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Analysis of a three-body model shows that Coulomb polarization of the deuteron has very little
influence on the branching ratio A(d,p)/ A(d,n) for transfer reactions on target nucleus A4 at very
low deuteron energies (the Oppenheimer-Phillips effect). We see that polarization effects in transfer
reactions are not related to the long range of the Coulomb field, but are caused by the more intense
fields near the target nucleus. However, even in that region the induced dipole moment is limited by
the deuteron binding, and it is small for low Z targets. We see in addition that the transfer ampli-
tudes tend to be insensitive to any polarization admixtures in the entrance channel. On the other
hand, the branching ratio can be affected by the Coulomb barrier for the bound final-state wave
function of the proton, especially for very weakly bound final states. Brief remarks about the rela-
tion of stripping theory to special properties of the d +d system are included.

I. INTRODUCTION

Most papers about Coulomb effects in low-energy (d,p)
and (d,n) direct reactions emphasize1 kinematic condi-
tions that allow fairly large cross sections, despite the
Coulomb repulsion. Such conditions occur for (d,p) re-
actions with low Q, namely, for the case E, ~E,, where
E; and E, are the asymptotic kinetic energies of the
deuteron and proton, respectively. However, recent
claims? about “cold fusion” have revived interest in im-
proved evaluations of the very small cross sections ob-
tained if E;—O0, originally discussed by Oppenheimer
and Phillips (OP).? Such energies generally give
E,>>E,. The present paper shows that the OP picture
of low-energy deuteron stripping by light nuclei is
misleading.

Similar conclusions are reached by Koonin and Muker-
jee (KM),* based on a second-order distorted-wave Born
approximation (DWBA) analysis of a three-body model
of the reaction. KM point out defects in a recent discus-
sion by Cecil, Peterson, and Kunz® that supports the
traditional OP picture. The present paper has a less per-
turbative approach than KM, and it has more discussion
of the bound states of the product nuclei.

In the OP picture of a Coulomb-dominated collision,
polarization of the incident deuteron by the nuclear elec-
tric field supposedly enhances (d,p) reactions relative to
(d,n) reactions. However, the deuteron ground state has
a definite parity (positive); hence it has no permanent
electric dipole moment, and therefore polarization de-
pends on an admixture of opposite- (negative-) parity ex-
cited states. A first reason for the weakness of the OP
effect is that this admixture is inhibited by the weakness
of the Coulomb field, relative to the deuteron binding en-
ergy, and it is very small. Coulomb effects are more
significant at somewhat higher energies,®’ where break-
up can also occur.®

The large values of the classical radius R, =Ze?/E, at
which a deuteron with kinetic energy E; is turned back
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by Coulomb repulsion can be misleading. It can seem
plausible that all important Coulomb effects should take
place near this “radius of closest approach.” Since the
electric field Ze?/R? is very small at the radius R, it can
seem trivial that deuteron polarization and the OP effect
should vanish in the limit E; —O0.

On the other hand, the large R, only means that deute-
rons must penetrate a broad potential barrier to reach the
target nucleus, which means the reaction rate is small.
But our concern about the OP effect is for the rare deute-
ron that does penetrate the barrier and reach the nucleus,
rather than for the average deuteron that turns back at
R.. The Coulomb potential has larger derivatives near
the nucleus than at R, and these can produce significant
polarizations of deuterons that reach this region. Satis-
factory understanding requires accurate analysis of
Coulomb effects quite near the nucleus, where the nuclear
forces also need to be taken into account, where the
bound-state wave functions vary more rapidly than the
Coulomb wave function, and where the bombarding ener-
gy is irrelevant.

In Sec. II a three-body model for the deuteron-nucleus
system is discussed. Accurate coupled equations for the
/=0 and 1 p-n states are obtained, and an approximate
solution that takes advantage of the low bombarding en-
ergy to produce a localized Green’s function is derived.
Implications for the stripping cross sections are discussed
in Sec. III. It is particularly noted that the weak /=1 ad-
mixture in the entrance channel must couple to a weak
I=1 component of relative motion in the exit channel, re-
ducing the cross section. The contribution from polariza-
tion is further reduced because the two-nucleon force is
weak in triplet odd states. This prediction of small polar-
ization effects resembles an- old analysis of the deuteron-
bismuth system by Gibson and Kerman;® however, that
work did not use an appropriate weak triplet-odd two-
nucleon force. More recent authors* also seem to have
treated V), incorrectly.

Section IV is both a summary and a sketch of special
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properties of transfer reactions in d +d collisions: It is
argued that d +d can be treated as a three-body system if
the internal motion of one of the deuterons is ignored.
However, proper symmetry must be restored.

II. THREE-BODY ANALYSIS

The three-body model of the deuteron-nucleus system
is written in standard notation as

H=K+V(N+U,(r,)+U,(r,)+U.r,), (1)

where target nucleus recoil is neglected, and it is assumed
that U, includes all short-range modifications of the
Coulomb interaction; so U.(r, )EZez/rp.

