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An approximate relation is derived which allows the calculation of the two-proton correlation
function for any reaction model capable of predicting the classical single-particle phase-space distri-
bution or Wigner function in the exit channel. The sensitivity of the calculated two-proton correla-
tion functions to source radii and lifetimes is illustrated with simple parametrizations. More realis-
tic calculations are presented for two different regimes of emission time scales: slow particle eva-

poration from equilibrated compound nuclei, as predicted from the Weisskopf formula, and fast
nonequilibrium particle emission in intermediate-energy nucleus-nucleus collisions, as predicted
from the Boltzmann-Uehling-Uhlenbeck transport equation.

I. INTRODUCTION

Two particles, emitted at small relative momenta from
an excited nuclear system, carry information about the
space-time characteristics of the emitting source. '

The shape of two-proton correlation function rejects the
interplay of the short-range nuclear interaction, the Pauli
exclusion principle, and the long-range Coulomb interac-
tion between the two emitted protons. ' ' The attrac-
tive S-wave nuclear interaction leads to a pronounced
maximum in the two-proton correlation function at rela-
tive momentum q =20 MeV/c, when the average distance
upon emission is of the order of 10 fm or less. ' The
long-range Coulomb interaction and the Pauli exclusion
principle give rise to a minimum at q =0. Some direction-
al information can be provided by antisymmetrization
eff'ects ' ' when ~q r~ (h, where q and r denote the rel-
ative momentum and position vectors upon emission.

In this article, we give a brief derivation of the general
formalism which allows the calculation of two-proton
correlation functions from the knowledge of the single-
particle phase-space density. The sensitivity of two-
proton correlation functions to source radii and lifetimes
is illustrated by means of simple analytical source param-
etrizations. Diferent regimes of emission time scales are
explored by giving specific examples for slow evaporative
and fast nonevaporative particle emission processes, cal-
culated with the Weisskopf evaporation formula and the
Boltzmann-Uehling-Uhlenbeck (BUU) transport equa-
tion, respectively.

The paper is structured as follows. In Sec. II, we
present a brief derivation of the general formalism which
relates the two-proton correlation function to the single-
particle Wigner function. In Sec. III, we illustrate the
sensitivity of two-proton correlation functions to source

radii and emission time scales by performing calculations
for a number of simple source parametrizations. In Sec.
IV, we give a brief review of the basic assumptions under-
lying the derivation of the BUU transport equation. Nu-
merical results obtained by solving the BUU equation are
presented in Sec. V. Sec. VI gives a brief review of the
Weisskopf formula used for the calculation of particle
evaporation from equilibrated compound nuclei; numeri-
cal results are given in Sec. VII. A summary is given in
Sec. VIII. Detailed comparisons with recent experimen-
tal results will be given in a forthcoming paper.

II. CORRELATION FUNCTION FORMALISM

A number of formalisms have been published' which
derive two-particle correlation functions from the
knowledge of the emission function g(p, x), i.e. , the prob-
ability of emitting a particle with momentum p from
space-time point x =(r, t). The derived expressions diff'er

only in minor details and the predicted results are simi-
lar. Here, we derive an expression for the correlation
function in most general terms, assuming complete
knowledge of all two-particle quantum-mechanical ma-
trix elements. We then introduce and justify approxima-
tions which allow practical calculations. For simplicity,
we will restrict ourselves to the important case of correla-
tions between two identical particles.

In the following, we wi11 use four-vector notation to
keep our formulas compact and manageable. However,
our formalism is not relativistically covariant.

Our final expression for the two-particle correlation
function is identical to the expression given in Refs. 2 and
14:
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R (P,q)+ 1 =C(P, q)

11(pi pz)

II(p, )II(p, )

f d x&d xzg(P/2, x& )g(P/2, xz ) ~P(q, r&
—rz —(tz t& )P—/2m )

~

f d'x(g(P/2, x) )fd'xzg(P/2, xz)

Here, II(p„pz) and II(p) denote the two-particle and
single-particle emission probabilities, P and q are the to-
tal and relative momenta, P =p, +pz and q=(p, —pz)/2,
respectively, and P is the relative wave function.

This expression was given in Ref. 2 without derivation.
It was derived in Ref. 14 by using the sudden approxima-
tion for which the particles are assumed to be on shell in
their final state and the mutual interaction is switched on
suddenly. Equation (1) was then derived assuming the
thermal wavelength is much smaller than the size of the
system. These approximations are not very well justified.
Here, we start from the full quantum-mechanical expres-
sion for two-particle emission and show how, under most
circumstances, we can justify a few approximations
which lead to Eq. (1). Results obtained in many other
formalisms are similar. For instance, il, the literature on
two-pion interferometry the function g(P/2, x) is often
replaced by something similar, for example,
[g(p, , x ).g(pz, x )]' . As long as the relative momentum

q~ is much smaller than a characteristic momentum ~p~

of g(p, x) (such as ~p~ =&3mT, where T is the tempera-
ture), there is little difference between the formalisms.

The complete matrix element for the creation of the n-

body final state includes all information necessary for the
calculation of correlation functions. Here we will derive
an approximation in which the correlation function will
only depend on properties of the one-body emission prob-
ability which can be extracted from the one-body matrix
elements.

We start out by first considering the probability for
creating two particles with final momenta p& and p2 from
sources 1 and 2 at space-time points x, and x2.

where

W ~ (x, , 5x, , xz, 5xz)

= U (x, +5x, /2, xz+5xz/2;p, , pz)

X U(x, —5x
&
/2, xz —5xz/2;p»pz), (4)

S, (x, , 5xi)=M, (xi+5x, /2)M, (xi —5x, /2) . (5)

The expression becomes physically more transparent
when the dependences on 6x, are replaced by depen-
dences on the momenta k; through four-dimensional
Wigner transforms. As a result, we obtain

II(p), pz) —f d x, d xzd k, d kzS, (x, , k, )

XSz(xz, kz ) W (x„k,, xz, kz ), (6)

with the Wigner transforms 5 and 8'defined by

S, (x, k)= f d 5xS, (x,5x)e'

and

W (x„k,,xz, kz)

= f d 5x, d 5xzW (x»5x, , xz, 5xz)

(8)

II(p, , pz) = f d x &d 5x &d xzd 5xzS, (x, , 5x, )

XSz(xz, 5xz) W (x, , 5x»xz, 5xz), (3)

II(pi pz)
2

d x, d xzM, (x, )Mz(xz)U(x»xz;p»pz)

(2)

For noninteracting distinguishable particles, the time-
evolution operators U in Eq. (2) become simple exponen-
tials, and we obtain from Eq. (4) the relation
Wz z =exp(i5x, .p&+i5xz pz). In this case, we can see

from Eq. (8) that
Here, U(x, ,xz;p„pz) is the evolution operator for parti-
cles created at x, and x2 which end up in the asymptotic
momentum states p& and pz. The matrix element M, (x, )

creates the particle at x, and the remaining collision
products into a state which henceforth does not interact
with the particle. In Eq. (2), we have assumed that the
particles are emitted independently. This allows the fac-
torization of the matrix element for two-body emission
into the product of single-body elements.

