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Presently there exists a lack of systematic analysis on the differences in perturbation methods for

studying direct rearrangement collisions.

Emphasis is placed upon elucidating the formal

differences in the structures of the T matrix in various perturbation theories by paying attention to
differences in perturbation potentials and T operators. Extensive comparison between different per-
turbation theories and the relationship between them is explicitly shown to further highlight the

formal differences among them.

I. INTRODUCTION

Depending on the choice of scattering (or relative)
waves for the description of relative motions for colliding
particles, formally three different classes of perturbation
theory! ~!¢ are used for studying direct rearrangement
collision processes. They are, namely, the plane, distort-
ed (single-channel wave or elastic-scattering wave), and
coupled-channel waves (multichannel or inelastic-
scattering wave), respectively. Accordingly, the three
perturbation methods are the plane-wave (PW),
distorted-wave (DW), and coupled-channel wave (CW)
Born series expansions of the transition amplitude. As a
continuation of our earlier studies,!* our main objective
in the present study is to sharpen their differences and
find their relationships by deriving structural differences
in the formal expressions of the T matrix (transition am-
plitude). For completion, self-containment is attempted.

II. FORMAL DIFFERENCES IN PERTURBATION
POTENTIALS AND T OPERATORS

To meet a necessity for symbol definitions to be used
later, we partially review our earlier studies'* by paying
attention to the formal structures of both the perturba-
tion potential and T operator. By introducing projection
operators, explicit distinctions among different perturba-
tion approaches in the structures of both the T operator
and perturbation potential are made in a self-evident
manner.

A. Differences in perturbation potentials
The Hamiltonian for arrangement « is formally written
H=H,=T,+V,+h, . (2.1)

Here T, and V, are the kinetic- and potential-energy
operators between a projectile and a target. h, is the
internal energy operator for both the target and projec-
tile.

The distorted (elastic) wave X9 to describe relative

%
motion in the y arrangement is obtained from!'#¢

(h,+T,+UHX T =Ex{H) . (2.2)

Here U g is the distorting potential responsible only for
elastic collisions, and is defined by!4)

d_
v,=p,V,P,, (2.3)
with the projection operator
P,=lyo)vol, (2.4)

which projects only onto the entrance channel (e.g.,
ground state) |y,).

Now the coupled-channel (inelastic) wave X ; for the
relative motion is obtained from!4¢)

(h,+T,+USX; PV =EXy'™) . (2.5)

Here Uy, is the distorting potential which allows coupling

to inelastic channels:

v,=,+0,)V, (P, +Q,), (2.6)
with the projection operator
Q,=3 v rl, 2.7)
14

which projects onto the Hilbert subspace of the discrete
states (e.g., excited states), |y ) of the target other than
|9 For completion we define R, as the projection
operator onto the remaining Hilbert subspace of the con-
tinuum states,

R,=1-P,—0Q, . (2.8)
The Schrodinger equation for the total wave function is
()= pp(+)
(hy+T,+V, )V, =EV," . (2.9)

By using (2.3), (2.6), and (2.8), the y-channel interaction
potential ¥, above can be rewritten,

V,=Uli+wi (2.10)

812 ©1991 The American Physical Society



43 FORMAL DIFFERENCES IN PERTURBATION METHODS FOR . .. 813

or
V,=U,+W,, (2.11)
where, by introducing
=(P,+Q,+R, WV (P, +0Q,+R,) (2.12)

the reactive perturbation potentials that cause rearrange-
ment collision are formally written
wi=(P,+Q,+R,)V (P, +Q, +R,)—P, VP,
v,(g,+R,)+(Q,+R )V (P, +0Q, +R,)
(2.13)
for the distorted- (single-channel) wave representation of
the T matrix, and
wi=(P,+Q,+R IV (P, +0Q,+R,)
—(P,+Q,)V, (P, +Q,)
=(P,+Q,)WV,R,+R, V (P, +Q, +R,) (2.14)

for the coupled-channel (multichannel) wave representa-
tion of the T matrix. Using (2.10) and (2.11), we rewrite
the Hamiltonian (2.1),
— d d—

H,=h,+T, +U, +W,=h, +T, +U,+W, . (2.15)

