (kL") mOpinldy) . (2.14a)
Using (2.11d) we have
(y;loly;)= E(Kzl)j,non’n"n',j’ . (2.14b)

Specified to the Sp(6) case, Eqgs. (2.7) and (2.10a) be-
come

((n’Xo)[w]p,al(nXo)|wlp,a)

=[KK"(00)lypnp» (2.15
K, —klow),, i,
" I 1 (2.16)
(k2= (kL (00)); 0, =KL (00)) ) -
The orthonormal fermion state (2.11a) is
lowj,a)=3 k' (cw);,l(nXo)w]lp,a) , (2.17)

np

where j=1,2,..., N, is the inner multiplicity for the
subduction

Q Q Q

S TO» T oy [l[w]
of Sp(6)1U(3), where

a_ o o

D) ¥ 25 1

is the Cartan-Weyl irrep label for Sps, and N, gives the
number of Pauli-allowed states for given [o ], [w], and a.

III. THE MOTIVATION FOR
A NONUNITARY MAPPING

The next question is how to calculate the matrix ele-
ments O,,. Suppose that N.=N,, then we can intro-
duce the dual basis

($l =3 (KK, 0 Ay
<
which satisfies (¢,,/|¢,)=8,,,» and O,, can be ex-
pressed as

On’n = < $n’|0'¢n > .

In the general cases with N, <N, the dual basis does
not exist and thus we even do not know how to express
O,, let alone how to calculate it. Therefore the matrix
element O, is exceedingly difficult to compute in the
fermion space. To avoid this difficulty we will map the
fermion space to a boson-fermion space, or a hybrid
space. The required mapping is denoted by H which
maps a fermion operator O into a hybrid operator H(O),

O —H(0) . (3.1

The mapping is required to satisfy the following condi-
tions.

1. The fermion pair creation operators are mapped
into boson creation operators

H(A4]),)=b], . (3.2a)
2. His a linear and isomorphic mapping,
H(CIOI +C202):C1H(01 )+C2H(02) >
(3.2b)

H(0,0,)=H(0,)H(0,) .

3. The fermion vacuum state |0) is mapped into the
fermion-boson vacuum state |0), while the pairless state
|o ) remains the same but will be denoted by |o),

0)—10), lo)—lo)=lo) . (3.3)

Due to the isomorphism (3.2b) we have
H(f,(A)Y)=F,(H(4T)=F,bT),
H(Of,(4AT)=H(0)f,(b") .

Therefore under the mapping H, the fermion state (2.6a)
goes over to a hybrid state,
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I, Y=Ff,(aD)lo)—ls,)=F,(bDo),

n=12,...,N,, (3.4a)

while Eq. (2.13) is mapped into
0l¢,)=30,,l¢,)—HO)|4,)

=3 Oynld,) . (3.4b)
pr

Notice that in this paper we always use angular (round)
brackets to represent fermion (boson, or boson+fermion)
states. The pairless states |o’) are already assumed to be
orthonormal, whereas the boson wave function f n,(bT)IO)
can be easily normalized (it is tacitly understood that we
are using the usual boson inner product, i.e., the Barg-
mann inner product). Therefore the N, fermion-boson,
or hybrid states |¢n') can be assumed to be orthonormal
and form an orthonormal complete set,

N,

E |¢n’)(¢n’| =1.

n'=1

Similarly for the states |¢,). From (3.4b) and (3.4c) we
then have

On'n :(¢n'lH(0)|¢n) ’

(d)m’lqsn’)zsm’n" (3.4¢)

(3.5)

namely, the calculation of the matrix elements of a fer-
mion operator between the nonorthogonal and linearly
dependent  fermion  bases |¢,) and |¢,.),
n(n')=1,2,...,N,(N,;.), is converted to a much easier
one of computing the matrix elements of the operator
H(O) between the orthonormal (and thus necessarily
linearly independent) boson-fermion bases |¢,) and |¢,.),
n(n')=1,2,...,Ny(N,). This of course has great
significance for practical applications, since there is no
Pauli principle among bosons and between bosons and
fermions in the hybrid space.

Obviously, the mapping H from the nonorthonormal
basis {|¢, )|} to the orthonormal basis {|$,)} is certainly
not unitary with respect to the Bargmann measure. In
the following we will show that the mapping H is an out-
growth of the VCS mapping.

Specialized to the Sp(6) case, Egs. (3.4a) and (3.4c) be-
come

[z AN X[o)PP=](nX0o)w]lp,a)
—[(Z™bY)x|o) ek

(3.6a)

(3.6b)

=|(nXo)[w]p,a),

((n'><a)[a)]p’,a|(anr)[co]p,a)=8n,P,’np .
It is worth mentioning that the polynomial Z "b")|0) is
just the IBM wave function for even nuclei in the SU(3)
limit.??

IV. THE VECTOR COHERENT STATE THEORY
REVISITED VIA THE HYBRID MAPPING H

Now we are going to show that the required hybrid
mapping H is related to the VCS mapping!? T by

o—H0)=(ro. @.1)

The hybrid operator I'(O) which is to act on the boson-
fermion space is obtained from the z-dependent fermion
operator I'(0),

f(0)=exp(z- A)O exp(—z- A)

=0 +[z-A,0]+%[z-A,[z-A,O]]+ (4.2)
by the followin§ three steps.'?

1. Delete 4/, (since (o | 4], =0).

2. Make the substitutions 4,,—V,—b, and
Zy —»b,jb, where V,, is the differentiation operator with
respect to z,,, while b, and b;b are boson creation and
annihilation operators.

