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Presently there exists a lack of systematic analysis on the differences in perturbation methods for
studying direct rearrangement collisions. Emphasis is placed upon elucidating the formal
differences in the structures of the T matrix in various perturbation theories by paying attention to
differences in perturbation potentials and T operators. Extensive comparison between different per-
turbation theories and the relationship between them is explicitly shown to further highlight the
formal differences among them.

I. INTRODUCTION

Depending on the choice of scattering (or relative)
waves for the description of relative motions for colliding
particles, formally three different classes of perturbation
theory' ' are used for studying direct rearrangement
collision processes. They are, namely, the plane, distort-
ed (single-channel wave or elastic-scattering wave), and
coupled-channel waves (multichannel or inelastic-
scattering wave), respectively. Accordingly, the three
perturbation methods are the plane-wave (PW),
distorted-wave (DW), and coupled-channel wave (CW)
Born series expansions of the transition amplitude. As a
continuation of our earlier studies, ' our main objective
in the present study is to sharpen their differences and
find their relationships by deriving structural differences
in the formal expressions of the T matrix (transition am-
plitude). For completion, self-containment is attempted.

(2.3)

with the projection operator

P, =~) o&&1 o~ (2.4)

which projects only onto the entrance channel (e.g. ,
ground state)

~ yo &.

Now the coupled-channel (inelastic) wave X' for the
relative motion is obtained from' ' '

(h + T + U' )X'+' =EX'+'
r r y r r (2.5)

Here U is the distorting potential which allows coupling
to inelastic channels:

The distorted (elastic) wave Xr to describe relative
motion in the y arrangement is obtained from' '"'

(h + T + U" )X"i+ ~ =EXd~+ ~ (2.2)r y r r y

Here U" is the distorting potential responsible only for
elastic collisions, and is defined by' ' '

II. FORMAL DIFFERENCES IN PERTURBATION
POTENTIALS AND T OPERATORS Ur =(Pr+Qr)Vr(P +Q ), (2.6)

To meet a necessity for symbol definitions to be used
later, we partially review our earlier studies' by paying
attention to the formal structures of both the perturba-
tion potential and T operator. By introducing projection
operators, explicit distinctions among different perturba-
tion approaches in the structures of both the T operator
and perturbation potential are made in a self-evident
manner.

A. Dift'erenees in perturbation potentials

The Hamiltonian for arrangement a is formally written

with the projection operator

Q, = y ly&&y, (2.7)

R =1 P —Q—r (2.8)

The Schrodinger equation for the total wave function is

which projects onto the Hilbert subspace of the discrete
states (e.g. , excited states), ~y & of the target other than
~yo&. For completion we define Rr as the projection
operator onto the remaining Hilbert subspace of the con-
tinuum states,

H=H =T +V +h (2.1) (h +T + V )%"+'=E4'+I .r r r ~ r (2.9)
Here T and V are the kinetic- and potential-energy
operators between a projectile and a target. h is the
internal energy operator for both the target and projec-
tile.

By using (2.3), (2.6), and (2.8), the y-channel interaction
potential V above can be rewritten,

+ P7d
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or

V = U'+8'y, (2.1 1)

where g
'+' is the distorted- (elastic-scattering) wave

propagator,

where, by introducing

V =(P +Qr+R )V (P +Q +R ), (2.12)
or

d(+) = 1

IE (—br + T~+ U~ )+iE]
(2.23)

the reactive perturbation potentials that cause rearrange-
ment collision are formally written

W =(Py+Qr+R )V (P +Q +R ) PV—P

G(+ ) —g
c(+ ) ~g c(+ ) P7c G(+ )

y r y y r
c(+) ~ c(+)~c e(+) ~r r y y (2.24)

=P V (Q +R )+(Q +R )V (P +Q +R )

(2.13)

where g'(+ ( is the coupled-channel (inelastic-scattering)
wave propagator,

for the distorted- (single-channel) wave representation of
the T matrix, and

c(+) 1

[E —(h~+ Tr + U~ )+iE]
(2.25)

W' =(P +Q +R )V~(Py+Q~+R~)
—(Pr+Q~ )Vy(P~+Qy)

=(P+Q )VR +R V(P+Q+R ) (2.14) v;.=
& e,(-'~ v. ~c.&, (2.26)