The plane wave ®, for the relative motion in arrange-
ment ¥ can now be regarded to arise due to the neglect of
the elastic, inelastic, and continuum channels, that is,
P,=Q,=R,=0in (2.12). (2.9) simply leads to

(h,+T,)®,=Ed, (2.16)

B. Three different classes of T operators

The Lippmann-Schwinger equations of interest are,
with the use of (2.2), (2.5), (2.15), and (2.16) in (2.9),

W r)=le )+6Mv, |e,), 2.17)

W) =x4 ) +6 I we | xdtt (2.18)
and

W)y =lx ) +G P we | xg ) | (2.19)

Here the total Green’s operator or total wave propagator
is given by

1
(+) — — o 0(+) o+ (+)
G T E—m, e & T8 G

—g7+)+gy+)Vyg‘y _+_... )

(2.20)
where g% is the plane-wave propagator,
1
o(+) — ; (2.21)
&y [E—(h,+T,)+ic]
(+) g d(+) 4 yd(F)pyd e (+)
GUH) =g ) 4 gd DG,
_ (+) d+)
—gy +gy W + - , (2.22)

where g‘“* is the distorted- (elastic-scattering) wave

propagator, 14(d)
1
di+) — .
gy d . 3 (2.23)
[E~(h,+T,+U7)+ig]
or
G(+) _g;‘/(+)+gc(+ WcG
—cl+) (+)
gy -+-g7, Wygi, + - , (2.24)
where g¢'*) is the coupled-channel (inelastic-scattering)
wave propagator,
gyt = 1 (2.25)

[E—(h,+T,+US)+ie]

The use of the Lippmann-Schwinger equations (2.17),
(2.18), and (2.19) for the prior interaction form of the

transition amplitude,
Tp,={V5 |V, ]D,) , (2.26)

leads to the following three classes of T operators: the
plane-wave operator 7TV,

V=V, +V,G5"'V,
=V VS W+ Vgl g Wt -,
(2.27)
associated with
T, ={Pp|T™V|®,) ; (2.28)
the distorted-wave operator 7PV, 14
ToV=wi+wiGy" 'wi
=Wwi+Wwhes Wi
+Whes P Whg W+ -, (2.29)

associated with
Tpe = (X&) TPV XdH)) ;

and the coupled-channel wave operator

(2.30)
TCW 14d)

TV=W,+WiG;"'W;
— W2+ nggc(+)Wc

+Whegs Pwheyr I we+ - 231

associated with

Tpo =< X5 TV X)) . (2.32)

The T operators (2.29) and (2.31) corresponding to the
DW and CW representations above are now seen to have
distinctively different structures. Obviously this is owing
to the manifest differences in the distorting potentials and
perturbation potentials that are shown in (2.3), (2.6),
(2.13), and (2.14) above.
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III. TRANSFORMATION OF DISTORTED-WAVE
TRANSITION AMPLITUDE INTO
PLANE-WAVE REPRESENTATION

Using (2.29), the DW transition amplitude (2.30) is ex-

Considering (2.13) and the orthogonality between
different projection operators for the same arrangement,

plicitly p,Q,=Q,R,=P R, =0, (3.2)
pa = (XG T W+ W gdHwd
+Whgh P whgd Pwd - [ xd(T)) 3
(3.1) with commutability, we rewrite (3.1),
J
e = (XG T NQu+R IV, Py +PsVs(Qs+Rpgd T (Q,+R IV, P,
TPeV(Qpt+RpEA T (Qp+RpIV(Pa+Qp+RpgE T (Qu+R OV P+ - |X4H)) (3.3)
[
In (3.3) above, the projection operators between different  amplitude in (3.1) above,
arrangements are nonorthogonal due to nonvanishing DWBA — ( yd(—) | pprd | xd(+)
overlap between different arrangement channels. Tp <XB Iwalxa™", (3.62)
Using (2.2) and (2.16), the Lippmann-Schwinger equa-  [eads to
tion for the distorted waves for arrangement y is written DWBA _ (g | W 0.} + (| d(+) ‘o)
T =( D WD) +H(D U Wl
X4y =D,) +gd Ud|D,) (3.4a) P b s “
(@ Wi gdPUd|o,)
or
+(DyUGg d(“Wd daPudle,) . (3.6b)
|Xg( >_1¢ >+ 0(+ +g0(+ Udg3(+ )Ui!(py> B' |
(3.4b) Using (2.13), we obtain for the first term in (3.6b)
' (WD) =(Dy|V,|®,)— (D,P,V, P,|D,)
by introducing the distorted-wave propagator pr7ala BB | . sl @
=Tp'PA— (04U D) . 3.7
gy<+)_g0(+ +g?/(+)U§g$<+) BlYal™a
— g OF) O+ gy, O+) The first term in (3.7) above is the lelr.niliar plgne-wave
—&y &y 8y first Born term called the PWBA transition amplitude.
0(+) ) yd,00+) 1L Now the insertion of (3.5) and (3.7) into (3.6b) leads to
+g, Uygy Ulg, '+ (3.5)