3. Shift all the remaining fermion operators O/ in
£(0) to the left (a reminiscence of the fact that the fer-
mion operators commute with V,, and z,, for further
discussion, see Sec. VIII) and change them into the intrin-
sic operators denoted by the shadowed symbols O, e.g.,

al —>al, a,—>a, AG,i")—AGi") . 4.3)

The intrinsic operator will be called pseudofermion, or
“fermion” operator, which acts on the intrinsic (or pair-
less) state |o). The commutation relations between the
pseudofermion operators (al:-r,&i) and the true fermion
operators (a,»T,a,-) are unknown. The essence of the pseu-
dofermions will be discussed in Sec. VII.

From (4.1) and (4.2) it is seen that the mappings for an-
nihilation operators are always very simple,

f'(0)=0, for 0=4,,a;, A(i,i'); (4.4a)
l—\(Aab)::bab’ I“(ai):;ﬂi ’

(4.4b)
T(A(5,i")=A(i,i") ;
H(A4],)=b),, H(a))=(a)',

(4.4¢)

H( 4G i =auint,

independent of the concrete structure of the collective
pairs. Equation (4.4c) satisfies the requirement (3.2a).

One of the important features of the VCS mapping I' is
that it is a linear and ismorphic mapping, '

F(Clol +C202)=C1F(01 )+C2r(02) >
I(0,0,)=T(0,)T(0,) .

(4.5)

Using the definition (4.1), from (4.5) we get the require-
ment (3.2b). Therefore the mapping H (4.1) is what we
are looking for.

From (2.14b) and (3.5) we have

(Pl )= (k") 4 (¢, |H(O)| @, )k, . (4.68)

The hybrid mapping H is introduced for implementing
the mapping (3.2) and getting (3.5). Once these have been
done we switch back to the more familiar VCS mapping
I'. According to (4.1)

0, =(¢,|H(0)|$,)=(,|IT(ON)|¢,)* . (4.6b)
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By letting O —0%in @.6), remembering k* =K and inter-
changing j«j’, n<>n’, we get the familiar equation in the
VCS theory,

(¢;10l9,)=3 (K. ") 40, |T(0)|¢,)K 4.7a)

If there are no collective pairs in both the initial and final
states, due to (2.12) Eq. (4.7a) collapses to

(o’'l0lo)=(0’'|T(0)|0) (4.7b)

It is convenient to rewrite the master equation (4.7a) as
a matrix equation,

OZKE lr(hyb)(O)K ,

where O and T'™®(0) are N;/XN, and Ny XN, ma-
trices, respectively. It should be stressed that Eq. (4.7¢c)
cannot be inverted,

r'™(0)#K0K; !,

(4.7¢)

(4.8a)

due to (2.10d). The reason is obvious: the elements of an
N/ XN/ matrix can be expressed in terms of the elements
of an N, XN, matrix if N, <Nb and Ny <N,, but not
the reverse. The existence of K; ! instead of K ! finds its
origin in the oneway mapping from the fermion space to

the hybrid space. Only when N.=N,. and N,=N, can
we have the inverse of (4.7¢),
' o)y=KkoK~!. (4.8b)

Equation (4.7) enables us to transfer back and forth be-
tween the fermion space and the hybrid space fox: calcu-
lating the matrix elements, and is called the master equa-
tion.

From the matrix equation (4.7c) we have

Km0 ohg=kTr®™oo)k H, (4.92)
which is equivalent to the following:
N,
2 F(hyb)(oT)m" }"j V’(':)* V’(lj)
mn
N, .
=3 (r®oh), AV VY . (4.9b)

mn

(0'w'j'|0llowj)= 3 Ki'(o'@");
npn'p’

ihu'p’

where the double lined matrix elements are the SU(3) re-
duced matrix elements defined by

(|| T||)
=('a'[[T"Xw) ]2
di ( ) 172
amio) @y, ”
dim(w') ([T°Xo' ] _peloa) , (4.14)

((n'Xo")[w']p'|T™(0)|(nX0o)[w]p)K (cw)

Multiplying (4.9b) with V!, summing over i from 1 to
Nb, and using (2.9a), then multiplying the result with
¥P" and summing over j from 1 to N,, and using (2.9a)
again, we get

rohkk =k Tmwo)t . (4.9¢)

Equation (4.9c) is a key equation in the VCS theory?!°

for calculating the K matrix and was derived through the
introduction of the unitary mapping y(O) (see Sec. VIII).
Letting O = A4, in (4.7c) and (4.9¢c) we get

A=K7 'b,K, T™( 4l kKT=KK™b], .

(4.10)

Notice that Eq. (4.7c) only shows the relation between
the representation matrix of a fermion operator in the
fermion space and that of the operator I'(O) in the hy-
brid space, but does not in the least mean that a fermion
operator O can be expressed in terms of its corresponding
hybrid operator I'(O).

