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Various relativistic treatments are applied to deuteron-nucleus elastic scattering at intermediate
energies. There are various possibilities for spin-one wave equations. Here we have considered
three of them, the Kemmer-Duffin-Petiau, Proca, and Weinberg equations. Second-order equations
are obtained from each using a similar set of approximations. Elastic-scattering observables includ-

ing the differential cross section, and the vector and tensor analyzing powers are calculated using all

three equations. The different predictions are compared with each other and with experimental
data for 400 MeV "Ni(d, d)'"Ni and 700 MeV Ca(d, d) Ca. We find that within the approxima-
tions made and for the assumed interactions there are no significant differences between the three
sets of predicted observables.

I. INTRODUCTION

Recently, Dirac-equation-based relativistic approaches
to proton-nucleus elastic scattering ai medium ener-
gies' were shown to be very successful in representing
the experimental data, especially the spin observables. In
these approaches the proton is treated as a point particle
obeying a Dirac equation which contains a nuclear opti-
cal potenti. al consisting of two terms, one a Lorentz scalar
and another the timelike component of a Lorentz four-
vector. This scalar-vector combination plays a critical
role in the representation of the elastic-scattering observ-
ables and makes it possible to account for a large body of
elastic-scattering data over a wide range of energy and
mass number.

In this paper we consider the theoretical description of
intermediate-energy deuteron-nucleus scattering. The
success of the Dirac-equation approach in describing the
propagation of a composite spin-one-half projectile in
proton-nucleus scattering warrants an analogous study of
a Lorentz-invariant description of deuteron-nucleus
scattering in which the projectile is represented by a rela-
tivistic pointlike spin-one particle. Effects due to the
finite size and internal structure of the deuteron can, to
some extent, be accounted for by the choice of interaction
form and by including breakup corrections.

Unlike the case for spin one-half, there are a number of
spin-one relativistic wave equations (RWE). Previous ap-
plications to deuteron-nucleus scattering of the Wein-
berg ' and Kemmer-Duf5n-Petiau'' ' (KDP) equa-

tions have been reported by different authors using
different assumptions. The Breit equa, tion' has also been
used in this regard but it is not a fundamental-
invariance-based spin-one RWE.

Our principal aim in this work is to determine the im-
pact of the nonuniqueness of the spin-one RWE's on the
deuteron-nucleus elastic-scattering predictions by
evaluating the Weinberg, Proca, and KDP equations us-
ing a similar set of approximations and with the same in-
teractions. In the absence of any strong theoretical argu-
ment for preferring one RWE over another, phenomeno-
logical results may tell us which one is best suited for
deuteron-nucleus scattering or whether the choice be-
tween different spin-one RWE's is even a relevant issue.

In the next section we discuss the various spin-one
equations. The common set of approximations and the
reduction to second-order form are treated in Sec. III. In
Sec. IV, we present the results of our calculations. Final
comments and the conclusions are given in Sec. V. Some
of the technical details are provided in the Appendix.

II. SPIN-ONE RELATIVISTIC WAVE EQUATIONS

Following the introduction of the Dirac equation, ' the
search began for similar equations for higher spins. It
was soon discovered that, apart from spin one-half, none
of the other spins obeys a single relativistic wave equa-
tion. For example, it was generally believed that for
spins zero and one, the Klein-Gordon' ' and Proca'
equations were unique. However, more than 50 years ago
it was found that the Kemmer-Duffin-Petiau' ' equa-
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tions can describe both spin-zero and spin-one objects.
Since then, many more systems of equations for arbitrary
spins, which originate under different assumptions made
regarding their invariance under the Lorentz group, have
been found.

Historically, the first equation describing massive par-
ticles with arbitrary spins was the Dirac-Fierz-Pauli
equation. The state vector in this case contains extra
components which have to be eliminated by imposing
constraints to yield the required physical degrees of free-
dom. For spin one they lead to the Proca equation which
can be written as

~~ (x)= a~q (x)—a q~(x) . (2)

Here A=c =1 and Bjorken and Drell conventions have
been used throughout. To eliminate the extra component
in 1/7", the constraint

is imposed so that Eqs. (1)—(3) taken together describe a
spin-one particle. Each component of the field obeys the
Klein-Gordon condition

(B,i)"+m )1/7~(x) =0 .