The use of the Lippmann-Schwinger equations (2.17),
(2.18), and (2.19) for the prior interaction form of the
transition amplitude,

for the coupled-channel (multichannel) wave representa-
tion of the T matrix. Using (2.10) and (2.11), we rewrite
the Hamiltonian (2.1),

Hy hr+Ty+Uy+ W~ hy+T +U + W (2 15)

The plane wave 4, for the relative motion in arrange-
ment y can now be regarded to arise due to the neglect of
the elastic, inelastic, and continuum channels, that is,
Pz =Qz =Rz =0 in (2.12). (2.9) simply leads to

leads to the following three classes of T operators: the
plane-wave operator T

T' =V +V G(+)Va p p a

=v +v g '+'v +v g '+'v g '+'v + .
a p p a p p p p a

(2.27)

associated with

(h +T )4& =E4 (2.16)
pw

the distorted-wave operator T

(2.28)

B. Three di6'erent classes of T operators

The Lippmann-Schwinger equations of interest are,
with the use of (2.2), (2.5), (2.15), and (2.16) in (2.9),

TDw ~d ~ ~dG (+ ) ~da p p a

~d ~ ~d d(+) ~da pgp a

ie(,+'& = ie, &+G',+'v, ic, &,

~(I((+') = ~x '+') /G(+'p'" ~x '+')
y y r

~ql(+)) ~xc(+) ) ~G(+)pre ~xc(+) )r r y r r

(2.17)

(2.18)

(2.19)

~ ~d d(+) prd d(+) prd ~pgp pgp a

associated with

T = &x"'-'
~
T "~x"'+') .

and the coupled-channel wave operator T

(2.29)

(2.30)

Here the total Green's operator or total wave propagator
is given by

G(+) — —0(+) / 0(+)y G(+)1
r E ~ +jp y y

r
0(+) ~ 0(+)y 0(+) ~r y y r

(2.20)

where g '+ ' is the plane-wave propagator,

T = 8"+ 8"G(+ ) 8"a p p a

= m'+ w' g'+)w'a p p a

~ p/c c(+)p7c e(+)~c /pgp pgp

associated with

T &Xc(—
) ~Tcw~Xc(+) )

(2.31)

(2.32)

0(+ ) 1

[E —(h~+ Ty )+ i 8]

G(+) = d(+) / d(+) ~dG(+)
r y y y r

d(+) ~ d(+)~d d(+) ~r r

(2.21)

(2.22)

The T operators (2.29) and (2.31) corresponding to the
DW and CW representations above are now seen to have
distinctively different structures. Obviously this is owing
to the manifest differences in the distorting potentials and
perturbation potentials that are shown in (2.3), (2.6),
(2.13), and (2.14) above.
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III. TRANSFORMATION OF DISTORTED-WAVE
TRANSITION AMPLITUDE INTO

PLANE-WAVE REPRESENTATION

Considering (2.13) and the orthogonality between
different projection operators for the same arrangement,

Using (2.29), the DW transition amplitude (2.30) is ex-
plicitly

=(X ' '~W +W" d'+)Wpa p a pgp

+w" "'+'w" "'+'w'+ ~&"")pgp pgp a a
(3.1)

PrQr=QrR =P R =0,

with commutability, we rewrite (3.1),

(3.2)

Tp = (Xpd( )
~(Q +R ) V P +Pp Vp(Qp+Rp)gp'+'(Q +R ) V P

+PpVp(Qp+Rp)gp'+'(Qp+Rp)Vp(Pp+Qp+Rp)gp'+'(Q +R )V P + ~X"(+) ) . (3.3)

l

amplitude in (3.1) above,In (3.3) above, the projection operators between diFerent
arrangements are nonorthogonal due to nonvanishing
overlap between different arrangement channels.

Using (2.2) and (2.16), the Lippmann-Schwinger equa-
tion for the distorted waves for arrangement y is written

TDWBA (~d( —)
~

wd ~gd(+) )pa p a

leads to

TDwB = (gl
~

Wd gl )+ (q)
~

U" gd(+) Wd ~cy )

+ (e p~ w."g".'+'U.'~c. )

+(q)
~

Ud gd'+)Wd gd(+)/d ~(I) )

~~''+ ) —~c, )+g" +'U'~g, ), (3.4a)

or

+d(+) ) &p )+( 0(+)+ 0(+)Ud 0(+)+. . . )Ud~@ )r r r r r r r r
Using (2.13), we obtain for the first term in (3.6b)

(3.4b)

(3.6a)

(3.6b)

by introducing the distorted-wave propagator
d(+) 0(+) + 0(+)Ud d(+)

0(+) + O(+)Ud o(+)gr &r
0(+)Ud 0(+)Ud 0(+) + ~ . .

r&r (3.5)

(c pl w'. I@.& =(@pl v. lc. &
—(@plP.v.P. I@.&

TPwBA (@
~

Ud ~@ ) (3.7)

The first term in (3.7) above is the familiar plane-wave
first Born term called the PWBA transition amplitude.