Specialized to the Sp(6) case,”!? we have
£ AJb):A:b_(Cz)ab_ Z)pa — 2 ZacZod Aca » (4.112)
cd
£(Cp)=Cpp+ I (4.11b)
f‘(a y=a'—2[a (01)Xzzo>](10) 4.11¢)

From (4.4b) and (4.11) we immediately obtain the fol-
lowing hybrid operators:

I'( Aab):bab’ F(ai)=311
(4.12a)
(4 ,i"))=A0i"),
T(A4J,)=—(Cb"), —(CbN),, — T bbb, ,  (4.12b)
cd
[(C,y)=Cpy + Echbcb , (4.12¢)
I‘(aT)—a*—-Z[ (o1) b(zo)’r](lm . (4.12d)

More examples are given 1n Eq. (12) of Ref. 12 (notice
the notation difference: z—b" s B im, —»aim im, ). From
(4.12) it is seen that except for the U(3) generators Cuw»

the mapping I' is not unitary.
For Sp(6), the master equation (4.7a) becomes

nef (4.13)

with the subscript L—R indicating a left to right cou-
pling which is exceptional to our otherwise right to left
coupling order convention, @, being the contragredient
representation of w,, and dim(w) being the dimension for
the SU(3) i 1rrep .

Since 4T and Z™(4%) are SO!(3) scalars, in calculating
the reduced matrix elements of an SU(3) irreducible ten-
sor, we can ignore all the i-spin labels. The matrix ele-
ments of an SU(3)XSO/(3) irreducible tensor can be ob-
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tained from the SU(3) reduced matrix element by simply
adding the labels I, I’, and I, to the initial states, final
states, and irreducible tensor, respectively, and by replac-
ing the double-bar matrix element ““|| || with the triple-
bar matrix element “||| |||, as in Ref. 12.

V. THE PAULI DYNAMICAL FACTORS

The restriction of the possible irreps of a dynamical
group due to the Pauli principle has been called the Pauli
dynamical effect.!>!® For the Sp(6)DU(3) case, it is
known that the U(3) Young diagram for nucleons in the
pseudo-orbital space can have at most 2Q) /3 columns. In
this section we are going to show that all the Pauli effects
are automatically reflected in the K factors, which are
then named dynamical Pauli factors.

Hecht’ has given all the K matrices for the Sp(6) case

J

3[(20/3)—n +2]

([0](n,0)L||STS||[0](n,0)L )= 5

—0, when n =—23£+2 ,

where ((n,O)L][sTsH(n,O)L )iem» the matrix elements of
s's in the hybrid space (now a pure boson space), is pre-
cisely the expectation value of s's in the IBM. From Eq.
(5.2) we see that although there is no restriction on # in
the boson matrix elements ((n,0)L ||ss||(n,0)L )py;, the
dynamical Pauli factor [3((2Q/3)—n +2)]/2 automati-
cally restricts the maximum possible columns for a U(3)
Young diagram of the original fermion system to be
202 /3. We thus see that the hybrid mapping is free of the
spurious-state problem, which haunted most of the other
boson mapping procedures.

VI. THE THREE STEPS FOR COMPUTING
THE MATRIX ELEMENTS

Equation (4.13) shows that the evaluation of the matrix
elements of an operator between two many-fermion states
can be carried out in three steps.

Step 1. Switch from the fermion space to the hybrid
space by mapping the N'(N) collective fermion pairs in
the final (initial) state into N'(N) bosons. The Pauli fac-
tors K; (o'e’ )j.wp and K (ow),, ; are related to the fer-
mion pair—boson transformation. The disparity of the
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with 4 =0,1,2. In order to convey some feelings about
these K matrices, in Table I we give some examples
which belong to the case of simple states® and thus are as-
sociated with diagonal K matrices.

From Table I we see that

K (00)pyiaj—(Q)"?, when ﬁz% >n. (5.1

On the other hand from (2.12) we know that if a state
is entirely free of collective pairs, its K matrix is equal to
1, K(oo)y)o=1. Therefore, the magnitude of
K (0@)[4)in) can serve as a measure of the collectivity of
the fermion state |cwj =[n],a ).

From Eq. (4.13) and Table I we see clearly how the K
matrix restricts the possible irreps of U(3). As an exam-
ple, using (4.13) and Table I, we have!®

)L ||s"s||(n,0)L )ipp

(5.2)

two Pauli factors for initial and final states stems from
the nonunitarity of the mapping H.

Step 2. In the hybrid space compute the matrix ele-
ments

M=((n'Xo")[o']|T(0)|[(nX0)[0]) , 6.1)

where for simplicity we ignore the multiplicity label p.
The strategy used here is to eliminate all the bosons (the
images of the collective pairs) in the bra vector
((n"Xo')[w']l| so that the intrinsic operator in I'(0) sits
adjacent to the intrinsic state (o'|. The most general
form of the hybrid operator can be written as an SU(3)
coupled tensor,

r(0)=[07°XZ™(b")]* & . (6.2)
There are two possibilities:
Case 1. (0'||07°)0)#0 . (6.3)

For this case the matrix elements of I'(O) can be simply
calculated by using standard Racah algebra,

TABLE I. Some simple examples of the K matrix K(0®)[,i(n]-"

[o][w] [0][n] [1][n +1] [2][n +2] [2][n +1,1] [11][n +1,1]
K(00) _ﬁu _(ﬁ—z)u _(ﬁ—4)zz §(§—4)u _(ﬁ—zm
(Q—n)t (Q—n—2) (Q—n —4)M (Q—n—2) Q—n—2)1

20=20/3.
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o1l lo] | ]
((n'Xa")[']p'T(O)[(nX0)[w]p)= |[oo][ny][wo] |(a']|O o )(n’||Z %bh|n), (6.4)

[o'][n'][@']
where the first factor is the normalized SU(3) 9-j coefficient. The reduced matrix elements of the boson operators
(n’}|Z"(b")||n) can be easily calculated,'? while those of the intrinsic operators are calculated in step 3:

Case 2. (0']|07°|o)=0. (6.5a)
For example,

(o'ul|AG,i) °)ou)=0 . (6.5b)
Since the pseudofermion operator A(i,i’ )°? does not connect two pure intrinsic states in this case,

("X o) ], u||Al,i") O (nX o )[w],u)#8,,(— )2 2 "2+ U(goon;o'o)o'u||Al,i") °)ou)=0, (6.6)

where & =2 +,um Instead, the noncollective pair-annihilation operator A(i,i") ? has to annihilate a boson i 1n the poly-
nomial Z”(b") contained in the ket vector [(nXo)[w],u). To do this, one has to detach a boson from Z "(5T) which is
accomplished by inserting a set of intermediate states. Using (4.14) we have

((n'Xo")[e' ], ulAGi) |(nXo)[o],u

= 2 n'Xo')o'||Ad,i") °]|[n X([2]1X0o)a"Jo)[n' X([2]Xa)o"12|[nXc]2) . (6.7a)
Notice that since |([2]X o )o"’) is not a pairless state,
((n' X o")'|| AU, || [0’ X([2]X o)a"]?)

=(— )P0 "0 Y (g0 w' ;0’0 ) o’ || AL O ([2]X [0 ])a”) . (6.7b)

To calculate the left-hand side of (6.7b), the intrinsic operator must be shifted to the left where it can act on the intrinsic
g . . .

state o’. We therefore use (4.14) to shift the operator A(i,i’) ° to the left of the intrinsic state (¢o’| and then recouple

the tensors,

(0" Xo")'||Al, i) )| [0’ X ([2]X a)a"]°)

. 172
‘:% ([(AGIN™)TX (0" Xn)go' ] gl [0’ X ([2]X0)o"']2)
di ( 172
amel |3 Ulogoen’se" e ([[AGN) X o'l _ge” Xn'l gl X([2]X )" 12)
. 172
= :1111:11((2:,)) 28(0"0"(](000' wn 0'”60, ([(A(l’,i’)ao)TXU']LHRU” n| [2]><0,)0_n u)

dim(w)dim(o’)

500’ on’;0"w' o' || A, i) O ([2] X 6.7
dim(w’)dim(o"") U(840'wn’;0" e )0’ ||AGL ") °|([2]X [0 Do™) (6.7¢)

The second factor in (6.7a) is easy to calculate and the final result is

(n'X o) ],u||AGi") (nXo)[w],u

172

dim(w)dim(o’) U(an’a)n';a"a)’)U(U[Z]wn';a"n)(o'u ||A(l,l')0°||([2] X [U])O"'u )(ngTHn') . (6.8)

dim(w’)dim(o’’)

=2
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From (6.4) and (6.8) it is seen that there is no Pauli fac-
tor in the second stage.

Step 3. Calculate the matrix element ((.T'”@;OHU) of
the “fermion” operators between the pairless states in
(6.4) is simply equal to the matrix element of the corre-
sponding real fermion operator [see Eq. (7.7) in Sec. VII],

' a,
(o'|O; o) .

(a']|07°o)= (6.9)

In this case there is no Pauli factor, since there is no
boson<«>fermion transformation occurring.

For case 2 the evaluation of a matrix element such as
(o'u +1)al|(b"X[0Dou),  or  (o'u||AGi") BT
X[o])wu), requires the use of the master equation to
switch back to the fermion space, since the relation be-
tween the operators (ai,a:r) and (ai,af) are unknown.
The calculation of these matrix elements will be discussed
in the next section. From Eq. (7.9a) given below, it is
seen that a Pauli factor K_z(aa))mm:l/Kz(aa))m[z]
will appear in conjunction with the boson— fermion-pair
transformation.

We thus vividly see that whenever a transformation be-
tween bosons and fermion pairs occurs, there appears a
Pauli factor, which in an exact manner corrects the er-
rors incurred by shifting from one space to the other.
The boson<>fermion transformation occurs in step 1 and
sometimes in step 3, but never in step 2.

VII. THE PSEUDOFERMION OPERATOR

The intrinsic or pseudofermion operator is the key to
the VCS theory or hybrid mapping. The discussion of its
properties deserves a separate section.

A. The intrinsic operator C,;

From (4.12) we see that for the generators of Sp(6), the
only intrinsic operator is C,,. Let us begin with a study
of C,, which is the simplest intrinsic operator. From
(4.12c) we know that in I'(C,,) there is no coupling be-
tween the intrinsic operator C,, and the boson operators,
or physically no coupling between the noncollective and
collective motions. Therefore the pseudofermion opera-
tor C,, commutes with the boson operators,

[Caprb s 1=[Caprbog1=0

The meaning of the operators C,, can be seen more
clearly when they are written in the coupled form (2.1b).
By using

(7.1)

PL= —232 la, 16|LM )(—)1+? c,,,_b+—‘3laa,,, ,
ab
and (4.12¢) we have
rPH)= PL, + L (7.2a)
intrinsic collective
P =d/2+N=u/2+N, N=s's+d'd; (7.2b)
D(PL)=V3/8Ly +V3/8L,, ,
(7.2¢)

Ly, =vV10d"xd), ;

[(Py)=P}+7P% , 20

Py =(d x5 +s"xd)3,+d"xd)y, ,

V7
2
where L, (L,,) and P3,(?%,) are angular momentum and
quadrupole operators, respectively, for the unpalred
(paired) fermions. It is interesting to note that N, .L,,,
and 73, are exactly the operators used in the IBM.!%?2
Now it is quite clear that P4 are the contributions to the
2E-multipole operators due to the noncollective (or intrin-
sic) excitation, while 74, are the contributions due to the
collective excitation. Therefore P%, and P4 can be called
the intrinsic and collective operators, respectively, and
Eq. (7.2) shows that the particle number, the angular
momentum, and quadrupole moment are additive quanti-
ties due to the absence of the coupling between the non-
collective and collective motions, in contrast to the
single-or double-nucleon transfer operators, and mul-
tipole transition operator which involve such a coupling
[see Eq. (4.12d), as well as Egs. (12d) and (12¢) of Ref. 12].