The field 1/i"(x) transforms as the D(1,0)1)3D(0,0) repre-
sentation of the homogeneous Lorentz group.

Other approaches have been presented in which
Dirac-like equations for arbitrary spins were derived.
Generally, they lead to first-order equations of the form

( i/3"r)„m) ij'j~ (x—) =0,
where the /3" are numerical matrices obeying some alge-
bra. One such approach is known as the Bhabha equa-
tion which for the spin-one case reduces to the KDP
equation. For that case, the /3" matrices obey the follow-
ing condition:

Bg "(x)+m 1/7"(x)=0,

where 1/7"(x) is the four-vector field for the spin-one parti-
cle, I is the mass, and I'" is the field strength tensor
given by

/3 =(5;,5j7 6'75j\) (5'26j9 5'95j2)+(5'35j8 5'86j3)

(9d)

where i and j refer to the rows and columns, respectively,
and 6; are Kronecker deltas. The state vector itself is
given by

%'z(x) =Column(i/i, A, E, —8), (10)

in analogy with the electromagnetic field. The field

q7ir(x) transforms as the

D(1,0)@D(0,1) D( —,', —,
'

)

representation of the homogeneous Lorentz group.
A third approach to these arbitrary spin RWE is to

find an equation for the physical 2(2s+1) components
only. Such general spin fields can be built by considering
the irreducible representations of the rotation matrices.
They are known as the Joos-Weinberg ' fields whose
equations of motion are known as Weinberg equations.
For spin one they can be written as

(p„p,y"' —m )4 11,(x ) =0,
where qj11,(x) has six components and the y"' are 6X6
matrices given explicitly by

I3 0

0 (12a)

0 S,
—S; 0 (12b)

and

P (6i26j 5+6i56j 2)+ (6i36j6+ 6i66j3)+ (6i46j 7+6i76j 4)

(9a)

/3'=(5;, 675
—5;55, , )

—(5;36j10 5'106j3)+ (6 45j9 6'96j4)

(9b)

/ (6'16'6 6'66'1)+(6 26'10 6'106'2) (6 46j8 6'86'4)

(9c)

PP/3v/37 + /37 /3v/311, —g P v/32. +g
7 v/3iJ.

It is interesting to note that these matrices satisfy
S;S +SS;—6;

0

0
—(S,S, +S S;—6;, )

(12c)

(/3"p„)' =p'(/3"p„),

which is a necessary and sufficient condition on the /3"

matrices for describing a particle with a unique mass.
The /31' matrices do not have an inverse and so, instead of
an algebra, they form a ring. It is interesting to note
that one of their representations can be written in terms
of Dirac matrices

/3"= —,
' [I(1)) p(2)+y~(1)I(2)],

Here I& are k Xk unit matrices and S,- are spin-one ma-
trices given by

(S ),k = —
&«jk

where e, I, is the three-dimensional antisymmetric tensor.
The field %11,(x) transforms as D(1,0)113D(0,1) under
Lorentz transformation so it clearly describes a spin-one
particle. Using the above matrix representations, the free
spin-one Weinberg equation can be written as

where 1 and 2 refer to two different spaces and I stands
for the 4X4 unit matrix. This reduces to three irreduc-
ible representations of dimensions 1, 5, and 10 where the
last two describe spins zero and one, respectively. For
spin one, the 10X 10/3i' matrices can be represented by

a(s p)i-
Bt

—(S p) A =0
(s.p)i——[m +(s.p) jat

(14)
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where A and 8 are three component vectors analogous
to the Dirac upper and lower components. For spins
greater than one, the Weinberg equations become very
complicated equations of third and higher order.

All these equations are equivalent for the free-field case
but are, in general, not equivalent when interactions are
included. For the Coulomb interaction, it has been
shown that the Proca and the KDP equations are
equivalent. " ' When other interactions like the
Lorentz scalar and Lorentz four-vector interactions are
introduced, they are very different. It has been known
for a long time that higher-spin RWE can become patho-
logical in the presence of interactions. ' One finds
complex energy eigenvalues, superluminal propagation of
waves, loss of constraints, and many other undesirable
features. Such behavior is exhibited by the spin-zero and
spin-one KDP (Ref. 33) and spin-one Proca equations.
In fact, it was shown that the spin three-halves Rarita-
Schwinger equation becomes unstable when minimally
coupled to the electromagnetic fields. At the present
time there are no known systems of arbitrary spin RWE
which are free of these problems.