Now the insertion of (3.5) and (3.7) into (3.6b) leads to

into (3.4a).
The substitution of (3.4a) into the distorted-wave first

Born-approximation term called the DWBA transition

TDWBA r(d) + TPWBA

where

(3.8)

(d) (q ~(Ud+Ud 0(+)Ud+. . .
) 0(+)Wd~(I) )+(q ~Wd 0(+)(Ud+Ud 0(+)Ud+. . . )~(I) )

+((I)p~(U" +U" '+'U" + . )g '+'w g
+ (U +U" g '+'U + . )~4 ) . (3.9)

The expression (3.8) above establishes a formal relation
between the DWBA and PWBA transition amplitudes.
The DWBA (i.e., the first Born term in the representation
of distorted wave) is seen to include the first Born term
and infinite higher-order Born series terms in the repre-
sentation of the plane wave. The higher-order Born
series terms (3.9) is seen to consist of the perturbation po-
tential 8'to the first order only and the distorting poten-
tial U to all orders. They represent the contribution of
the perturbation interaction to the opening of new ar-
rangement channels and the contributions of multistep
elastic-scattering processes due to the appearance of the
nonreactive distorting (elastic) potential to all orders.

or using (2.13),
(3.10)

Tp."' =(ep~(Q. +R.)V.P. e.&

+(Np((PpVpPpgp(+)(Q +R )V P N ) .

(3.11)

Further, for the case of weak reactive potential in the

Now consider the case of negligible inAuence of the dis-
torting potential in the initial arrangement, i.e., U =0.
We then find V = W in (2.10). Thus (3.6b) leads to

T w A ((I) ~Wd~cP )+((I)p~ZJ g (+)W ~(I) )
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TD"BA=&e ~V +V gd(+)V ~e ) (3.12)

final arrangement, )33, that is, 8'ii =0 for y =)33 in (2.10),
we have Vi)=U&. Thus the expression (3.10) is reduced
to

with

d(+) =
E —(h +T +Uy)+iE

(3.14)

and the T operator is then

T=V.+V gd(+'V (3.13)

as shown in (2.23).
At higher collision energies, the DWBA transition am-

plitude (3.8) is approximated as

7 DWBA TPWBA (@
~

Ud ~@ )

+E '(N f3'(UP +U E 'U" + . )W N )+E '((I)idio'"(U" +U"E 'U + )i4' )

+E (4fdi(U +U"E 'U" + . )W"(U +U"E 'U" + . )i(I) ) . (3.15)

As E~ ~, (3.15) above is reduced to

7 DWBA 7 PWBA (Q
~

Ud ~Q )p~ pa /3 o. p (3.16)

IV. TRANSFORMATION OF COUPLED-CHANNEL
WAVE TRANSITION AMPLITUDE INTO BOTH THE

DISTORTED-WAVE AND PLANE-WAVE
REPRESENTATIONS

It is now clearly seen from (3.16) above that the DWBA
converges to the PWBA transition only if the inAuence of
distorting potential U is ignored.

The plane-wave representation of the DWBA expres-
sion (3.8) with (3.9) is simply written or

U d —~d Prc
y y y y r (4.1a)

From (2.10) and (2.11), we find the distorting (inelastic
interaction) potential,

U. =&.~.(~.+&.)+~.V.&. (4.1b)

(3.17)

where

TDwBA ( @ ~( Ir U'd )+ 7 0 go(+ ) grd + ~d go(+)7 0
pa p a a /3~p a aga a

+ 7 0 0(+)prd 0(+)7 0 ~(I) )pgp ega a a

Using (4.1), we rewrite (2.5),

(h +T +U" +U )X'+'=EX'+'
r y r y r r

The Lippmann-Schwinger equation for X'+ ' is then

~c(+) ~d(+ j + c(+)U ~d
y y r y r

(4.2)