Hence we see that the pseudofermion operators C,;, are
just the true fermion operators C,, acting on the pairless

or intrinsic state. Since (C,, =

((C‘ab) - ab (Cba .

C,, =C,,, we have
(7.3)

From (7.3) and (4.12) we conclude that for the genera-
tors of the Sp(6),

roN'=r)f, foro=4y,4,4,C, , (7.4)

where T(0)' is the operator obtained from I'(O) by the
conventional Hermitian conjugation (reversing the order
of the operators in a product and interchanging creation
and annihilation operators), while (I'™®(0))" is defined
also by the conventional meaning

(¢, (T(0N']$,)=(6,IT(0)]¢,,)* . (1.5

It is also worth mentioning that the relation between
the operator I'(O) and the operator O, defined by
Deenen and Quesne [Eq. (6.1b) of Ref. 4] is

(oa'|T(0)|oca)=0,,, forO=4},,4,,C, (1.6

where {(oa'|l'(0)|loa)=0,, is a pure boson operator.
Notice that although both |oa) and |oa) are the same
pairless state, the matrix elements (oa'|T'(0)|loca) and
(oa’|T(0)|oa) are totally different; the former is an in-
tegration over the fermion space only while the latter is
over both the boson and fermion spaces, with the result
that the former is a function of the boson operators while
the latter is a c-number equal to (oa’|Oloa) [see Eq.
(4.7b)]. Notice that if O is not a generator of Sp(6), we do
not know how to calculate {ca|I'(O)|oga), since the in-
trinsic operators in I'(O) contains “fermion”<«>boson
transformation terms instead of the fermion operators
acting on the intrinsic state.
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B. The pseudofermion operators &;, a:-', and A(i,i')

(a) Firstly from (4.7b) and (4.12a) we have
(o'a’'|0Oloa)=(c'a’|Oloa) ,

for O =a;, or A(i,i’) . (1.7)

Therefore the annihilation operator a; and A(i,i’)
behave as true fermion operators between pairless states.
By adding the heritage quantum number u explicitly,

(7.7) yields
J

(o'u —1||a;||lou)=(o'u —1||@;||locu )70 , (7.8a)

(o'u +1|a;||lou)=(o’'u +1|a@|lcu)=0, (7.8b)

since the operator a; acting to the right on a state with
heritage u must lower the heritage to u'=u — 1.

(b) Although a; and A(j,i’) behave as genuine fermion
operators between the pairless states, it is no longer true
if the initial state contains a boson. Now let us look at
the matrix element (cr'u’||§1,-||(bT><[U])wu). For calcu-
lating it we use the master equation (4.13) along with
(2.17) to transfer from the hybrid space back to the fer-
mion space,?

(0w’ 81|51 X [0 Do) = —————(o"w'||a,[|( 4 TX [0 ou )
K (0’60)[2][2]
—2; S U(lo][2]lo’ [ 11 ];[@]looD{ o u’|[[a;, AT1%ou)
K ow)a) o
=2 U2l N1kl u’ e llou) . (7.92)
K (0’(0)[2][2]
Letting #'=u*1 we obtain
(o'u +1||§1,~||(bT><[a])wu)=2—2———U([U][2][a’][11];[a)][1])(0’u +1||a,T||au ) ——0, (7.9b)
K (U&))[z][2] Q— o0
(o'u —1|7;||(bTX [0 ])ou)=0, (7.9¢)

where we have used the fact that (o'u —1||a]|lou ) =0
due to (7.8b). Note that the partition [2] in the K matrix
signifies there is one boson with SU(3) symmetry [2]
which has been transformed into a fermion pair with the
same symmetry.
Ignoring the angular momentum coupling, (7.9a2) can
be put in shorthand form,
1 2U

ﬁibT—> Fﬁi 4t X2

al. (7.9d)

It is seen that a; can transform a boson into a fermion.
The probability amplitude for this transformation is in-
versely proportional to Kz(aw)[z]m. When Q— oo, the
probability—0 due to (5.1). It means that only in this
limit does a; become a genuine fermion operator and

therefore can no longer annihilate a boson.
|

(o'u’||af[low)=(0"u'||T(a;)+2[7, X b1 ||ou)
4

As we said in Sec. V, the quantity K (0®)[3,) is 2 mea-
sure of the collectivity of a fermion state with one fer-
mion pair. Now from (7.9) we see that
K_z(ow)[z]m( <1) can be regarded as the coupling
strength between the collective and noncollective
motions. When the shell degeneracy goes to infinite, the
coupling becomes zero and the collective fermion pair
can be treated as a boson.

The matrix element (o”'u ||A(i,i")"?||(bTX [0 ])o""u) can
be similarly calculated (see Table 2 of Ref. 12), where it is
shown that the pseudofermion operator A(i,i ")’? can
transform a boson into a fermionic particle-hole pair
[a,-TXE,-,] with probability amplitude again proportional
to 1/K2( 0'(0)[2][2].

(c) The pseudofermion operator aj.