By squaring the matrix elements and transforming to
the new coordinates x, (mean) and 5x, (relative), we ob-
tain

W~ ~ (x„k,, xz, kz)=5 (p, —k, )5 (pz —kz),

as expected: Noninteracting distinguishable particles re-
tain their four-momentum after the emission.

The functions S, (x, k) are the quantum-mechanical
analogs of the emission probability for particles with
four-momentum k from space-time point x. This can be
seen from the following argument. Performing the same
steps as above, but now for the single-particle distribu-
tions, and making use of the relation
W (x, k) =5 (p —k), we obtain the result
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II(p)= f d x d kS(x, k)5 (p —k) .

From here on, we will imply the on-shell condition
p =E(p) when referring to the zeroth component of the
asymptotic momentum. Equation (9) shows that the
emission probability is given by

g(p, x)=S(x,p) .

In order to obtain an expression for
W (xl, kl, xz, kz), we assume that the first emitted

P) P2

particle propagates freely for a time tz —t, before it in-
teracts with the second particle which is created at tz.
With this assumption, the evolution operator,

U(k„t, , kz, tz, p, , pz)

=(21r) f d xld xzU(xl, xz, pl, pz)

I 1 2 2
—ik .x —ik x

for momentum states k;, to evolve into the true scattering
states p;, can be written as

U( k
1 ~ t

1 ~ kz~ t2 ~ P 1 ~ P2 )

=&5(k„k z, p„pz)e xp[iE, ztz+iE, ( t,
—tz)] .

(12)

Here E&z is the total kinetic energy of the proton pair,
and N is the projection of the total wave function on the
plane-wave states k, and kz.

If the emissions of the two particles are not far apart in
time, the assumption of time-ordered emission entering
Eq. (12) becomes questionable due to the uncertainty
principle.

One can now calculate 8'in terms of the wave-function
projection N:

W (x, , k„xz,kz)= fd5t, d 5k, d5tzd 5kzU (k, +5k, /2, t, +5t, l2, kz+5kz/2, tz+5tz/2;p„pz)

X U(kl —
5k 1 /2, t 1 5t 1 /2, kz ——5kz/2, tz —5tz /2; pl, pz)

X exp( —ik, 5t 1
—ik 2 5t z i 5k, —x, —i 5kz xz )

= f d 5k, d 5kzd R, d R25(k, E, )5(kz ——(E,z E, ))fz(k—„kz,R„R2;p„pz)

Xe
—i5k& ~ (x&+k&(t2 —

t& )/m —R ) —i 6k (I —R. )2 I 1 2 2 (13)

Here, the symbol k, is the zeroth component of the four-vector k;. To arrive at the second part of Eq. (13), we per-
formed Fourier transforms and made the linear approximation for the energy, E(k+5k)=E(k)+5k. k/m. The func-
tion fz introduced into Eq. (13) is the Wigner decomposition of the total two-particle density matrix:

fz(k, , kz, R„R2;p„pz)=f d 5k, d 5kzexp( —(5k) R, —i5kz Rz)

X 4*(k,+5k, /2, kz+5kz/2;p„pz)(P(k, —5k, /2, kz —5kz/2;p„pz)
= f d 5x, d 5xzexp( —i5x, k, —i5xz kz)

X 4'*(Rl+5x) /2, Rz+5xz/2;P»Pz)C (Rl —5xl/2, Rz —5xz/2;Pl, Pz) . (14)

We insert Eq. (13) into the expression for the two-particle probability, Eq. (6), perform the integration over k; and ob-
tain

II(p„pz)= f d 5k, d 5kzd R, d Rzd k, d kzd x, d xzS(x„E„k,)S(xz,E,2 E, ,kz)—
—iSk) [x (k+(t&)tl )fm —R)]—(s—k&.(x&—R&)

2 l~ 2~ l~ z~pl~pz e

= f d R ld Rzd kid kzdtldtzS(t»R) —(tz tl )kl/m, El,kl)S(tz, Rz, Elz El,kz)—
f2 ( k) ~ kz~ Rl~ Rz~ P 1 P2 ) (15)

If we had used a diff'erent "reasonable" formula for Eq. (12) or kept more terms in the expansion of E(k+5k), we
would have obtained the same formula as Eq. (15) except that the partition of energy into the source at xl and the
source at xz would have been different. These details are not important since they will be absorbed into the approxima-
tion of the next paragraph.

In order to make the formalism tractable, that is, depend only on S(x,E, (kl+kz)/2), we now make the assumption
that the product of the matrix elements S&.Sz depends weakly on the partition of the four-momentum. In order for the
particles to interact, x& and xz must be very close together. The function S should then have the same momentum
dependence at both points. If the momentum dependence is thermal, then the product of the Boltzmann distributions
has no dependence on k, —kz. Even for arbitrary momentum dependence, the product S& Sz has, to first order, no
dependence on relative momentum. If we do not make the approximation of weak dependence on the partition of four-
momentum, the formalism is intractable, unless we know quantum details of the emission matrix S(k,x) for k &E(k).
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Replacing both k, and k2 with (k, +k2)/2 in Eq. (15) yields

(k, +k2)(t2 —ti )
,E,2/2, (k, +k2)/2

XS(t2,R2, E,2/2, (k, +k2)/2)f 2(k„k~,R„R2;p»p2) .

II(p»p2)= Jd R,d R2d k, d k2dt, dt2S t»R, —

Since the total momentum of the pair is conserved during the evolution towards their asymptotic momentum states, we
can substitute k, +k2 =p, +pz. =P. We obtain

p(t, t,—)
,Ei2/2, P/2

(2m)

XS(t2,Rz, E,2/2, P/2)f2(k, , kz, R»R2;p»pz) .