III. SECOND-ORDER EQUATIONS
WITH INTERACTIONS

iV E=rng,
coE—iV XB=m A,
co A i Vg—=mE,

(17a)

(17b)

(17c)

—iVX A=mB, (17d)

where co=E —V. Substitution of Eq. (17c) into (17a) and
Eqs. (17c) and (17d) into Eq. (17b) and some algebra leads
to two equations,

given by Eq. (3.6) in Ref. 12 and then made simplifying
approximations. The equations for the wave function ob-
tained in the Proca and Weinberg cases have a particular
structure, different from the KDP equation. It is neces-
sary to reformulate the KDP expression for the wave
function to exhibit this structure so that similar approxi-
mations can be made.

The algebra and the approximations made in obtaining
the second-order equations will be illustrated below for
the KDP equation. The other two equations are dealt
with in the Appendix. Using the representation of the /3"

[Eq. (9)I, the KDP equation can be rewritten as a set of
four coupled differential equations

(V —m —Xr V)P= icoV—A+i.co(2+8)r. A, (18a)

(V +co —m ) A=icoVQ+V(V. A) —XrX(VX A),
(18b)

where

1 dS
m dt

(19a)(1Sa)D„=B„+iV6,
m~m —m +S (1Sb) and

We assume that the point deuteron-nucleus interaction
can be represented in terms of a Lorentz scalar interac-
tion S, and a timelike vector interaction V in analogy
with Dirac phenomenology for proton-nucleus scattering.
We introduce them in Eqs. (1), (S), and (11) with the fol-
lowing substitutions:

The three spin-one equations then become
Proca:

1 dV
67 dI"

(19b)

D„(D"P' D'P")+m 1—ir =0,
KDP:

(i P"r)„rn —
/3 V)%'—=0,

Weinberg:

[(iB„V5~ )(—i', V5~)y" ——m ]+g =o .

(16a)

(16b)

(16c)

Here both X and 0 have dimensions of energy and r
stands for the radial unit vector. These are related to
similar quantities defined in Ref. 12 by

(19c)

and

(19d)

In the case of the KDP equation both S and V can be in-
troduced in a variety of ways. " ' However, in order to
minimize the differences between the equations we will
use the above prescription.

In order to be able to compare the results from the
three equations, one must either solve them exactly or
make approximations which are similar. The ability to
solve them exactly when interactions are present does not
currently exist, thus one is forced to formulate the prob-
lem in a manner which does allow similar approximations
to be made in each case. In our previous work with the
KDP formulation for deuteron scattering, Refs. 11—13,
we started with an exact equation for the wave function,

mE
m co

(20b)

These transformations preserve the elastic-scattering
observables because P, and A, asymptotically approach
P and A, respectively. Equations (18a) and (18b) then be-
come

The P equation contains r.V and r A terms which can be
removed by transforming both P and A according to

1/2

(20a)
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(V —m +g )P, = i—E
1/2

(V. Ai), (21a)

(V +co —m ) A = — X'+6'+(X+6) 6+—
1 A, + [r(V A, )+V(r A, )

—2(r V)A, ]
2+6

—XrX(VX A, )+V(V A, )+ X'+6'+(X+6) 6—— r(r A, )+R, (2 lb)

where

1dX X
g =— +

ancl

1/2

(22a)

1 = 1 Z

g» —Z

1+ Z+ Z Z+ (25)

. COR=i r+V (22b)

R — 69
m

1/2
1

(» —Z

1/2

V A,

Inverting Eq. (21a) formally and substituting into Eq.
(22b) leads to

R = —a»[(X—c)r+V](V A, ),
where

(26a)

which then is used in R. We assume that Z/g» operat-
ing on (m/m)' V Ai gives a value small compared to
unity. In the noninteracting case it is zero. If interac-
tions are present, we assume that we can retain only the
first term in the above expansion. Equation (23) can then
be written

where

g2 —~2 g2 (24a)
and

c = in/» (26b)

and

Z=V +co —m (24b)

CO

24. (26c)

On expansion, the inverse operator term in Eq. (23) gives Using Eq. (26a), we can rewrite Eq. (21b) as

(v'+~' —m ') A = — x+e'+(x+e) e+—2
1 r

A, + [V(r A, ) —2(r V)A, ]

—XrX(VX A, )+(1—a»)V(V. A, )+[X+6—a»(X —c)]r(V A, )

+ X'+8'+(X+6) 8—— r(r A, ) . (27)

In Eq. (27) we drop the V(V A, ) term because its coefficient (1—a» ) is very small compared to unity.
Equation (27) can be completely decomposed into spin-one tensors. They are defined as

T„ii =(S A)(S B)——S ( A XB)——', ( A B)S

which leads to

TRR =(S r) ——'
r2

and

T~I, =(S.r)(S p) ——S L——', r p .