The exact stripping matrix elements are written in the
“post”’-representation as

T(d,n)={xy (k,,r, W,(r, V(r|¢) , 2)
T(d,p)={x}"(k,,t,)¥,(r,)|V(r|¥), (3)

where ¢ is the full solution of the dynamical system
governed by H of (1). The other wave functions satisfy

(E,—K,—U,)¥,=0,

B )
(E,—K,—U,—U)¢,=0,
— — — — (— —
(E—E,—K,~U}—U,)x, '(k,,r,)=0, (5)
(E—E,—K,— U)X, (k,,r,)=0. (6)

DWBA approximations replace 1 on the right-hand side
of the T-matrix elements by more calculable expressions
that are of sufficient accuracy in the regions V,70,
Vi, 70.

The principal problem of the three-body model is that
the entrance channel is described with the Jacobi vari-
ables R,r and not with the variable r, of the Coulomb in-
teraction. We handle this by expanding U.(r,) in mul-
tipoles of R, r, an expansion that has good convergence in
the present case, since with very low bombarding energy
the total energy is negative and there is no three-body
breakup. We take the monopole and dipole terms,
Ulr,)=U/(R)+uWw,

c
with @)
,u,z('r\-l/i), W=—2Ze’r_/ri ,

in which »_,7_ are the lesser and greater of /2 and R.
In the absence of breakup, r is comparable to the deute-
ron radius, and it is sufficient to use W~ —Ze%r /2R

The dipole interaction adds a small /=1 admixture to
the /=0 internal state of the deuteron. This p wave is in-
duced by the dipole potential; the incident P wave is
negligible at our energies. The three-body wave function
becomes Y=iy(r,R)+uy,(r,R), and the Schrdodinger
equation becomes

[E—K—V(r)=U,(r,)=U,(r,)—U.(R)—puW]
X [Wo(r, R)+uthy(r,R) =0 . (8)

Separating the /=0, 1 parts of (8), we obtain coupled
equations

[E—K —V(r)—U,(r,)—U,(r,)— U(R)](r,R)
=(W/3%,(r,R), (9)

[E—K —U,(r,)—U,(r,)— U, (R) Jut(~,R)
=uWiy(rR) .  (10)

From these equations we determine the magnitude of the
I=1 admixture ¥, and its reaction on the /=0 wave func-
tion .

A term Vi, (r,R) is omitted from the left-hand side of
(10), because V is small for /=1 states of relative motion
of two nucleons (“Serber exchange”). The short range of
V further reduces its overlap with the relative /=1 ad-
mixture. [These effects also reduce the contributions
from /=1 admixtures in ¥ to the T-matrix elements (2)
and (3), frequently mentioned in the older literature. ]
The factor 1 on the right-hand side of (9) is the angle
average of u?.

The sum of nuclear interactions U,(r,)+U,(r,) in (9)
and (10) tends to be an even function of r; in three-body
discussions of nuclear reactions,’ it is frequently replaced
by its /=0 part U,. We also note that the kinetic-energy
operator K =K,+Kp in (10) operates on the angle-
dependent factor u and produces a centrifugal term

C=0Q#/M)r *+R %/4). (11

Insertion of C allows u to be removed from (10) as a com-
mon factor. With these simplifications, (9) and (10) be-
come

[E—K—V(r)—Uy—UAR)Jpy(r,R)=(W /3)9(r,R) ,
(12)

[E—K—C—Uy— U, (R)]Y(r,R)=Wiy(r,R) . (13)

Inserting the solution of (13) into (12), we obtain

[E—K —V(r)=Uy,—U.(R)]¢o(r,R)=TUy(r,R) , (14)

a modified equation for v, in which the dipole term pro-
duces

Uto(r,R)=(W/3)E—K—C—U,—U.(R)] !
X Wih(r,R) , (15)

with U a “polarization potential.”

It would be straightforward to solve the coupled par-
tial differential equations (12) and (13) for each partial
wave in the variable R by integrating outward numerical-
ly from R=0, using some variant of the continuum-
discretized coupled-channels (CDCC) approach.’ Such
calculations would combine the effects of the Coulomb
multipoles with those of the nuclear interaction U,. Of
course, at the very low energies emphasized in this paper
only the L=0 partial wave is needed. Because of the low
bombarding energy, the total energy E is negative,

~—B, with B=2.2 MeV the binding energy of the
deuteron, and this simplifies the boundary conditions for
(12) and (13): The solution of (13) reduces asymptotically
to a linear combination of decaying exponentials of 7, R;
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the solution of (12) reduces to an “incoming” exponential
in the entrance channel, plus decaying exponentials. We
note that near the target nucleus the system has very lit-
tle sensitivity to the incident deuteron kinetic energy.

Although a numerical solution of the coupled equa-
tions is feasible, a discussion in terms of the polarization
potential U provides rough qualitative insight about
modifications caused by coupling to the dipole term.
Moreover, U can be introduced in standard approximate
calculations (e.g., WKB) otherwise used for Coulomb
wave functions or penetrability factors.