(4.3)

T = U" + Ud g '+'Ud + Ud '+'Ud '+'Ud +r rgr r rgr rgr
(3.18)

The introduction of (3.18) into (3.9) leads to the simple
expression

with

c(+) d(+) + d(+)U c(+)
gr gr gr r &r

d(+) + d(+)U d(+)
r y y r

d(+)U d(+)U d(+) +
y y r r y

(4.4)

For simplicity, we consider only the coupled-channel
wave first Born (CCBA) term in (2.32),

(d)
(,'@ ~TO 0(+)g d+P d o(+)7.o

p& p pgp p (xRa a

+70 0+ ~d 0(+ 70~q )pg/3 aga a a

TCCBA —( Xc(—
)

~

prc ~Xc(+ ) )pn p a

(3.19) The insertion of (4.3) into (4.5a) yields

(4.5a)

7 ccBA (Xd( )
~

~c ~Xd(+) ) + (Xd( )
~
U c(+ ) prc ~Xd(+) ) + (Xd( —

)
~
p c c(+)U ~Xd(+) )Pn /3 e e p pgp a a p

+(Xd( —
)

~
U c(+)grc c(+)U ~Xd(+) )p p~p a ga o. a (4.5b)

The substitution of (4.1a) into the first term in (4.5b)
leads to

(x,"(-'
~

w' ~xd(+'
&

=(X ( —)~g ~X"(+))—(X (
—

)~U ~X"(+)), (4.6a)

or

(Xd(-)
~

W' ~Xd(+) ) =TD"' —(Xd(-)
~ U. ~Xd(+)

&

(4.6b)
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Using (4.5b) and (4.6b) above, we obtain the following
formal relation between the first Born terms in the CW
and DW representations,

TCCBA &(c)+ TDWBA (Xd( —)
l
U lxd(+) )pa +pa pa p a a

where

&(c)—(Xd( —)
l
U c(+ ) prc lxd(+ ) )pa p pgp a a

+ (Xd( —)
l

pr (+)U lxd(+) )p aga a a

+ (Xd( —
)

l
U c(+)prc c(+)U lxd(+) )p pgp aga a a

or introducing (4.4),

(4.8a)

(4.8b)

Using (2.14) and (4.1b), we rewrite (4.8a)

r"=(x"-)l(Up+Up '(+'U, + )g"+'Iv'lx"+')+(x" 'lw' g"+'(U. +U. "'+'U. + )lx"+')
+(X"' 'l(Up+Upg"'+'Up+ )g"'+'8" g" +'(U +U g"'+'U + )lX '+')

rp(')=(Xp( 'l(PpVpQp+PpVpQp gp' 'QpVpPp+ )gp'+'R V P lX"' ')
+ (x,"'-'lR. v.Q.g."+'(Q.v.P.+Q.v.Q. g".'+'Q. v„P.+ ) X."+'

&

+(Xp' ' (PpVpQp+PpVpQpgp'+'QpVpPp+ . )gp'+'R V Q g

x(Q. V.P.+Q.V.Q. gd(+)Q. V.P.+ . )lx."+'
& . (4.8c)

From (4.8) above, the CCBA transition amplitude (4.7) is
explicitly demonstrated to contain higher-order
distorted-wave Born terms in a unique manner, in addi-
tion to the distorted-wave first Born (DWBA) term. That
is, the first Born term (CCBA) in the representation of
coupled-channel (multichannel) waves contains not only
the first Born term (DWBA) in the representation of dis-
torted wave, but also the effects of the perturbation po-
tential 8 ' to the first order responsible for opening new
arrangement channels, and the inelastic interaction U to
all orders to allow multistep inelastic (Q ) transitions as
intermediate steps before the arrival of a final rearrange-
ment channel.

