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Coulomb correction to elastic a-a scattering
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The elastic a-o; scattering is treated within the framework of a generalized phase-function method
(GPFM). This generalization consists in absorbing the effect of Coulomb interaction in the compar-
ison functions for developing the phase equation. Based on values of scattering phase shifts com-
puted by the present method, it is concluded that the GPFM provides an uncomplicated approach
to rigorous Coulomb correction in the a-n scattering.

I. INTRODUCTION

The a-a interaction V is a combination of the
Coulomb potential Vz and some short-range interaction
Vz. The short-range interaction is of nuclear origin while
the Coulomb potential takes care of the charges. The
essential features of Vz have been clarified by the micro-
scopic theories of nucleus-nucleus interaction like the
generator coordinate method' (GCM) and/or the
resonating-group method (RGM). In the RGM there
appears an interaction generated from the two nucleon
forces which consists of two parts: (i) a direct part and
(ii) a fairly complicated exchange part (nonlocal kernel).
This nonlocal kernel presents mathematical dilculties
for rigorous inclusion of the Coulomb effect in the studies
of elastic scattering of a particles.

As an approximation to RGM Saito has introduced an
orthogonality condition model (OCM). The OCM con-
strains the relative wave functions to be orthogonal to
redundant states forbidden by the Pauli principle. Neu-
datchin et al. have found that a deep o.-u attractive lo-
cal potential which can simulate the effect of unphysical
bound states of the microscopic theories can be used in
the conventional Schrodinger equation to describe the ex-
perimental a-n phase shift just as well as the full RGM
equation or the OCM equation. In this work we shall
represent Vz by a deep local potential and compute the
u-o. elastic-scattering phase shifts by including the
Coulomb effect rigorously. Our approach to the problem
will be based on a generalization of the phase-function
method (PFM) for nonrelativistic potential scattering.

In Sec. II, we present a brief review of the conventional
phase method and seek an appropriate generalization of
the approach to deal with scattering on Vc+ Vz. We de-
vote Sec. III to demonstrate the usefulness of the general-
ized phase-function method (GPFM). In particular, we
work with a Gaussian o.-o; potential, which is indepen-
dent of both angular momentum and energy and is accu-
rate enough up to energy of 40 MeV in the center-of-mass
system, and examine the effect of Coulomb distortion of
the nuclear scattering phases.

II. GENERALIZED PHASE-FUNCTION METHOD

The quantity one deals with in the PFM is a variable
phase or phase function 5&(k,p) which represents the

phase shift at an energy k due to the potential
V(r)e(p —r) [e(x) is the step function which vanishes
for x (0 and is unity otherwise). It follows by definition
that 5t(k, O)=0 and 5t(k, ~ )=5t(k), the lth partial-wave
phase shift. It obeys a first-order nonlinear differential
equation called the phase equation. The complete
description of a wave-mechanical problem needs an am-
plitude function at ( k, p ) in addition to the phase func-
tion. Once the phase function is known, the amplitude
function at(k, p) can be obtained by solving a first-order
linear differential equation called the amplitude equation
with the initial condition at(k, O)=1. Newton has
shown that at(k, p) represents the modulus of the Jost
function produced by potential truncated at p. The
phase and amplitude equations which constitute the basic
algorithms of the PFM are derived as follows.

Consider a particle whose radial motion in a central
field is described by the Schrodinger equation and sup-
pose that its Hamiltonian H(r) can be partitioned into
two parts:

H (r)itt(k, r) = [Ho(r) —V (r) ]g(k, r)

=k itt(k, r) .

The partition of H(r) in Eq. (1) is chosen so that Ho(r)
has a pair of known independent solutions (u i, u2), satis-
fying

Ho(r)u, (k, r)=k u;(k, r), i =1,2,
u, (k, O)=0 .

The solutions u &(k, r) and u2(k, r) are 90' out of phase.
Thus they can be viewed' as a pair of Cartesian axes in
the two-dimensional space of solutions of the operator
H (r). The PFM proceeds by an ansatz

g'(k, r) =a(k, r)[u', (k, r)cos5(k, r)

—u ~ (k, r)sin5(k, r) ] . (4)

Here the prime denotes the differentiation with respect to

f(k, r) =a(k, r)[u, (kr)cos5(k, r) —u2(k, r)sin5(k, r) ] (3)

and the constraint
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r I. t is important to note that the particular solution (3)
of Eq. (1) can be constructed by using Lagrange's method
with u, 's as comparison functions, and the constraint (4)
follows naturally from the freedom implied by the
method of variation of parameters. " Equations (1)—(4)
can be combined to write the phase and amplitude equa-
tions as

Gt(p) = u 2(k, r)

= [2g/co(rt) ]Fr(p)[ln2p+q&(g)/p&(ri)]+e&(p),

where p=kr and

ci(ri) =2 exp( —~il/2)
~
I (l + I+ill)~ /I (2l +2) .