From (4.7b), (4.12d), (7.9a), and (4.7b) we have

= 1+ ————U(ol2][o' 11} [w][1]? |[{o'u’||aflou) . (7.10a)
K (O’w)[2][2]
Letting u'=u=*1,
(o'u +1||a]|lou)= |1+ 5 4 U([a]2][o’ 11 ];[@][1])? [{o'u +1|allou )
K (0’(0)[2][2]
n——-)((r’u +1|ja]|jou) , (7.10b)

(o'u —1|a}||ou)=0 .

(7.10c)



92 JIN-QUAN CHEN, K. T. HECHT, AND DA HSUAN FENG 43

Ignoring the coupling in (7.10a),

4U?
al—>a]+23,xbT=a/+ 0] —a] . (7.11)
K Q-
It is seen that acting on an intrinsic state, a:.r contains a

term which annihilates a “fermion” and creates a boson.
This “fermion” annihilation operator can transform the
boson back to a real fermion. When Q- o, the
“fermion” —boson transformation term becomes zero
and again the pseudofermion— genuine fermion.

From (7.5) and (7.7) we have [noting carefully the
parentheses in (a; )1,

(o'u +1|[(a) |ow)=(oulfd,|o'u +1)*
=(oul@|o'u +1)*

=(o'u +1|a]f|jou) . (7.12)

Comparing it with (7.10b) we discovered a strange feature
of the pseudofermion operators a,T and a,, i.e.,

(a; )Tsﬁa;r, unless Q— o0 , (7.13)

due to the extra term in (7.10b) which involves K 2, i.e.,
the “fermion” creation and annihilation operators are not
Hermitian conjugate to one another. Therefore a:-r and a;
differ from the true fermion operators a,-Jr and a;. In gen-
eral we have

[I*(hyb)(o)]T7&F(hyb)(0)T ,

if O is not a generator of Sp(6) .  (7.14)

Now it is clear that the reason why C,, are real fer-
mion operators while a;r and a; are not is due to the fact
that C,, do not involve ‘“fermion”<«>boson transforma-
tion, while a? and a; do. In other words, there is a cou-
pling between the noncollective and collective degrees of
freedom in I‘(a;r), but not in I'(0) if O is a generator of
Sp(6) as is seen in (4.12).

Notice that the use of the operator (0N can always
be avoided by usin% (7.5). As is seen from (4.12), of the
two operators I'(O") and I'(O), the one associated with
the annihilation operator is always very simple and in
most cases we only need to use the simpler one.

In the GVCS theory,!"!? the intrinsic operator is
defined by its left action on an intrinsic state. This
definition is not necessary and violates the associativity
law of the action of operators (o’|O|y)
=((o’|0|¥)=(0'|(0]¥)). For example, Eq. (7.9b) can
be interpreted either as a right action: the intrinsic
operator a; annihilates a boson to its right and creates a
fermion, or as a left action: the left action of a; on an in-
trinsic state can lower its heritage by one accompanied by
creating a boson (or “a symplectic excitation” in the
language of Ref. 12).

In Sec. IV, we give a rule for obtaining the intrinsic
operator O, from the fermion operator O, in the z-
dependent operator [(0), i.e., shift the operator O, all
the way to the left and then change it to O,. Now sup-
pose we were to abandon this rule and let the intrinsic
operator sit to the right, then Eq. (7.10a) would have be-

come

(o'u'||allou)=(o'u'|T(a)+2[bT x5, ||jou) . (7.15)

Now we would get into trouble, since the master equation
(4.13) cannot be used to calculate the matrix element of
the operator [bTXTﬁ,-]m. This is the reason for the
above-mentioned left-ward shift rule. In addition, in a
full matrix element, such as that illustrated by Egs. (6.7),
the intrinsic operator O ¢ must be shifted to the left, see
the second step of Eq. (6.7c), so that its matrix element is
put in the form (o’|O/|¢). This could be calculated ei-
ther through a left action as in Eq. (6.7¢) or a right ac-
tion. The vital point, however, is that the intrinsic opera-
tor O, must be contiguous to the left intrinsic state to
have a meaning. Hence a left-ward shift is required; and
it is in this sense only that the *left-action” of Refs. 11
and 12 is to be interpreted.

In summary, the pseudofermion is different from the
true fermion in that the “fermion” operator involves the
“fermion”’<>boson transformation and consequently does
not commute with the boson operators, while the true
fermion operator cannot induce the fermion<>boson
transformation and thus commutes with the boson opera-
tors. However in the following three cases, the pseudo-
fermion operator behaves as a true fermion operator and
thus commutes with the boson operators: 1. The pseu-
dofermion  operators are C,. 2. When no
“fermion”<>boson transformation is involved, as in Eq.
(6.9) or (7.7). 3. When Q— o, the “fermion’<>boson
term approaches zero.

VIII. DISCUSSIONS

A. The unitary mapping versus nonunitary mapping

The VCS theory was derived either by introducing the
dual basis* or by using the unitary mapping approach.b 10
It is clear that (KK ') has an inverse only when N r=N,.
In this case the dual basis can be introduced. Therefore
the dual basis approach to the VCS theory applies only
when N,=N, [e.g., the Sp(6,R) case].