into (3.4a).
The substitution of (3.4a) into the distorted-wave first
Born-approximation term called the DWBA transition

J

T = Dl (UG+ UG gF UG+ - g™

The expression (3.8) above establishes a formal relation
between the DWBA and PWBA transition amplitudes.
The DWBA (i.e., the first Born term in the representation
of distorted wave) is seen to include the first Born term
and infinite higher-order Born series terms in the repre-
sentation of the plane wave. The higher-order Born
series terms (3.9) is seen to consist of the perturbation po-
tential W to the first order only and the distorting poten-
tial U to all orders. They represent the contribution of
the perturbation interaction to the opening of new ar-
rangement channels and the contributions of multistep
elastic-scattering processes due to the appearance of the
nonreactive distorting (elastic) potential to all orders.

Wd}q) >+<¢3}de0(+)(Ud+Ud O(+)Ud
(D (UG+UGE PUR+ -+ gf VWd gl (Ul +

TDWBA__ (d +TPWBA__(¢/3|UZ|(I)“) , (3.8)

where

le,)

vigdtui+ - H)e,) . (3.9)

f

Now consider the case of negligible influence of the dis-
torting potential in the initial arrangement, i.e., U% ~0.
We then find ¥, ~ W2 in (2.10). Thus (3.6b) leads to

TEVPA = (Dp WD ,) +( Dyl U g W D,) ,

3.10
or using (2.13), ( )

TRYPA =(®gl(Q, +R )V, P, |D,)

+( Dyl PV pPs g T (Qu+R OV P, |D,) .
(3.11)

Further, for the case of weak reactive potential in the
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final arrangement B, that is, W5=0 for y=8 in (2.10),
we have V= U4 g Thus the expression (3.10) is reduced

to

TRVBA = ( @yl V,+ Vg5 TV, @) , (3.12)
and the T operator is then

T=V,+Vz85 "V, , (3.13)

TDWBA ~ T;[\IVBA _ <¢Bt Ug |q>a)

+E N D (UG+USE 'UG+
+E XD (UG+UGE UG+ -+~

As E — o, (3.15) above is reduced to

ThyPA=TEPA — (@ UL Dp) (3.16)

It is now clearly seen from (3.16) above that the DWBA
converges to the PWBA transition only if the influence of
distorting potential U¢ is ignored.

The plane-wave representation of the DWBA expres-
sion (3.8) with (3.9) is simply written

TE:VBA:<(I)[3‘(V —Ud)+TO 0(+)Wd+de0(+)T0
+T0 gO +)Wd g0(+)T0 |q>a) R (317)
where
0 —grd d j0(+)yrd d O(+) d ,O0(+)yrd
TO=U?+Ud g% Ul +U? g%+ ud g% Hyd +
(3.18)

The introduction of (3.18) into (3.9) leads to the simple
expression
7;3‘2—((1>E|T% gy W+ wd g +10
+Thel TWa ek T |®,) (3.19)

TCCBA_<Xd(—)|WC|Xd +)>_+_<X
_+_<Xd(* |U gc(+)Wc (+)U |Xd(+)>

The substitution of (4.1a) into the first term in (4.5b)
leads to
(XMW xd ™)