5'(k, r) = —V(r)[ IV(u, (k, r), u~(k, r))]

X [u, (k, r)cos5(k, r)

—u 2(k, r)sin5(k, r) ]

The quantities q&(g)/p&(ri) and Bt(p) have quite compli-
cated mathematical structures and are given explicitly in
Ref. 12. Here g represents the so-called Sommerfeld pa-
rameter. The Wronskian W(F~, Gt) =k. In terms of Eqs.
(7) and (9) the phase equation for Coulomb distorted nu-

clear scattering on V (r) is obtained as

a'(k, r) = —
[ V(r)a(k, r)/8'(ui(k, r), uz(k, r))] 5't(p) = —k V(p) [Fi(p)cos5+ Gt(p)sin5] (10)

&& [ui(k, r)cos5(k, r) —uz( kr)si n5( kr)]

&& [ui(k, r)sin5(k, r)+u2(k, r)cos5(k, r)],

where IV(u&(k, r), uz(k, r)) stands for the Wronskian
determitant for u i(k, r) and u2(k, r).

In the conventional phase method Ho(r) refers to a
free-particle Hamiltonian so that u i (k, r ) and u 2 ( k, r )

stand for the Riccati Bessel and Riccati Neumann func-
tions of order l. But here we are interested in a short-
range potential superimposed over the Coulomb poten-
tial. We thus look for a generalized approach in which
we absorb the Coulomb part of the potential in Ho(r)
Admittedly, the comparison functions become the regu-
lar and irregular Coulomb functions. If we now set up a
phase equation that contains explicitly only the short-
range potential, it will yield directly the additional phase
shift due to this potential. Note that this formulation of
the problem will bypass the characteristic difhculties as-
sociated with the long-range nature of the Coulomb in-
teraction. We have chosen to work with the following
regular and irregular Coulomb functions

Fi(p) =u i(k, r)

=ct(g)p'+'exp( —ip), F, (l +

1+iran;2l

+2;2ip)

and

We have chosen to work with V(p) [=Vs(p)] in the
form

with

V(p) = V, exp( —p /k a )

V&
= —11.828 157 fm and a =2. 132 fm .

As already noted the two-parameter Gaussian potential
(11) is angular momentum and energy independent and is
quite accurate up to E, =40 MeV. For this potential
we have integrated Eq. (10) by the Runge-Kutta method
with an appropriate stability check to compute the values
of 5&'(k), the Coulomb distorted nuclear phase shift.
During the course of our integration we have generated
the Coulomb functions in terms of the integral represen-
tation

Here the prime denotes the diA'erentiation with respect to

p and V(p) is the reduced potential in units of A' /Zm. In
the next section, we shall make use of Eq. (10) to compute
o,-n elastic-scattering phases for the partial waves l=0, 2,
4, and 6 up to center-of-mass energy E, =40 MeV.
Note that in no Coulomb limit Eq. (10) gives the phase
equation for scattering only by the nuclear interaction.
Thus our approach to the problem provides a natural
basis for examining the importance of Coulomb eftects in
elastic o.-o, scattering. Wherever necessary we shall use
5&'(k) for the Coulomb distorted nuclear phase shift and
5&(k) for the phase shift induced by the nuclear potential
alone.

III. RESULTS AND DISCUSSIONS

F&(p)+iG&(p)=[p'+'exp( —wri)/(2l+ I)!c&(rt)]J [1—tanh t)'+'exp[ —i (ptanht —2rtt)]

+i (1+t )'exp( pt +2' arctant)] dt . — (12)

Since Eq. (12) is an infinite integral it is rather crucial to
check the convergence of the integrand at a truncated
upper limit. Such convergence was ensured by comput-
ing known values for F& (p ) and G& (p ) given either in

McCarthy' or in Abramowitz and Stegun. ' We have
computed the pure nuclear phase shifts 5&(k) by using the
same set of algorithms but turning oA the Coulomb in-
teraction (rt =0) in Eq. (10).
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we see that, in general, 5o(k)) 5t(k) (1=2, 4, and 6).
Thus the S-wave phase shifts appear to be more sensitive
to Coulomb effects than the corresponding results for
higher partial waves. Our results for 5o(k) may be re-
garded as somewhat improved when compared with the
numbers of Lumbroso' obtained by direct solution of the
Hill-Wheeler equation presumably because Lumbroso
calculated the Coulomb effect only approximately. Fur-
ther, we note that the magnitude of the Coulomb correc-
tion 5t(k) as obtained by us agrees quite well with those
calculated by Baldock' and quoted by Barett et al. ' In
these studies a microscopic R-matrix method was used to
compute the Coulomb matrix elements without approxi-
mation.

The phase shifts presented in this work were generated
by using an IBM compatible PC/AT with numeric
coprocessor (Intel 80287) running at 12 MHz and zero

wait state. It took about 15 s CPU time to compute a
value for 5't(k) whereas generation of the corresponding
results for 5t'(k) required roughly 55 s. We have verified
that these times are only 25~o of the time consumed in an
R-matrix method calculation. ' ' We, therefore, con-
clude by noting that the generalized PFM used by us is
an uncomplicated method for rigorous Coulomb correc-
tion to a-e elastic scattering.
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