II(p„p2)= Jd R, d R2d k, d kidt, dtiS t„R,—

(20)

The emission function S is evaluated at the four-momentum P =(E(P ), P). In general, the zeroth component of this
four-vector is not equal to Ei2. However, as long as p, —

p2 is small, this difference can be neglected. This approxima-
tion allows us now to replace the function S(x, ,P/2) with the single-particle emission probability g(P/2, x), see Eq.
(10). We can now calculate the two-particle probability in terms of single-particle probabilities. It is prudent to make
the same approximations in the expression for the single-particle emission probabilities. Then the correlation function
for noninteracting particles will remain at unity even when p, —

p2 is not small.
Dividing the two-particle emission probability from Eq. (17) by the single-particle emission probabilities thus yields

for the two-particle correlation function

Jd x, d x2d k, d k2g(P/2, x, )g(P/2, x2)f2(k»ki, x, +(P/2m)(t, —ti), x„'p, ,p, )
C(P, q)= (18)

Jd xid kig(P/2, xi)f i(ki, x»pi) Jd xid keg(P/2, xz)f i(kz, xz,'pz)

Using the definition of the Wigner decompositions, Eq. (14), and the fact that the two-particle wave function can be
factored into the center-of-mass wave function multiplied by the relative wave function,

@(xl x2 pl p2) pf i(pi +p2) (x]+x2)/ 14((pl p2)/2 xi x2)

one finds for the integrals over the Wigner functions f i and f2

f d k;f, (k;,x;;p)=1,

d k, d k&f2(k»kz, x»xz', p»pz)= f d (k, +kz)d fz(k»kz, x»x2', p»p2)2

k, —k= Jd (k, +k~)d 5 (P —k, —k2)

X f d 5r exp[i5r. (k, —kz)/2]P*(q, x, —xz+5r/2)P(q, x, —x2 —5r/2)
= ~P(q, x2 —x, )~ (21)

Inserting these relations into Eq. (18) now yields our final
result, which was already given in Eq. (1).

The central assumption underlying our derivation is
the approximation S(x,E,k, )=S(x,E, (ki+.k2)/2). This
approximation becomes exact when the emission function
S(x,k) is broad, i.e., when its characteristic momentum is
much larger than the relative momentum or the momen-
tum spread of the resonance. In intermediate-energy
heavy-ion collisions this is an appropriate assumption
since the characteristic momenta are of the order of mag-
nitude of a few hundred MeV/c and the relative momenta
of interest are smaller than 50 MeV/c. (The important
momentum components for the He "resonance" lie
below 100 MeV/c. ) If we keep the momentum depen-
dence in Eq. (15), expanding k; about P/2, we can show
that this dependence cancels out in first order. Thus we
expect the formalism to give very close to the correct
answer, unless the characteristic momentum of the emis-
sion becomes quite small. Our derivation does not rely
on the assumption that the system be semiclassical and
that the thermal wavelength be much shorter than the (23)

size of bound states or even the size of the emitting sys-
tem. Our result is valid as long as the product of Si.Sz
depends only on k, +kz and not k, —k2. For systems
which sample many states, such as a thermal system, this
is a good assumption. Since usually there is no
knowledge of the matrix elements as a function of k,
these approximations are the best we can do. Fortunate-
ly, since we are interested in correlations for small rela-
tive momenta and since the characteristic momenta of
the protons are sufficiently high, these are excellent ap-
proximations.

The correlation function C(P, q) depends only on the
final relative positions of all the particles with momentum
P/2. To make this clearer, we write Eq. (1) as

C(P, q)= J d r Fp(r)~P(q, r)~ (22)

where r =r, —r2 is the relative coordinate of the emitted
particles. The function Fp(r) is defined by

Id R f ( P /2, R+ r /2, t & )f ( P /2, R —r /2, t & )

Fp(r) =
~ Id r'f(P/2, r', t & )

~
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where R= —,'(r, +r2) is the center-of-mass coordinate of
the two particles. The Wigner function f(p, r, t& ) is the
phase-space distribution of particles of momentum p at
position r at some time t & after both particles have been
emitted:

t )
f(p, r, t& )=f dt g(p, r —p(t& t)/—m, t) . (24)

For a given momentum P, the correlation has three de-
grees of freedom q, which are a function of Fp(r). The
most we can hope to extract from the correlation func-
tion is Fp(r), the normalized probability of two protons
with the same momentum P/2 being separated by r. We
have shown in the derivation above that the calculation
of Fp(r) requires only the knowledge of the final phase-
space distributions or the emission probability g ( p, r, t ).

III. DISCUSSION AND ILLUSTRATIVE CALCULATIONS

In this section, we will discuss the physical information
contained in two-particle correlation functions, such as
the source size and lifetime, and point out characteristic
signatures of slowly cooling and exploding sources, re-
spectively. The function Fp(r), Eq. (23), contains
significant information about the dynamics of the col-
lision. For instance, a long-lived source will lead to an
extended separation when r is parallel to the velocity
P/2m. Thus in addition to the spatial extent of Fp(r)
one gains insight into the lifetime of the collision. '

The P dependence yields insight into the dynamics of
the collision. Both the spatial size and the lifetime can
depend on the total momentum. Cooling' ' ' is
signified by increasingly large lifetimes for particles with
smaller energies. We discuss this later in the section on
the compound nucleus. Collective explosive Aow is sig-
naled by short lifetimes and shrinking apparent source di-
mensions for increasing energy. There should be a tran-
sition in reaction mechanisms, from evaporative to ex-
ploding, at excitation energies near the nuclear binding
energy. This is the dynamical equivalent of the liquid-gas
phase transition. At low excitation, the nuclear matter
slowly evaporates particles, cooling like a hot liquid drop.
At sufficiently high excitation, nuclear matter explodes
and expands to fill the available volume, like a gas. This
is also discussed in Ref. 14.

The relative wave function P(q, r) is infiuence by three
different effects: identical particle interference, short-
range hadronic interaction, and the Coulomb repulsion of
the protons. We brieAy discuss how these three effects
contribute to the correlation function and how the result-
ing correlation can be used to determine Fp(r).

To calculate the relative wave function numerically, we
solved the Schrodinger equation for the l =0 and l =1
partial waves. For the relative wave function P(q, r) we

used the full solution Coulomb waves, pc(q, r), and
added the modification 5$(q, r), which is the contribution
to the relative wave function from the first two partial
waves minus the contribution which would have occurred
if the strong interaction were absent. The Schrodinger
equation was solved with the Reid soft-core potential.

For identical noninteracting particles, the squared

A. Spherical sources of negligible lifetime

The relative importance of antisymmetrization and the
nuclear and Coulomb interactions depends on the size of
the emitting system. In order to provide a quantitative
comparison of these effects, we have calculated two-
proton correlation functions for Gaussian sources of
negligible lifetime,

=po exp( —r /r 0 )5( t to ), —(25)

wave function has the form ~P(q, r)
~

~ [I+cos(2q r)]. In
that case, the inverse Fourier transform of the correlation
function would yield the complete three-dimensional
function Fp(r). For spin-half particles, the correlation
function is reduced to one-half at ~q~ =0 and returns to
unity with a width of q„=1/R„. Experiments that gate
on the direction of the relative momentum can then
determine all three spatial dimensions of Fp(r).