(28)

(29a)

(29b)

Equation (27) then takes the final form

2 T 2
P x RR k

,

2E +Uc+UsS L+UD(r V)+U~ii z +iUi, pTi, p A, = A, ,r2 2E
(30)
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where

UK
C

1

2E
2—co +m +k ——'(2+8) 0+—

3 r

I I I ~

I
I l I I

I
I I I I

I
I I I (

50

25

U K
D

——(X'+8')
3

1 1
[(1—az )2+axe],2E 2r

1 1 [(ax+2)X—ai(c+48],2E 3r

(31a)

(31b)

(31c)

0

—25—

—50—

I. . . , I ~. . . I

2 4 6
R (rm)

UK
RR

and

UKRP

X'+8'+(2+8) 8——
r

—[(1—al()X+aI(c+28] .1 1

r

(31d)

(31e)

FIG. 1. The effective central potentials for d+ "Ni elastic
scattering at a laboratory kinetic energy of 400 MeV. The solid,
dotted, and dashed lines present the KDP, Eq. (31a), Proca, Eq.
(A8a), and Weinberg, Eq. (A17a), results, respectively.

Here the subscripts C, S, and D stand for the central,
spin-orbit, and Darwin potentials, respectively, the prime
denotes di6'erentiation with respect to r and

f (r, c,z)

1

I 1+exp[(r —c)/z] I [ 1+exp[ —(r +c)/z] I
(34)

=E2—
gyes (32)

IV. CALCULATIONS AND RESULTS

Expressions similar to Eqs. (30) and (31a)—(31e) have
been derived for the Proca and Weinberg equations in the
Appendix under similar approximations.

The effective deuteron-nucleus scalar (S) and vector ( V)
potentials used here are twice the corresponding
nucleon-nucleus potentials evaluated at half the energy in
analogy with the Watanabe model assuming a pointlike
deuteron (folding over the deuteron wave-function
changes this slightly). ' The Coulomb potential is includ-
ed in the real part of the vector potential. The eA'ective
potentials are written as

The main input to the scattering calculations are the
nuclear scalar (S~) and vector ( V~) potentials obtained
from fitting nucleon-nucleus scattering observables at
half the deuteron kinetic energy. The potentials are writ-
ten as

and

V(E)=2 V~(E/2)+ Vc

S (E)=2S~(E /2) .

(34a)

(34b)

V& = Vz f(r, c„„,z,„)+iVIf(r, c„,,z„) (33a)

Sz =Szf(r, c,„,z,„)+iS&f(r, c„,z„),
where

(33b)

0.2

0.0

I I I ~

I
I I I ~

I

I ~ ( I
I

I I I I

TABLE I. Dirac optical potential parameters used.
—0.2

Target

"Ni Vector real
Vector imag
Scalar real
Scalar imag

301.96
—74.298

—406.88
69.266

1.0470
1.1226
1.0371
1.1191

0.6112
0.6232
0.6369
0.5826

Strength Radius/3 ' Diffuseness
(Mev) (fm) (fm) —0.4

~ I s I ~ a I i ( ( i I

2 4 6
R (fm)

"Ca Vector real
Vector imag
Scalar real
Scalar imag

292.27
—94.677

—414.68
95.739

1.0115
1.1253
1.0044
1.1279

0.6421
0.5509
0.6690
0.5361

FIG. 2. The effective spin-orbit potentials for d "Ni elastic
scattering at a laboratory kinetic energy of 400 MeV. The solid
lines present the KDP, Eq. (31b), results and the dotted lines
present the identical Proca, Eq. (A8b), and Weinberg, Eq.
(A17b), results, respectively.
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1.0
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Re' & R

I I I I 0.004

0.002

I I I I

I
I I I I

I
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I

I I I I

0.0 g, 0.000

—0.5
Im

—0.002

—1.0
0

I i s g i I s

''s
i i I s

2 4
R (fm)

—0.004

R (fm)

FIG. 3. The eA'ective RR tensor potentials for d +'"Ni elastic
scattering at a laboratory kinetic energy of 400 MeV. The solid,
dotted, and dashed lines present the KDP, Eq. {31d),Proca, Eq.
(A8d), and Weinberg, Eq. (A17d), results, respectively.