=(xg N wilxd* )~

(X5 MULIX4 ),  (4.6a)

OWE D) +E NP WEULHUIETIUL+
YWAUUL+ULE UL +

)lUﬁgc(+ Wc ng(+)>+<X?3(_)|WZgE(+

with

gd(+) = 1
o E—(h,+T,+Ud)+ie’

(3.14)

as shown in (2.23).
At higher collision energies, the DWBA transition am-
plitude (3.8) is approximated® as

P,

)@, . (3.15)

r

IV. TRANSFORMATION OF COUPLED-CHANNEL
WAVE TRANSITION AMPLITUDE INTO BOTH THE
DISTORTED-WAVE AND PLANE-WAVE
REPRESENTATIONS

From (2.10) and (2.11), we find the distorting (inelastic
interaction) potential,

U,=U; —Uy=Wi—W; (4.1a)
or

U,=Q,V,(P,+Q,)+P,V,Q, . (4.1b)
Using (4.1), we rewrite (2.5),

(hy,+T,+Us+U, )X =EXx'™) . 4.2)

The Lippmann-Schwinger equation for X '™ is then

Xc(+)_Xd +)+gc(+ Usz , 4.3)
with
g;w (+)+g7, U gc(+)
=g$‘+’+g$(+>U7g‘;‘+’
+g‘;(+)U,,g‘;(+’Uyg‘;(+)+ (4.4)

For simplicity, we consider only the coupled-channel
wave first Born (CCBA) term in (2.32),

TCCBA-(XL‘(—)|WL‘ |Xc +)) (45&)
The insertion of (4.3) into (4.5a) yields
Ua lxi( +) >
(4.5b)

or

<Xd(“)|Wclxd(+))_TDWBA <X;ij(—*)|Ua|Xz(+))

(4.6b)
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Using (4.5b) and (4.6b) above, we obtain the following
formal relation between the first Born terms in the CW

T(f;g— d(—)lU gf3(+)Wc|Xd(+))

and DW representations, +H(xg N we g DU, lxdH)
ngBA_ +TDWBA <X;13(")|Ua|Xg(+)> , 4.7 +<Xﬁ )IU g +)Wc c(+ UaIXZ(+)> , (4.8a)
where or introducing (4.4),
i
7'/32_<Xﬁ — |(Uﬁ+ U/;’gﬁ +)Uf)’ )gg’(+)Wg|XZ(+) )+<XZ(—)|ngZ(+)(U +U gd(+ U + .. )|Xz(+) )
H(XE TN Ug+Upgg ' Ug+ - g VW gl (U, +U, g8 VU, + -+ ) X2 (4.8b)
Using (2.14) and (4.1b), we rewrite (4.8a)
= X3 T (PgVQp+PpVsQp8a T 'QsVsPs+ -+ - 1ga TRV, P, 1XET))
HXE TRV Q0 88 (QuVoPe+QoVoQa8d ' QuVoPot - IXET)
(X TPV Qu+PsVpQs83 V0QsVePs+ -+ g TRV, 0,858
X(QuVuPoutQuVaQugdQ VP, + )X, (4.8¢)
[
From (4.8) above, the CCBA transition amplitude (4.7) is TESBA ~TRVEA | (4.10)
explicitly demonstrated to contain higher-order .
distorted-wave Born terms in a unique manner, in addi- We now rewrite (3.4b) using (3.18),
tion to the distorted-wave first Born (DWBA) term. That le( +)y= l‘b N +g0(+ )0 |¢y> , @.11)

is, the first Born term (CCBA) in the representation of
coupled-channel (multichannel) waves contains not only
the first Born term (DWBA) in the representation of dis-
torted wave, but also the effects of the perturbation po-
tential W, to the first order responsible for opening new
arrangement channels, and the inelastic interaction U, to
all orders to allow multistep inelastic (Q, ) transitions as
intermediate steps before the arrival of a final rearrange-
ment channel.