Coulomb interactions yield a dip in the correlation
function which goes to zero as q approaches zero. As
long as the characteristic dimensions of Fp ( r ) are much
smaller than the two-proton Bohr radius of 58 fm, the
shape of the dip does not depend on the shape or size of
the source but only on the Gamov factor. For larger
sources, the Coulomb interaction, too, provides informa-
tion about both the source size and, to a weak degree, on
the shape. The Coulomb dip in the correlation function
at ~q~ =0 will diminish for large sources. The most un-
fortunate aspect of the Coulomb interaction is that the
Coulomb dip lessens the number of available pairs at
small relative momentum, making it more difficult to see
the effects of identical particle interference.

Strong interactions provide excellent gauges of the size
of smaller sources, R ~ 10 fm. The He "resonance" ap-
pears as a bump in the proton-proton correlation func-
tion at a relative momentum of 20 MeV/c. (Strictly
speaking, the He "resonance" is not a resonance, since
the phase shift does not increase by 90, but only by about
60'. ) The size of the bump is proportional to the percen-
tage of pairs whose relative position is within the size of
the nearly bound state. Thus the height goes roughly as
R . This provides a very sensitive test of the size, but
not of the shape.

For typical source sizes of about 5 fm, all three effects
are important. Choosing a distribution Fp(r) that fits the
correlation function requires more than just the appropri-
ate size as measured by a single parameter. One must
have Fp(r) correct for large r in order to fit the correla-
tion function at low k in the Coulomb dip and one must
have Fp(r) correct at small r in order to fit the height of
the correlation function. If the source is not so large that
the Coulomb dip erases the effect of identical particle in-
terference, the shape must be chosen correctly as well to
fit the correlation function for different directions of q.
Thus all the physical characteristics of Fp(r) can be
thoroughly tested with correlation measurements. In the
following subsections we illustrate some of these qualita-
tive expectations by calculations performed for simple
analytical emission sources.
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Calculations for two-proton correlation functions, in-
tegrated over all relative orientations between P and q,
are shown in Fig. 4. The parameters used in these calcu-
lations are given in the figure. The upper panel of the
figure illustrates the sensitivity to the lifetime of the emit-

8.0

1.5
R,=5fm, T=6MeV

FIG. 3. Relation between radius parameters ro and R, of
Gaussian and sharp-sphere density distributions for which
equivalent two-proton correlation functions are obtained in the
limit of negligible lifetime. Crosses indicate results of numerical
calculations, the solid line represents a linear fit, and the dotted
curve shows the relation R, =(5/2)' ro used in the literature
(Ref. 1).

ting system for proton pairs of total momentum,
P, =300 MeV/c, measured in the rest frame of the em-
itting source. The calculated two-proton correlation
functions exhibit considerable sensitivity to lifetimes of
the order of 30—3000 fm/c. For much shorter lifetimes,
the shape of the correlation function becomes dominated
by the spatial dimension of the emitting system; for much
longer lifetimes, the correlations disappear. The lower
panel of Fig. 4 illustrates how the correlation function de-
pends on the total momentum of the emitted proton pairs
for the case of a fixed lifetime, ~=100 fm/c. The calcu-
lated correlations become more pronounced for smaller
total momenta, i.e., for particles emitted with lower ki-
netic energies. This dependence can be understood in
terms of the spatial extent of the Wigner distribution.
The longitudinal dimension of the apparent source is of
the order of (P, /2m )r, where m denotes the proton
mass. For fixed lifetime ~, this quantity increases for
larger values of I', and the correlation function be-
comes attenuated. Such a momentum dependence stands

4, 10—13, 16,23, 24in contrast to experimental observations ' ' ' ' and
is opposite to that calculated for emission from com-
pound nuclei for which the effects of cooling produce a
strong momentum dependence of the effective decay
times, see also the discussion in Sec. VII.

Figure 5 illustrates the dependence of the two-particle
correlation function on the angle, 'P =cos (P q/Pq), be-

—1

tween the relative and total momentum vectors of the
two-proton pair. As was done in the experimental
analysis of Ref. 24, we define longitudinal and transverse
correlation functions by the cuts

~
cos+

~

~ 0.77
('@=0'—40 or 140'—180') and ~cos%~ ~ 0.5
(qI =60 —120'). Different panels of Fig. 5 show transverse
and longitudinal correlation functions calculated for
different lifetimes ~=0, 10, 30, 100, 300, and 1000 fm/c.
In these calculations, the total momentum of the proton
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FIG. 4. Two-proton correlation functions predicted for emis-
sion from spherical sources of radius R, =5 fm, decaying iso-
tropically with fixed lifetime, Eq. (27). The top and bottom
panels depict the dependence on lifetime ~ and total momentum
P, , respectively.

FIG. 5. Longitudinal and transverse correlation functions
calculated for emission from sources decaying with constant
lifetimes, Eq. (27). The parameters used in these calculations
are indicated in the figure.
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pair was kept constant at P, =300 MeV/c. For very
short lifetimes, v. ~ 10 fm/c, the apparent source is essen-
tially spherical in shape and lifetime effects are negligible
for the calculation of the two-proton correlation func-
tion. For an intermediate time window, ~= 30—300
fm/c, longitudinal and transverse correlation functions
are sensitive to the lifetime of the emitting system. For
larger lifetimes, i 1000 fm/c, this sensitivity is essen-
tially lost as the average separation between emitted par-
ticles becomes so large that antisymmetrizaton effects be-
come negligible. In fact, for extremely large lifetimes the
effect is reversed because Coulomb-induced correlations
contain a weak amount of directional information. The
Coulomb force is parallel to the relative displacement of
the protons; therefore, the Coulomb hole in the correla-
tion function will be strongest when the relative momen-
tum is parallel to the longest dimension of the pair's sepa-
ration. For long-lived sources this is the longitudinal
direction. Comparisons of longitudinal and transverse
correlation functions yield the strongest information
about the lifetime of the emitting system for lifetimes of
the order of 30—300 fm/c. By more judicious choices of
the gates on P, , one may stretch the sensitivity of such
measurements beyond these rough boundaries.