FIG. 5. The effective RP tensor potentials for d +' Ni elastic
scattering at a laboratory kinetic energy of 400 MeV. The solid
line shows the results for the KDP results, Eq. (31e). The Proca
and Weinberg effective RP tensor terms vanish.

We calculated the results for d+ Ca at 700 MeV and
d+ Ni at 400 MeV laboratory kinetic energy using the
parameters for proton-nucleus scattering at 362 and 200
MeV, respectively. The 362-MeV p + Ca data are the
closest data set to 350 MeV available. The energy depen-
dence of S~ and V~ in this energy region is modest, ' '

hence, the 362-MeV parameters should be adequate. For
d + Ni we used the phenomenological p+ Ca poten-
tials with radius parameters rescaled by the factor 3 '

The parameters are given in Table I.
Using Eqs. (31a)—(31e), and Eqs. (A8a) —(A8e) and

(A17a) —(A17e) in the Appendix, we calculated the cen-
tral, spin-orbit, Darwin, Uz~, and Uz~ tensor potentials,
for the KDP, Proca, and Weinberg equations, respective-
ly. The results are displayed in Figs. 1 —5 for d+ Ni
and Figs. 6—10 for d+ Ca, respectively. We find that

the central potentials are almost the same. The Proca
and Weinberg spin-orbit potentials are identical under
the approximations used. Further, Uz ——U&

' as
(1 —a~)=0 and g &(co in Eq. (31b). The UzR poten-
tials for the three equations are very different. The real
parts of Uzz for the KDP and Weinberg equations first
decrease and then increase in magnitude; however, the
real part of Uz~ calculated from the Proca equation is
opposite in sign from that of the KDP and Weinberg.
Similarly, the imaginary part for the Proca equation first
decreases and then increases, which is again opposite
from the behavior resulting from the other two equations.
The reason for this behavior lies in the absence of some
terms in the Proca U~~ potential IEq. (A8d)j which de-
pend on the scalar potential S.

In the present approximation the Darwin potential

0.6

0.4

o.a—

I
I

i I I I
I

I I I

I
I

50

25

0

I 4 I I

I

I I I I

I

I I I I

I

I I I I

0.0

—0.2 Im

R (rm)

FIG. 4. The effective Darwin potentials for d+ "Ni elastic
scattering at a laboratory kinetic energy of 400 MeV. The solid
and dotted lines present the KDP, Eq. (31c), and Proca, Eq.
(A8c), results, respectively. The Darwin potentia1 from the
Weinberg equation vanishes.

I I I I I I I I I I I I I I I I I I I

R (rm)

FIG. 6. The effective central potentials for d+ Ca elastic
scattering at a laboratory kinetic energy of 700 MeV. The solid,
dotted, and dashed lines present the KDP, Eq. (31a), Proca, Eq.
(A8a), and Weinberg, Eq. {A17a), results, respectively.
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0.2

0.1

Q Q

(D

0
M

—0.2

s s s s

I
s s ~ s

I

s s s ~

I
s s s s

Im

s s s s

I

s s s s

0.6

0.4

O.2—

0.0

I

s s s s

—0.3

—0.4
0

s s I s s s s I s s

2 4
R (fm)

s s I s s ~ s

—0.2

R (fm)

Im
I s

6 8

FIG. 7. The effective spin-orbit potentials for d+" Ca elastic
scattering at a laboratory kinetic energy of 700 MeV. The solid
lines present the KDP, Eq. (31b), results and the dotted lines
present the identical Proca, Eq. (A8b), and Weinberg, Eq.
(A17b), results, respectively.