Now let us turn to the unitary mapping approach. We
first define a set of orthonormal states |3 ;) in the hybrid
space by

Ny
]l/’/): 2 V;(xj)|¢n )7 ] :172’ v be

n=1

[ef. (2.112)]. (8.1)

According to (2.9a) they form an orthonormal complete
set in the hybrid space,

N,
Wpl))=58;;, 3 lYpy;|l=1. (8.2a)
ji=1
However,
Ny
> lylet. (8.2b)

j=1
The difference between (8.2) and (2.11b) should be noted.
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The subspace spanned by the N,, (N, —N,), states |¢j)
with nonzero (zero) eigenvalues will be called the physical
(unphysical) subspace.

Up to this point, the K matrix is defined only in the fer-
mion space via Egs. (2.7) and (2.11d). Now let us intro-
duce the self-adjoint operators R *! and the projection
operator P which are to act in the hybrid space by

N
S J—
R*'= 3 (VA y) !,

j=1
with R V'=R=K", (8.3a)
Ny
P=KR7'R=RKR7'=3 [y}l . (8.3b)
j=1
Notice that due to the fact that K ~ lf R R 7, there is
no need to differentiate E ! from k . The operator P

is a projection operator from the full hybrid space to the
physical subspace. For the Sp(6) case, (8.3a) becomes

owj,al . (8.3¢)

N
S —_
R*oo)= 3 (VA

j=

LS lowj,a)

From (8.3¢) it is evident that the operators R *Yow) are
SU(3) scalars which only depend on the quantum number
o and o, but not on a. There are three representations
for the operators K *'and P.

1. The diagonal representatxon (or the j representation

for short). In the basis |¢;), j =1,2,...,N,,
vlj)il’ ]:lyzy)Nf ’
(R, =8, C_ 8.4
)JJ i'i |0, ]——Nf—!—l,...,Nb, (8.42)
P=K 'R=RK '=K;'Ke0=I180 . (8.4b)

Equation (8.4b) should be understood as a matrix equa-
tion, where I and O are a unit matrix and a null matrix of

dimensions N, and N, — N, respectively.
2. The nondiagonal representation (or the n represen-
tation for short)
( k +1 )mn —_

N
S — . .
S VA)EVPvY” (8.52)

j=

N
S Lk
(R R T)py =R )y =(KK "),y = 3 MV IV0"
j=1
(8.5b)

|

P,,=(K ~'R),,=(K;'K),,
= Ef Vr(r{)Vr(tj)*ismn

j=

[cf. (2.92)]. (8.5¢)

It is 1nterest1ng to compare the representatlon matrices
(k)mn, (KK' )mn» @and P, given in (8.5). They all have
V' [see (2.8a)] as eigenvectors with eigenvalues \/
and 1, respectively, in the physical subspace, and w1th el-
genvalue zero in the unphysical subspace.

3. The generalized representations (or the n-j and j-n
representations for short)

(¢, 1R1Y)=K,;, (¢;|K ", )=(K:";, ,
j=12,...,N;, (8.6a)
(¢, IR [¢;)=(¢;|K ~'[$,)=0,
J=Ng+1,...,N, . (8.6b)
Using (8.6), Eq. (4.7a) can be rewritten as
(l01y;) = ly(O);) ,
jhi=12,...,N;, (8.7a)

where ¥ is a mapping from the fermion operator O to the
hybrid operator y(0),

y(0)=K ~'T(O)R . (8.7b)
In the j representation,
y(O)=K;'TWY(0)Ka0 [cf. (4.7c)] . (8.7¢)

From (8.7a) we immediately know that the mapping y is
unitary,

rioh=[yo)'=R[ro 'R . (8.7d)
(Notice that [I‘(O)]Jr is defined in (7.5).) This is the con-
ventional approach to the VCS theory. Therefore we
have two alternative views of the hybrid mapping. It can
be regarded either as unitary mapping ¥ or a nonunitary
mapping I', as shown schematically below:

Np
Fermion space: (¢;|0l¢;), |¢;)= 3 (K7 "%,l8,), ols,)
n=1
T 1
uni}ary |4, )<—nonunitary— [¢, ) nonul}itary,
Ny
Hybrid space: (¢;|ly(O)ly;), |¢)= 3 v l¢,), [L0H1's,)

n=1

|¢; )«—unitary—|¢,, ).
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As is seen from the above we either have the unitary
mapping  |¢;)—"[¢;), or nonunitary mapping
|¢,>—H]s,). The mappmg |¢,)—|9;) [see Eq. (28) of
Ref. 9], or |¢, ) — K|, ) (see the third equation of Ref. 2)
is rather misleading.

Equation (8.7b) along with RT= =K, agree exactly with
the original form"%>~ %10 of the VCS theory. Notlce that
the simplicity of the operator K, ie., K= RT and
K '=K z'=K 7, is deceiving. It conceals the fact that
K ~lis not really the inverse ofK as is seen in (8.4b) and
(8.5¢) as well as the discussion following (4.8). Therefore
it is dangerous to abuse the operator K ~!. As shown in
Sec. IV all the results of the VCS theory can be obtained
in a stralghtforward way without introducing the opera-
tor K and K ~

B. The operator R versus the matrix K

The matrix K or operator K is central in the VCS
theory. In some of the literature,!” > however, no
differentiation between the matrix and operator was
made leading to some confusion. At first it was taken for
granted that K'=K. Then it was pointed out that K '#K
in Ref. 9. Now these two statements are both correct and
incorrect, depending on whether the K refers to operator
or matrix. Therefore it is crucial to differentiate these
two. The following points should clear up all the con-
fusions.

1. K is an operator in the N p-dimensional hybrid
space, and thus its representation matrices in any of the
three representations are necessarily a square matrix of
dimension N, while K'is a N;, XN rectangular matrix.