As E — o, (4.5) or (4.7) is reduced to

TCCBA_‘T/lj):VBA_<X;13(—)|Uang(+)) , (4.9)

and if the distorting potential in the initial arrangement a
is weak, we note

J

= Pl Upg ! "W+ Tpgg P Uggh

Dy Ug g WS g5
+U gc(+ ngg('F U g0(+)T0+TO
and

<X;ij(*)|Ua1Xg(+)

and
gy =gf" 4.17)

A formal relation between the CCBA and PWBA tran-
sition amplitudes is shown in (4.12). Important to note is
that the coupled-channel wave first Born term as shown

+g0(+)Uc 0(+)+

W +U gc(+)Wc g0(+)T0+T0
+<¢B|WC c(+) U +T0g0(+ ngl[:l(+ U +WC ga+)U g0(+)TO+T0 o(+ WC

)Uﬁg[} Wc

<(D/3|U +T g0(+)U +U g0(+)T0+T0 o(+) U g0(+)T0|¢,a>

and insert (4.11) into (4.5b) or (4.7) to show a relationship
between the CCBA and PWBA,

TE A =TEPA —(@plul|o,)

(X TNULIXET Y 474, , (4.12)
and a relationship between the CCBA and DWBA,
TEPA=TRVPA — (X3 U, |X4 ) +7i5) (4.13)
where 75, is

Tha™ (d)-l-r;fcz , (4.14)

and

+)U gc(+)Wc g0(+)TO|q) >
+)Uc g0(+)T0Iq>a>

(+)U +T%g0(+)U gc('F)ngg(-F)U

C(+ U g0(+)T01q)a> (4.15)

(4.16)

I

in (4.7) through (4.8¢c) and (4.12) through (4.17), respec-
tively, implies the infinite Born series expansion in the
representations of both the distorted and plane waves. In
analogy to the quantum field theory, the coupled-channel
wave first Born term (or CCBA) can now be regarded as a
“dressed” or “renormalized” transition amplitude in ei-
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ther the plane-wave or distorted-wave representation.
Thus the plane-wave first Born term that appears in the
expansion of CCBA simply corresponds to the ‘“bare”
term. The fourth term 74, in the CCBA expression (4.12)
represents the “clothing” which encompasses all possibil-
ities of intermediate multistep elastic and inelastic transi-
tions before the arrival of the final arrangement channel.
Finally, at E — o, (4.12) is reduced to

TESBA =TRVBA —(@plUC D) , 4.18)

similar to the description made in Sec. III. It is now seen
that only if the inelastic distorting potential U¢, in the ini-
tial arrangement o is negligible (i.e., U, ~0), the CCBA
converges to the PWBA, that is,

TEPA=TpyPA . 4.19)

V. SUMMARY

For the sake of completion, an extension of our earlier
studies'*? of the T matrix for rearrangement collision
was presented here. Using the projection operators, dis-
tinctions between formal relations among the three
different (PW, DW, and CW) classes of perturbation
methods were sharpened. By deriving formally transfor-
mations between the first Born terms, PWBA, DWBA,
and CCBA, both the distorted-wave and coupled-channel
wave first Born terms were seen to be equivalent to the
infinite-order plane-wave Born series expansion in a
clearly different manner. Differences in structural details
between the two were elucidated in Secs. III and IV. A

question on the convergence of perturbation theory is
often raised in treating the plane-wave Born series expan-
sion>!7 of the T matrix. The same degree of concern may
not occur with the coupled-channel wave Born series ex-
pansion for treating direct rearrangement collision. This
is because the CCBA, that is, the first Born term alone in
the coupled-channel wave representation, already con-
tains the infinite Born series terms in the representation
of plane or distorted wave.

As noted from earlier discussions in Sec. IV, the CCBA
transition amplitude represents infinite-order Born terms
in a unique way, if it is viewed in the representation of ei-
ther the distorted wave or plane wave. To be more
specific, it is shown that the CCBA T matrix given by the
distorted-wave representation contains not only the
distorted-wave first Born term (DWBA), but also the
effect of multistep inelastic transitions as intermediate
steps before the arrival of final arrangement channel.
Thus, we have explicitly shown that the first Born term
alone in the representation of the coupled-channel (mul-
tichannel) wave is equivalent to the sum of the infinite
plane-wave Born series terms in a unique manner and
acts as a “‘dressed” or ‘“‘renormalized” transition ampli-
tude.
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