FIG. 9. The effective Darwin potentials for d+" Ca elastic
scattering at a laboratory kinetic energy of 700 MeV. The solid
and dotted lines present the KDP, Eq. (31c), and Proca, Eq.
(A8c), results, respectively. The Darwin potential from the
Weinberg equation vanishes.

vanishes for the Weinberg equation. For the KDP and
Proca, their shapes are similar but magnitudes are
different. The Darwin term has not been included in the
calculation of observables but, just as in the Dirac equa-
tion, it can be transformed away resulting in a compara-
tively small contribution to the central potential. This
should not affect the observables significantly. The Uz~
tensor potentials vanish for the Proca and Weinberg
equations. For the KDP equation, it is also of the order
of 10 MeV and so can be justifiably neglected. The
U~~ potentials are included in all calculations.

Next we present calculations of the differential cross
sections and the vector and tensor analyzing powers, Ay
and A~~ in Figs. 11(a)—(c) and 12(a)—(c) for d+ Ni and
d + Ca, respectively, together with the experimental
data. ' The computer code SNoopY8g was used in the

calculations. For o. and A, all three equations give
similar results. The curves for A show some differences
between the Proca and the other two predictions. Quali-
tative agreement with the differential cross section and
A data is obtained; however, the A predictions, while
having roughly the correct shape, are too small in overall
magnitude. The differences between the A predictions
from the Proca equation and the other two equations is
due to the U~z terms.

The major source of the difference between the KDP
results presented here and the cases given in Refs. 11—13
is due to the various approximations made. For example,
in Ref. 12 we fold over the deuteron wave function,
where, in this work as well as in Refs. 11 and 13, no fold-
ing is done. This difference is most noticeable in the
cross-section calculations. The spin observables are, not

1.0 s s s s

I

s s s s

I

s s s s

I

s ~ s s 0.004 s s s s

I

s s s s

I
s s s s

I

s s s s

0.5

0.0

0.002

g, 0.000

—0.5
Im .

Re
—0.002

—1..0 s s s s I s s s s I s s

0 2 4
R (fm)

I s s —0..004 s s s I ~ s s s I s s s s I s s s

0 2 4 6

R (fm)
FIG. 8. The effective RR tensor potentials for d + Ca elas-

tic scattering at a laboratory kinetic energy of 700 MeV. The
solid, dotted, and dashed lines present the KDP, Eq. (31d), Pro-
ca, Eq. (A8d), and Weinberg, Eq. (A17d) results, respectively.

FIG. 10. The effective RP tensor potentials for d + Ca elas-
tic scattering at a laboratory kinetic energy of 700 MeV. The
solid line gives the KDP results from Eq. (31e). The Proca and
Weinberg effective RP tensor terms vanish.
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surprisingly, most affected by the treatment of the spin-
orbit term. As described in Ref. 13, the various ways of
choosing to write the mixed tensor term constitute
different approximations. The observables obtained from
the KDP formalism used here are almost identical to
those given by the dashed line in Fig. 1 of Ref. 13. The

major source of difference between the results here and
those given by the various cases discussed in Refs. 11—13
lies in the approximations made in obtaining an effective
second-order equation for the wave function. In this
work we formulated the problem so that similar approxi-
mations could be made for all three equations. In the
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FIG. 11. The differential cross sections (a), vector analyzing
powers (b), and tensor analyzing powers (c) for d +'"Ni elastic
scattering at a laboratory kinetic energy of 400 MeV. The ex-
perimental data are from Ref. 41 and solid, dotted, and dashed
curves are predictions from the KDP, Proca, and Weinberg
equations, respecti vely.

FIG. 12. The differential cross sections (a), vector analyzing
powers (b), and tensor analyzing powers (c) for d + Ca elastic
scattering at a laboratory kinetic energy of 700 MeV. The ex-
perimental data are from Ref. 41 and solid, dotted, and dashed
curves are predictions from the KDP, Proca, and Weinberg
equations, respecti vely.
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earlier work we dealt only with the KDP equation start-
ing with an exact equation for the wave function given by
Eq. (3.6) in Ref. 12. The second-order equation obtained
from this equation can produce a somewhat larger spin-
orbit term and improved agreement with experiment.
Which approximation method gives results closer to the
exact solution of the full KDP equation can only be
determined by solving that equation. Work on this pro-
ject is underway.