IV. BUU TRANSPORT EQUATION
FOR COLLISION DYNAMICS

ih, +=H% . (28)

Here, H is the X-particle Hamiltonian and 4 is the N-
particle wave function. From '0, one constructs the X-
particle density,

(N) qpqp e (29)

which leads to the von Neumann equation of motion:

()v) [H ), N)
]

We introduce the reduced density matrices via

In this section, we briefly review the derivation of the
BUU transport equation which provides the basis for mi-
croscopic calculations for nonequilibrium particle emis-
sion in intermediate-energy nucleus-nucleus collisions.
We start with the Schrodinger equation of the N-particle
system,

3 . . . 3 3 t . . . 3 t (N)
p (r„.. . , r„;r„.. . , r„' ) = (X —n)! r„+) ' ' ' d r~d r„+) ' ' ' d r)vp (r), . . . , 1~'r), . . . , I)v) (31)

Inserting Eq. (31) into Eq. (30) leads to the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy of the re-
duced density matrices. This hierarchy links the time derivative of p'"' to p'+". The lowest two members of the
BBGKY hierarchy are

and

1'B,p"'(r„r', )= — (V„—V', )p"'(r„r', )+ f d rz[u(r, , rz) —v (r'„rz)]p' '(r„rz, r'„rz)
2m

1 2

ta, p' '(r, , rz, r', , rz) = — g (V„—V, )p' '(r), rz, r', , rz)+ [u(r„rz) —u(r), rz)]p' '(r„rz;r&, rz)
2m )

' "i

(32)

2

+ g fd'r~[v(r, , r~) —v(r r~)]p (r) rz r~'r»rz (33)

A closed solution of the equations of the hierarchy is only
possible if one truncates at a level n and with it neglects
(n + 1)-body correlations. Truncating at n = 1, neglecting
two-body correlations, and approximating p' ' as an an-
tisymmetrized product of one-body densities, one obtains
the time-dependent Hartree-Pock (TDHF) equations:

B,f(p, r, t)+ V„f(p, r, t)

—V„U(r) V f(p, r, t)=0 . (36)

Performing a Wigner transformation gives the Vlasov
equation:

t a,p'"= [h,p'"],
where h is the single-particle Hamiltonian,

h(r, r') = —6 (r —r') V'„
1

2m

+5 (r —r') f d rzp"'(r;rz)u(r, rz)

(34) In Eq. (36), U(r) is the mean-field or Hartree potential,

U(r)= f d rzu(r, rz)p(r, rz),

and f ( p, r, t ) is the Wigner transform of the single-
particle density matrix,

—p'"(r, r')u(r, r') . (35) f(p, r, t)= f d s p"'(r —s/2, r+s/2)e' ' . (3&)
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In the derivation of Eq. (36), the semiclassical approxima-
tion has been used. This approximation is valid since
typical wavelengths Q, =2.5 fm for p =500 MeV/c) are
shorter than the size of the regions with the mean field
(typically of the order of g fm diameter). The TDHF and
Vlasov approximations to the many-body problem are

l

pure one-body theories in mean-field approximation in
which all multiparticle correlations are neglected.

A truncation of the BBGKY hierarchy which includes
two-body correlations, but neglects three- and higher-
particle correlations leads to the Boltzmann-Uehling-
Uhlenbeck (BUU) equation:

B,f(p, r, t)+ V„f(p, r, t) —V„U(r).V f(p, r, t)
m

, J d'~'ld'92d'~zo (P'+q2 ~'1' 9'2')—~'(P+qz —ql —q2)

X [f ( q'„r, t )f ( qz, r, t ) [ 1 f ( p, r, t—) ][1—f ( qz, r, t ) ]

f(p, r—, t)f(q„r, t)[1 f(q'„—r, t)][1 f(q&,—r, t)]] . (39)

In Eq. (39), f(p, r, t ) is the phase-space density averaged
over one phase-space cell. The left-hand side of the equa-
tion is the Vlasov term describing the temporal change of
the one-body Wigner function f(p, r, t ) due to the in-
teraction of the nucleons with the mean field. The right-
hand side is the collision integral which represents the
effects of the correlations due to two-body collisions on
the one-body Wigner function. Equation (39) was first
obtained by Nordheim as a quantum-mechanical exten-
sion of the Boltzmann equation which incorporates Fer-
mion statistics.

Equation (39) is solved by using the pseudoparticle
method. ' In this method one compares the left-hand
side of the equation to the complete differential of f:

d f(p, r, t ) = f(p, r, t)+ —.V„f(p, r, t )
=a dr

+ .V f(p, r, t) .dp
dt

(40)

From Eqs. (39) and (40), one obtains a set of six coupled
first-order differential equations for every occupied
phase-space point:

dt

dpi '
=&, (p) — &(r) .

dt ' Br,

(41)

(42)

Here, I;(p) is the change in momentum p; due to
nucleon-nucleon collisions (i = 1,2, 3). The differential
equations can be interpreted as the classical Hamliltonian
equations of motion for a pseudoparticle. Since the total
occupied phase space is proportional to the number of
nucleons, it is convenient to specify the total number of
phase-space points per nucleon as a measure for the nu-
merical precision with which Eq. (39) is solved. In the
present calculations, we have used up to 700 pseudoparti-
cles per nucleon, resulting in a total of up to 172 200 cou-
pled first-order diQ'erential equations which were solved
simultaneously. The average phase-space occupancies
used to determine the effects of the Pauli principle in the
collision integral were determined from the coordinates

and momenta of the pseudoparticles. The cell size for
averaging was chosen to be —'(h /2n)

V. TWO-PROTON CORRELATION FUNCTIONS
PREDICTED BY THE BUU EQUATION

Since the BUU equation is basically a theory describing
the time evolution of the one-body phase-space distribu-
tion function, it seems at first sight surprising that it
could be used to calculate two-particle correlation func-
tions. Previously, it was shown that the main
features of two-proton coincidences at large angles are
explained by the effects due to total momentum conserva-
tion, finite particle number, and/or collective motion in
the reaction plane without requiring information about
the detailed two-particle correlation function. However,
within the formalism outlined in Sec. II, the knowledge of
the one-body phase-space distribution function is
sufhcient for the calculation of the two-proton correlation
function at small relative momenta and the characteriza-
tion of the size and lifetime of the reaction zone formed
in the nuclear collision.

We solved the BUU equation by numerical methods
which are similar to the ones introduced by Ref. 37, see
also Ref. 38. The major new numerical technique used in
our present calculations is the treatment of the Pauli ex-
elusion principle. By explicitly storing f(p, r, t) on a six-
dimensional lattice in every time step, we were able to
greatly speed up the computer program without relaxing
the accuracy of the treatment of the Pauli-exclusion prin-
ciple. In our calculations of the correlation functions,
appropriate averages over impact parameter, orientation
of the reaction plane, and the indicated gates on the total
momentum and the angle 4 between the relative and to-
tal momentum of the two protons were taken into ac-
count.