2. K is Hermitian and its representation matrices in
the j- or n-representation are also Hermitian, but its rep-
resentation matrix in the »n representation, which is
essentially the matrix K, is not. The reason is that the
bra and ket belong to two different representations. We
can also find the representative matrix of the self-adjoint
operator K=K "in the j-n representation,

K),,=R)=K} . (8.8a)
If we define a new matrix K by (K ) E(I?)Jn, then (8.8a)
becomes

K=K", (8.8b)
i.e., the matrices of the self-adjoint operator R in the j-n
and n-j representations are Hermitian conjugate to one
another, but each of them is not Hermitian.

3. KL is the left inverse of K, while Eq. (8.4b) shows
that K ~! is the inverse of K only in the physical sub-
space but not in the full hybrid space (an equivalent state-
ment is that the operator P is a unit operator only in the
physical subspace).

4. Equation (8.5b) shows that in the n-representation
where the physical and unphysical spaces are mixed up,
R ~Vis not the inverse of K.

C. The FDSM versus IBFM

In Ref. 22 it was shown that when Q — o, the FDSM
wave functions with ¥ =0—IBM wave function. Now

we can generalize it to the 50 case. In this section we
use angular momentum representation. The fermion
pairs are the S(L =0) and D (L =2) pairs defined in
(2.1a), and the mapping (3.2a) becomes

msH=s", mop!)=d! .

with ST and DT instead of A,Ilm ,, the K matrix given in
Ref. 9 has to be multiplied by the factor (V'2/3)"N. For
simplicity we only consider the simple states (actually,
the IBFM studied so far corresponds only to the u=1
case, which is of course simple), for which K; '=K 1.

The normalized fermion state is

(8.9

lcwj =n,a)

=K Now), (V273 Z™S", D) x o)1l .
(8.10)
Using (5.1) one has
lowj=n,a) —V1/0MZ"s", DN X o) 1!
B znstdhx|ee?, (8.11)

where we have used the identification:?> ST/vQ s,
and D) /VQ-—d!. Equation (8.11) shows that when
Q) — o, the FDSM wave function goes over to the IBFM
wave function.

According to Sec. VII we know that when Q— oo, the
hybrid operator I'(O) consists of boson operaors and true
fermion operators, i.e., the fermion operators of the
FDSM become the fermion and boson operators of the
IBFM. Of course here we have only outlined the relation
between the FDSM and IBM. The details about the
correspondence between the two remain to be worked
out.

D. The essential difference between the hybrid mapping
and other mapping

The boson mapping is more than a quarter of a century
old and even a brief review is certainly beyond the scope
of the present paper. An exhaustive review article®®
this subject by Klein and Marshalek is to appear. The
hybrid mapping differs from all the others in the follow-
ing aspects.

1. The mapping is not our goal, and it only serves as
an intermediate step for computing the fermion matrix
elements O,,,

2. It is an exact mapping and the Pauli effects are fully
taken into account by the K matrix.

3. It is free of the spurious-state problem.

In mapping the N, linear dependent states |¢, ) to the
N, orthonormal states |¢,), it is important to note that
the N, states |¢,) include no redundant states, even
though the original fermion states |, ) included N, —Ng
redundant states. Stating it differently: It is wrong to
first pick out a set of linearly independent states |¢, ),
n=12,...,Ng, and then map them to the correspond-
ing N, states |¢, ) in the hybrid space. The reason is that
although the N, states |¢,) form a complete set in the
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fermion space, the N, states |¢,) do not form a complete
set in the hybrid space, i.e., they are not closed under the
operation H(O) in (3.4b).

Very recently we have noticed a preprint by Klein and
Walet?® which is closely related to this work but with the
essential difference that the realization of the intrinsic
space in Ref. 23 is in terms of a set of quasifermions rath-
er than the true fermions used here.

E. Perspective of the hybrid mapping

Since the hybrid mapping does not depend on any
group structure, it can be applied to the fermion system
which does not have a dynamical symmetry, which is be-
lieved to be the case for the majority of nuclei. The
FDSM is elegant in the sense that it is a fermion model
which in the symmetry limit cases can give analytic solu-
tions which describe the qualitative behavior of nuclear
collective motion very nicely. The simplicity of the
FDSM lies in the mathematically simple structure of the
S and D pairs. There are indications** that the FDSM
S, D subspace may not be a good subspace for odd- 4 nu-
clei with large deformation. Therefore it might be better
to use ‘“‘realistic” S and D pairs instead of the FDSM S
and D pairs as the building blocks, while keeping the as-
sumption intact that only ¥ =0 and u =1 subspaces are
important for describing the low-lying collective motions
for even and odd nuclei, respectively. According to Tal-

mi?® and Iachello?® the realistic S and D fermion pairs
may be chosen as

s'=3c¢;s], b} =[(1?,8", (8.12)
J

where S jT is the S-pair creation operator for a single j, c;
are coefficients to be determined, and 7' is the second
quantized form of the quadrupole operator 3 ; erYz“( J).
Applying the hybrid mapping to the S, D pair, one is able
to calculate the matrix elements of a shell model Hamil-
tonian in the # =0 or 1 subspace. The coefficients c; can
be determined by minimizing the energy expectation
value. Ifit is feasible, then the hybrid mapping may open
a way for a realistic shell model calculation. If the varia-
tional calculation is too complicated, one might take as
our c; the occupation amplitude v; from a BCS-type cal-
culation, and diagonalize our model Hamiltonian in the
u =0, or 1 subspace. Work along this line is in progress.
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