As E~ oo, (4.5) or (4.7) is reduced to

TCCBA TDwBA
pa pa

We now rewrite (3.4b) using (3.18),

lx"'+'
&
= lc, )+g", +'T', le, ),

(4.10)

(4.11)

TCcBA —TPwBA ( C
l

Ud
l
@ )

—(x"-'
l U. lx".'+' &+rp. , (4.12)

and a relationship between the CCBA and DWBA,
TccBA TDwBA (Xd( —

)
l U lXd(+) ) +r(c) (4 13)pa pa p a a +pa

and insert (4.11) into (4.5b) or (4.7) to show a relationship
between the CCBA and PWBA,

TCCBA TDwBA (Xd( —
)

l
U lxd(+) )pa pa p a a t (4.9)

and if the distorting potential in the initial arrangement cx

is weak, we note

where wp is

(d) ~ (c)
&pa &pa+~pa ~

and

(4.14)

(4.15)

(c) (q&
l
U c(+)grc + To 0(+)U c(+)prc + U c(+)prc 0(+)TO + To 0(+)U c(+)grc 0(+)To lq& )+pa p pp a p~p p~p a pgp a ga a pgp p+p aa a a

+ (C l
lvc c(+)U + To 0(+)prc c(+)U + grc c(+)U 0(+)To +To 0(+)Vrc c(+)Uc 0(+)To l@ )p aa a pgp aga a aga a~a a pgp agp aga a a

+(@ lU '(+)W' '(+)U +To o(+)U ()cW+cc(+)U
p pp aga a pgp pgp aga a

c(+)prc c(+)U 0(+)To+To 0(+)U c(+)prc c(+)U 0(+)T0 lc )a&p a~a a~a a pp p~p a&a a a

(x"-'lU. lx."'+')=(aplU. +To 0'+'U +U o'+'To+To g"+'U. go(+)To e.) (4.16)

and

c(+) 0(+) + 0(+)Uc 0(+) +&p &p (4.17)

A formal relation between the CCBA and P%"BA tran-
sition amplitudes is shown in (4.12). Important to note is
that the coupled-channel wave first Born term as shown

in (4.7) through (4.8c) and (4.12) through (4.17), respec-
tively, implies the infinite Born series expansion in the
representations of both the distorted and plane waves. In
analogy to the quantum field theory, the coupled-channel
wave first Born term (or CCBA) can now be regarded as a
"dressed" or "renormalized" transition amplitude in ei-
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ther the plane-wave or distorted-wave representation.
Thus the plane-wave first Born term that appears in the
expansion of CCBA simply corresponds to the "bare"
term. The fourth term

hatt
in the CCBA expression (4.12)

represents the "clothing" which encompasses all possibil-
ities of intermediate multistep elastic and inelastic transi-
tions before the arrival of the final arrangement channel.

Finally, at E~ ae, (4.12) is reduced to

TccBA TPwBA ( g&
~

U~ ~@ ) (4.18)

similar to the description made in Sec. III. It is now seen
that only if the inelastic distorting potential U in the ini-
tial arrangement ot is negligible (i.e., U' =0), the CCBA
converges to the PWBA, that is,

TCCBA TPWBA
pa pa (4.19)

V. SUMMARY

For the sake of completion, an extension of our earlier
studies' ' ' of the T matrix for rearrangement collision
was presented here. Using the projection operators, dis-
tinctions between formal relations among the three
di6'erent (PW, DW, and CW) classes of perturbation
methods were sharpened. By deriving formally transfor-
mations between the first Born terms, PWBA, DWBA,
and CCBA, both the distorted-wave and coupled-channel
wave first Born terms were seen to be equivalent to the
infinite-order plane-wave Born series expansion in a
clearly different manner. Differences in structural details
between the two were elucidated in Secs. III and IV. A

question on the convergence of perturbation theory is
often raised in treating the plane-wave Born series expan-
sion ' of the T matrix. The same degree of concern may
not occur with the coupled-channel wave Born series ex-
pansion for treating direct rearrangement collision. This
is because the CCBA, that is, the first Born term alone in
the coupled-channel wave representation, already con-
tains the infinite Born series terms in the representation
of plane or distorted wave.

As noted from earlier discussions in Sec. IV, the CCBA
transition amplitude represents infinite-order Born terms
in a unique way, if it is viewed in the representation of ei-
ther the distorted wave or plane wave. To be more
specific, it is shown that the CCBA T matrix given by the
distorted-wave representation contains not only the
distorted-wave first Born term (DWBA), but also the
effect of multistep inelastic transitions as intermediate
steps before the arrival of final arrangement channel.
Thus, we have explicitly shown that the first Born term
alone in the representation of the coupled-channel (mul-
tichannel) wave is equivalent to the sum of the infinite
plane-wave Born series terms in a unique manner and
acts as a "dressed" or "renormalized" transition ampli-
tude.
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