In our "standard" calculations, the Wigner functions
of emitted particles were constructed from nucleons emit-
ted during a time interval following initial contact of the
colliding nuclei of At, =140 fm/c. Nucleons were con-
sidered as emitted when, during this time interval, the
surrounding density fell below p, =po/8 and when subse-
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quent interaction with the mean field did not cause recap-
ture into regions of higher density. This test for recap-
ture was continued over a time interva l of At = 180 fm/c
after contact. The finite size of our lattice did not allow
us to explore much larger emission times. However, the
consideration of much larger emission times would not
necessarily lead to more reliable results since, in our
present approximation, the nuclei are not stable over long
time scales and the BUU calculations become inaccurate
due to spurious decays.

While our particular choice of the parameters At, and

p, is reasonable, it involves a certain degree of arbitrari-
ness. The sensitivity of the calculations to different
choices of the emission time interval At, and the freeze-
out density p, is illustrated in Fig. 6. Larger emission
time intervals reduce the height of the maximum of the

of the average emission time. On the other hand, smaller
freeze-out densities lead to a slight increase in the height
of the maximum of the correlation function. This can be
understood as follows: lower emission densities select
subsets of particles considered as emitted for nigher
freeze-out densities by eliminating late emissions (i.e.,
particles which have not yet reached the lower densities)
and thus selecting particles which had left the higher-
density regime at earlier times. The corresponding
reduction of the average temporal separation between
emitted particles leads to enhanced correlations. Typical-
ly, different reasonable choices of At, and p, introduce

U(p )
= & (p Ipo) +& (p lpQ) (43)

where the parameters 3 and B are determined by the nu-
clear matter binding energy and the saturation density o
nuclear matter at p=po. A choice of o. =2 results in
3 = —124 MeV and B=70. S MeV and a nuclear
compressibility of K =380 MeV. This set of parameters
is referred to as the "stiff" equation of state. The "soft"
equation of state, with %=200 MeV, corresponds to the

arameter set o. =—' 3 = —3S6 MeV, and B =303 MeV.67

The simple parametrization, Eq. (43), is only chosen to
investigate the possible sensitivity of our calculations to
the value of the nuclear compressibility.

We approximate the in-medium nucleon-nucleon cross
section do. /dA by the energy-dependent free nucleon-
nucleon cross section do.»/dB parametrized from ex-
perimental data. Since the exact value of the in-medium

uncertainties of the order of S —10% into the magnitude
of the predicted correlation functions. However, in some
instances these uncertainties can be larger.

The two major ingredients entering Eq. (39) are the
mean-field potential U(r) and the nucleon-nucleon cross
section do/dA. In principle, one should be able to
derive both from a fundamental nucleon-nucleon interac-
tion, as as eenh b done in some G-matrix calculations. n
this paper, however, we proceed differently and use the
conventional density-dependent Skyrme-type parametriz-
ation,

BUU: Al(' N, pp), E/A=75Mev, 8 =25
fI

I

———ht, =140frn/c, p, =po/16
ht, =140frn/c, p, =pa/8-""".ht, =160frn/c, p, =pa/8

P =500MeV/c

=300MeV/c

I I
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I
~

I

eV/c

1.0—

0 50 0
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f he roton airs are given in the figure. Inl rameter choices and selected total momenta o t e pro on paidensities p . The values of individual parame er c o'e'
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nucleon-nucleon cross section has attracted some recent
attention, we also vary this input by multiplying the ex-
perimental do.&&/d 0 by different factors ranging from 0
to 1.

For our numerical example, we calculate two-proton
correlation functions for protons emitted at the laborato-
ry angles 0&,b =25+9' for ' N+ Al collisions at
E/A =75 MeV, in close correspondence to the measure-
ments of Ref. 24. Unless stated differently, we will use
the stiff equation of state and in-medium cross sections
equal to the experimental free nucleon-nucleon cross sec-
tions.

Figure 7 shows correlation functions calculated from
signer functions predicted by the BUU equation using
various assumptions on the in-medium nucleon-nucleon
cross section and the stiffness of the equation of state. In-
dividual panels of the figure show correlation functions
calculated for different values of the total laboratory mo-
menta P of the proton pairs. The solid and dotted curves
show correlation functions predicted for the stiff and soft
equations of state, using do. /d A=do. z&/dA. These two
calculations are very similar, indicating little sensitivity
of the two-proton correlation functions to the stiffness of
the equation of state. The solid, dashed, dot-dashed, and
dot-dot-dashed curves represent calculations with the stiff
equation of state performed with the assumption that the
in-medium nucleon-nucleon cross section is equal to 1.0,
0.8, 0.5, and 0.0 times the free nucleon-nucleon cross sec-
tion. For P ~ 700 MeV/c, the predicted correlation func-
tions become more pronounced for decreasing values of
der!dQ, indicating that the space-time characteristics of
the emitting system is more sensitive to the magnitude of
the in-medium nucleon-nucleon cross section than to the
stiffness of the equation of state.

Figure 8 compares the detailed shapes of two-proton
correlation functions predicted for different space-time
geometries. The solid points show correlation functions
predicted from the BUU equation, averaged over the in-
dicated range of total momenta P of the proton pairs.
These calculations are in excellent agreement with exist-
ing data. " The solid curve shows results obtained for in-
stantaneous emission from a Gaussian source, Eq. (25),
with radius parameter ro =4. 5 fm. The two-proton
correlation function calculated for the Gaussian source
exhibits a narrower maximum than that calculated for
the more realistic density distribution obtained by means
of the BUU equation. This difference in shape can be at-
tributed to the fact that sources predicted by the BUU
equation are nonspherical. To illustrate the sensitivity of
the shape of two-proton correlation functions to the
source geometry, we show the correlation function pre-
dicted for emission from a source consisting of two sharp
spheres of negligible lifetime. Both spheres were assumed
to have radii of R, =5 fm, and the centers of the two
spheres were assumed to be separated by a distance of
d=20 fm and aligned along the beam direction. The
correlation function for this two-source distribution is de-
picted by the dashed curve in Fig. 8; it has a wider max-
imum than the single Gaussian source distribution and is
rather similar in shape to that predicted from the BUU
calculations. (Remember that two-proton correlation
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FIG. 9. Nucleon density distributions in the reaction plane
calculated from the BUU equation for ' N+ Al collisions at
E/3 =75 MeV and for an impact parameter of b=2 fm.
Different panels depict the distributions at different times t.

functions obtained for single spherical sources of sharp
sphere and Gaussian density profiles are virtually indis-
tinguishable in shape; see also the discussion of Figs. 2
and 3.)