V. CONCLUSIONS

In this work we have presented an approximate
method for solving the KDP, Proca, and Weinberg equa-
tions for a massive spin-one particle interacting with sca-
lar and vector potentials. The second-order equations
that result from approximating the three RWE's were
used to make parameter-free predictions for deuteron-
nucleus elastic-scattering observables. A plausible model
for obtaining the deuteron-nucleus potentials from
proton-nucleus Dirac phenomenology was used which is
analogous to the usual Watanabe model used in nonre-
lativistic analyses. The predictions obtained from each of
the three spin-one equations are similar and qualitatively
agree with experiment. It is quite likely to be important
to incorporate the internal structure of the deuteron in
our calculations before attempting quantitative compar-
isons with data. Folding the proton-nucleus optical po-
tentials with the deuteron wave function and including
breakup corrections in the effective potentials is one
method for doing this. Another involves the solution of
the Bethe-Salpeter equation in external fields. The
Bethe-Salpeter equation cannot be solved exactly and it
will be necessary to invoke approximations and to reduce
it to an effective one-body equation if possible. ' It will
be interesting to see which one of the above equations
arises most naturally in such an approach. Work along
these lines is in progress.

D„(D"g D—P")+m g =0,
where the wave function is

(A 1)

g"=(P, A), (A2)

with P and A as the scalar and vector components, re-
spectively. For v=0, i, the above equation gives

(V —m )P= ice—(Or A —V A),

(V +co —m )A=V(V A) ic—oVQ,

(A3a)

(A3b)

where 0= V'/co as before. As in the KDP case, we
transform the A field by letting

EA= —A
CO

(A4)

so that the r A term is eliminated from the Eq. (A3a).
Then we get

(V —m )P=iFV A, , (A5a)

2(V'+co' —m ') A, = — 0'+0'+ —0 A, —20(r V) A&

0~

+V(V A, )+—rrV A, +V(r A, )]

0+ 0'+0 ——r(r A, )+Rp,

(A5b)

where

. 67R = i V—P .p (A5c)

teractions are included. The Proca equation with interac-
tions is given by
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Rp= —
CO V

1
V A)

CO Z

We formally invert Eq. (A5a) to rewrite the above as

(A6)

APPENDIX

In this Appendix we derive the second-order approxi-
mations to the Proca and Weinberg equations when in-

where Z is given by Eq. (24b). We expand the operator
above and keep the leading term only as before. Then we
obtain the following tensor-decomposed expression for
the final second-order equation

TRR . p k
+&UgpTgp A] Aj ~

2

+ U~p+ UsS L+ Uf)(r V)+.U~~.2E (A7)

where

1

2E
—co +I +k ——0'+0. P. +—2 -2 2 2 2

3 r

(A8a)

UPS

U"=—
D

1 0
2E r

1

2E
20

(A8b)

(A8c)
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UP
RR

URP =0,
with

1

2E
1Q~'+ Q~ 0~ ——
r

(Agd)

(A8e)

co I p +2X
+ [co,XI

—[co,XI
co I +p 2X

A
B

=0, (Al 1)

which can be rewritten using the representations of y" as

k =E —m (A9) where

p —V6o p —V6~ y" —m %~=0, (A10)

In a similar manner, the Weinberg equation can be put
into the above form. We basically follow Refs. 8 and 9
but express the effective potentials in terms of the previ-
ous notation. The starting equation is

A
X A=curl (A12)

and the curly brackets stand for anticommutators. Now
the lower component can be eliminated from the above
equation to yield

(V +co —rn )+2 curl curl —[co,curl[
2Ct7 Z ~

[ co, curl I A =0, (A13)

where

Zu, =V —2V( V. )+co —m (A14)

Expanding Eq. (A13) in zeroth order in Zu„we find

(V +co —m ) A= 8'+8 —+—0 1

2 f'
A+ —[rX(VX A)+(r V) A —r(V A)] — 8'+8 ——— r(r. A) .

0 0 1

7 2 r

(A15)

In the present approximation the VX(VX A) term vanishes. After some algebra, the tensor-decomposed second-order
equation can be written as

2 TRR k+ U~+ Us~S L+ U (r V)+ U +iU Tttp A= A,
r2

(A16)

where

U
8'

C
1

2E
. —co +I +k

1 4+ —20~'+ Q~ Q~+—
3 r

(A 1 ja)

and

U
8'

RR

0

1

2E
0 10'+0
2 r

(A17d)

(A17e)

UHS

Uw 0

1

2E
(A17b)

(A17c)

We note that the Proca and Weinberg spin-orbit expres-
sions are identical. Expressions similar to the above have
been derived in Ref. 9 assuming a plane-wave approxima-
tion for the lower component of the wave function.
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