Figures 9 and 10 depict the space-time evolution of the
collision process as predicted by the BUU equation. Fig-
ure 9 shows the time evolution of the nucleon density in
the reaction plane for a ' N+ Al collision at E/3 =75
MeV and an impact parameter of 2 fm. Different panels
of the figure represent snapshots taken at the indicated
times after contact of the colliding nuclei ~ The calcula-
tions predict that the two colliding nuclei essentially sur-
vive the collision and separate into two hot nuclear ob-
jects, which may then decay on longer time scales for
which BUU calculations cannot make accurate predic-
tions. More relevant for the calculations of two-proton
correlation functions is the density distribution of the em-
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itted nucleons in the reaction plane, shown in Fig. 10 for
selected times after the initial contact of the colliding
partners. The distribution of emitted nucleons clearly
undergoes an evolution from a near-spherical source at
early times to a two-source distribution at larger times.
This two-source distribution at larger times may explain
the similarity of the correlation functions obtained for a
two-sphere distribution with that predicted by the BUU
calculations.

The nonspherical shapes of the Wigner functions pre-
dicted by the BUU calculations should be reAected in
differences between longitudinal and transverse correla-
tion functions. Longitudinal and transverse correlation
functions predicted by BUU calculations are shown in
Fig. 11. We have adopted the angular cuts,
4=cos '(~P q~/~P~~q~)=0 —40' and 60 —90', for the
calculation of longitudinal and transverse correlation
functions, respectively. For the transverse correlation
functions, we define the in-plane and out-of-plane direc-
tions by constraints on the azimuthal angle P of the rela-
tive momentum vector q in a coordinate system with the
z axis parallel to the total momentum vector P of the pro-

ton pair. Defining /=0 as the plane spanned by the
beam direction and P, the in-plane transverse correlation
function corresponds to the cut ~P n—vr~ ~30 (n =0, 1,2);
the out-of-plane transverse correlation functions corre-
sponds to the cut ~P

—(2n + I)vr/2~ ~30 (n =0, 1).
Different panels of the figure show the results for the in-
dicated cuts on the total momenta of the proton pairs. In
general, the out-of-plane transverse correlation functions
are smaller than the in-plane transverse correlation func-
tions since they are less affected by finite lifetime effects
and collective velocity components. At low momenta,
the longitudinal correlation function is more pronounced
than the transverse correlation functions, possibly due to
slow emission times; at higher mornenta, longitudinal and
in-plane transverse correlation functions are comparable
in magnitude.

Details of the Wigner function must depend on the im-
pact parameter of the collision. The predicted depen-
dence is illustrated in Fig. 12; the various cuts on the to-
tal Inomentum of the proton pairs are indicated for the
individual panels of the figure. In order to summarize the
predicted trends, Fig. 13 shows the heights of the maxima
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BUU: Al( N, pp), E//A=75MeV, Oa~=25'
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For peripheral collisions, b=5 —7 fm, the calculated
correlations are weakest for proton pairs with very high,
P=800 MeV/c, or very low rnomenta, P «300 MeV/c;
they are largest at intermediate momenta, P =500
MeV/c. This correlation pattern may be understood in
terms of emission from fairly well defined projectilelike
and targetlike sources. Proton pairs of low and high mo-
menta correspond to low-energy emissions in the rest
frames of targetlike and projectilelike sources, respective-
ly. More energetic emissions from these sources are
selected by intermediate momenta. For these emissions
the correlation functions are expected to be enhanced be-
cause of the reduced size of the participant zone and/or
because of shorter emission time scales. However,
nucleon-nucleon collisions appear to play only a minor
role since the maximum of the correlation function at
P=500 MeV/c remains when the in-medium nucleon-
nucleon cross section is set to zero.

For intermediate impact parameters, b =3—4. 5 fm, the
predicted momentum dependence is weak, most likely be-
cause of overlapping contributions from participant and
spectator regions.

For total momenta, P «700 MeV/c, more pronounced
correlations are observed for peripheral than for central
collisions —in accordance with a simple geometric inter-
pretation of the size of the reaction zone. However, for
protons emitted with velocities higher than the beam ve-
locity, P) 2pb„=760 MeV/c, the maxima of the pre-
dicted correlation functions are larger for central than for
peripheral collisions. Apparently, high-energy particles
from central collisions are emitted on a very fast time
scale. It may be speculated that such fast emission pro-
cesses may be related to Fermi jets, i.e., nucleons ac-
celerated by the action of the mean field and emitted
without significant nucleon-nucleon collisions. However,
because of the semiclassical nucleonic momentum distri-
bution used in our calculations, the predicted correlations
may not be reliable for the highest momenta, P) 1000
MeV/c, and should be viewed with caution. In any case,
the calculations clearly indicate that one should be able
to extract a wealth of information about the space-time
evolution of the reaction zone by detailed investigations
of the momentum and impact parameter dependence of
two-proton correlation functions. Previous measure-
ments of two-particle correlation functions did not deter-
mine the simultaneous dependence on impact parameter
and momentum of the emitted particle pair and thus
averaged over valuable information. New measurements
capable of determining such dependences are clearly
desirable.

VI. EVAPORATIVE EMISSION

Correlation functions for particle evaporation from
long-lived compound nuclei can be calculated by using
the Wigner-function formalism' outlined in Sec. II. We
have used the statistical model of Ref. 25 to construct
Wigner functions for evaporative emission from equili-
brated compound nuclei. In this model, the average par-
ticle emission is calculated from a generalized Weisskopf
formula and cooling of the compound nucleus is calculat-

d Xb =(2S~+ 1)
dE dt

mb~Rb 2

2/3
(E —V )O(E —V )b b

X exp
E+—ZbF(T, p )+NbF(T, p, ) Bb-

T

Here, Sb, mb, Zb, Xb, and E denote the spin, mass,
charge, neutron number, and energy of the emitted parti-
cle; T is the temperature of the compound nucleus;
F( T,p ) and F(T,p ) are the Helmholtz free energies per
particle for protons and neutrons, respectively, and O(x)
is the unit step function. The free energies were calculat-
ed by assuming that the nucleons behaved like an ideal
Fermi gas with a density of p=0. 145 fm . The height
of the Coulomb barrier, Vb, was taken as the Coulomb
energy between the daughter nucleus and the emitted
fragment when they are separated by the absorption ra-
dius Rb. For simplicity, the absorption radius was calcu-
lated as

Rb =ro[( A, —Az )'~ + Az~ ], r„=1.2 fm . (45)

Here, 3, and Ab denote the mass numbers of the parent
nucleus c and the emitted particle b, respectively. The
binding energy Bb is the difference in masses of the
parent nucleus and that of the daughter nucleus and the
emitted particle. The masses of parent and daughter nu-
clei were calculated from a liquid-drop formula:

M(A, Z)c =Zm c +(A —Z)m„c
—[14.1 A —133 s —0.595Z~ A

—19(A —2Z) /A] MeV . (46)

The spatial distribution of emission points was chosen
to be uniform in the two coordinates transverse to the ve-
locity of the emitted particles; the third coordinate was
chosen such that the emission point corresponds to the
surface of the sphere of radius Rb. For particles with en-
ergies very near the Coulomb barrier, this is not a partic-
ularly satisfying choice. These particles undergo a
significant change in their trajectory due to the Coulomb
field of the compound nucleus. Distortions of two-proton
correlation functions by deAections of the emitted pro-
tons in the Coulomb field of the daughter nucleus are
manifestations of long-range three-body effects. Such
effects are not incorporated in the formalism presented in
Sec. II. We also neglected effects due to angular momen-
tum coupling which, for rapidly rotating compound nu-
clei, could modify the extracted radii by up to 20%.'

If the spatial separation between emitted protons is
much larger than the two-proton Bohr radius of 58 fm,
one cannot only neglect the identical-particle interference
of the emitted protons and their strong mutual interac-

ed from the average mass and energy emission rates.
This generalized Weisskopf formula gives the proba-

bility per unit time and energy intervals of emitting a par-
ticle b with energy E at time t from a compound nucleus
c:
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tion, but also the quantum nature of their mutual
Cou1omb repulsion. Under these conditions, one can cal-
culate correlation functions from the classical Coulomb
trajectories, where the electric field of both protons and
that of the compound nucleus are taken into account. '

For compound nuclei with excitation energies below
about 2.0 Me V/nucleon, emission times scales are
sufFiciently large that the above conditions are satisfied;
classical trajectory calculations should provide a good ap-
proximation.

For increasingly high excitation energies, the time
scales for emission become shorter. As the protons are
emitted close to one another, the quantum nature of the
Coulomb interaction, identical-particle statistics, and the
strong interaction become important in that order. For-
tunately, Coulomb deAections in the field of the com-
pound nucleus become less important for particles emit-
ted with kinetic energies significantly above the Coulomb
barrier. For collisions with su%cient energy to dissolve
the nuclei, E/3 ~50 MeV, the neglect of three-body
effects for the two-proton relative wave function should
provide a good approximation. At these energies, the
effects of the strong interaction and identical-particle in-
teractions dominate. These effects can only be calculated
by a full quantum treatment of the relative wave func-
tion.

VII. NUMERICAL CALCULATIONS
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FIG. 14. Temporal evolution of particle emission from
equilibrated "Ho nuclei of different initial temperatures T {top
panel) and for different total momenta P, {bottom panel) of
the emitted two-proton pairs.

It is instructive to explore the sensitivity of the calcu-
lated correlation functions to various parameters and
momentum cuts. The following illustrative calculations
are performed for narrow ranges of the total mornenta
P, of the emitted particle pairs. (The momenta P,
are defined with respect to the compound-nucleus rest
frame. )

The shape of the two-proton correlation function de-
pends on the time scale governing the emission of the
detected particles. For particle emission from equilibrat-
ed compound nuclei, this time scale depends on the level
density and, therefore, on the initial temperature. Be-
cause of cooling via particle emission, the time scale also
depends on the energy of the emitted particles. In Figs.
'4 and 15, such dependences are illustrated for the decay
of highly excited ' Ho nuclei. Figure 14 shows the cal-
culated time dependence of the respective emission pro-
cesses, i.e., the relative probability per unit time for the
emission of the specified protons. The predicted two-
proton correlation functions'are shown in Fig. 15. The
top panels in the two figures present calculations for ini-
tial temperatures T=5, 10, and 20 MeV, keeping the to-
tal momentum of the two-proton pair fixed at
P, =400+10 MeV/c. (This momentum bin selects pro-
tons of kinetic energy E, /3 =21 MeV in the
compound-nucleus rest frame. ) At low temperatures,
T~ 5 MeV, the decay times are large and the predicted
correlation functions exhibit only a minimum at q=0
MeV/c. With increasing temperature, the decay times
decrease and the minimum at q =0 MeV/c becomes more
pronounced. For very hot nuclear systems, T ~20 MeV,
the calculated emission time scales become so short that

the two-proton nuclear interaction becomes significant
and the maximum in the correlation function at q =20
MeV/c emerges. The bottom panels of Figs. 14 and 15
show calculations for different total momenta P, and
fixed initial temperature T=10 MeV. Because of cooling
of the compound nucleus, particles of higher energy are
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FIG. 15. Dependence of the two-proton correlation function
on the initial temperature T {top panel), and on the total
momentum P, {bottom panel) of emitted proton pairs calcu-
lated for the decay of equilibrated "Ho nuclei.
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T =E*/a . (47)
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clear and Coulomb interactions must all be incorporated
into the calculations and the correlation functions be-
come rather sensitive to details of the space-time evolu-
tion of the reaction zone. The BUU calculations indicate
considerable sensitivity of the predicted correlation func-
tions to the magnitude of the in-medium nucleon-nucleon
cross sections employed in these calculations. Small
differences are predicted between transverse and longitu-
dinal correlation functions which could be explored for
further testing of reaction models. Considerable sensi-
tivity is predicted for measurements which explore the
dependence of the two-proton correlation function on the
collision impact parameter and on the total momenta of
the emitted proton pairs.

In our BUU calculations, we have seen very little sensi-
tivity to the compressibility of nuclear matter. This is
not surprising, since compressional effects are not yet
very important at beam energies of 75 MeV/nucleon. In
principle, one should also study the effects of a
momentum-dependent mean field. ' " Such effects are
expected to be important at higher beam energies
(E/A =1 GeV). At these energies, it has been shown
that the effects of the momentum dependence of the mean
field on the collective nuclear matter Aow can be approxi-
mated by a momentum-independent mean field with a
suitably changed compressibility. The same effect has
been found at intermediate beam energies (E/A
= 50—150 MeV), where it was found that the disappear-

ance of nuclear collective Aow could be reproduced by us-
ing a momentum-dependent mean field with a compressi-
bility of 210 Me V (Ref. 45) or, alternatively, a
momentum-independent mean field with a slightly higher
compressibility of 240 MeV. The investigations of Ref.
46 corroborate our present finding that fast particle emis-
sion in intermediate-energy nucleus-nucleus collisions
(E/A =50—150 MeV) depends sensitively on the magni-
tude of the in-medium nucleon-nucleon cross sections,
but only very little on the nuclear compressibility.

It is clearly desirable to extend future studies of two-
proton intensity interferometry to higher beam energies
(E/A = 1 GeV) and to heavier projectile-target combina-
tions. Such studies may provide additional insight into
the momentum dependence and compressibility of nu-
clear matter, which could not be gained in an unambigu-
ous fashion from observables tested so far.
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