A rough solution in the important region near the tar-
get nucleus can be developed on the basis that outside the
nucleus the free local kinetic energies of the active nu-
cleons are dominated by the negative total energy — B
and the repulsion U, and they tend to be significantly
negative. In this situation the Green’s function for (13)
and (15) does not propagate, and it tends to be of shorter
range than the local variations of the source function.
Then the contribution of the operator K in (13), for exam-
ple, is determined by the (comparatively) smooth source
function of ¥;: The kinetic energy is small, and the equa-
tion is dominated by the potential terms. We can omit K
from the differential equation and from the correspond-
ing Green’s function to get

U (r,R)=~(Ze*r /2R*)[B +C +U,+U,(R)]” '4y(r,R) ,

(16)
or
Y, ~(1+BR /Ze?) Y, , a7

where we insert a typical value r /2=~R and we disregard
the short-range terms C + U,. This p-wave admixture is
appreciable near the target nucleus. The sign of the ad-
mixture 1; can be checked by noting that the
Schrodinger amplitude 1y + ), is increased if u>0, i.e.,
if the proton is further out than the neutron, as in the
Oppenheimer-Phillips picture.

The polarization potential of (15) is made explicit by
choosing the familiar factored ansatz y,=1,(r)F,(R) for
the /=0 channel. We get

U~—(2%*/12R*) [ d’r r*[B + U.(R)] " [9,(r)?,
~—(1/48y*R)U,(R)(1+BR /Ze*) ™", (18)

where a  zero-range deuteron wave function
¢q~(y/2m)"?r "le "7 is used (effective range normaliza-
tion! would improve ¢,), and again the short-range terms
C +U, are disregarded. Evidently, near the nucleus po-
larization slightly reduces the strength of the Coulomb
repulsion, a reasonable second-order OP effect.

Of course, the approximation used above for the
Green’s function is only valid just outside the target nu-
cleus, where the local kinetic energy is large and negative.
For greater accuracy, or to continue into the nuclear in-
terior, the coupled equations (12) and (13) must be used.

III. STRIPPING MATRIX ELEMENTS

The matrix elements (2) and (3) may be separated into
two parts:

T(d,p)=T""d,p)+T"d,p) ,
19
T(d,n)=T""%d,n)+TVd,n) . 19

In each case these are, respectively, the contributions
from the 1=0,1 parts of 4. The /=1 contributions for P
and n are of opposite sign. We first consider the /=0 ma-
trix elements:

A. I=0

In terms of notation previously used, the 7'°(d,p) ma-
trix element, e.g., can be written

Td,p) =X} (K,,x,)9,(r,) |V (r)|¢,(r)F4(R)) ,
(20)
and in zero-range approximation this becomes

T'd,p)=D, [ d*R x\*(k,,R)$}(R)F,(K,R) , (1)

Elementary WKB expressions for entrance channel radial
partial waves in the region R <R, are!”

F,(K,R)=q; %exp

RC
— [ “dR'q (R |, (22)
g (R)=(4M /#*)'"?[U.+ U+ T
+#(L +1)/4MR?]'V? . (23)

The bombarding energy is omitted, since it is negligible in
the region of application of (23). Only the location of the
turning point R, and the overall normalization depend
on that energy. Since the centrifugal term in (23) is negli-
gible at large R, compared to the Coulomb term, the
turning point R, is nearly independent of L. Moreover,
because g; (R)at small R increases rapidly with L, we
only need the L =0 partial wave.

The integrand of (21) has a maximum, determined by
the overlap of the wave functions ¢*(R) and F,(K,R).
The outgoing proton wave function X;_)*(kp,R) does not
have much effect on the location of this maximum, be-
cause for typical exothermic reactions it oscillates with
nearly constant amplitude in the region of interest. The
radius of maximum contribution to the integral tends to
be determined by the final-state bound functions, essen-
tially exponentials in the region of overlap

U, <, ce R, (24)

The radius of the maximum is seen to be of the order
R, ~k~'. Although the Coulomb wave function
Fy(K,R) suffers a tremendous reduction of magnitude as
it penetrates to the nucleus, this reduction takes place
over a considerable distance, and in the region of overlap
Fy(K,R) varies more slowly than the bound-state wave
functions.

B. I=1

A corresponding WKB approximation for the p-wave
admixture in 3 is obtained by multiplying F, of (22) by
uw(1+BR /Ze?)" !, as in (17). The p-wave contribution is
not large; for Z=1 and R =2.8X10"" cm, the
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coefficient in the correction factor has the value 0.2.

It was mentioned previously that the two-nucleon force
tends to be weak in triplet-odd states. It is also very spin
dependent.!' A full calculation of T''(d,x) requires
low-energy matrix elements of ¥ (7) that take these effects
into account. However, an important qualitative proper-
ty of V(r) is that it conserves parity; it does not couple
[=0,1 states of relative motion. In the end a nonvanish-
ing value for the matrix element T'"(d,p) depends on the
=1 part* of the product

Xy (ko 1, (x,)

on the left-hand side of (20).

Thus the polarization effect in the stripping cross sec-
tion is weak for three reasons: (a) polarization of the en-
trance channel wave function is weak; (b) the two-body
interaction is weak in odd states; (c) a weak relative odd
wave in the entrance channel must couple to a weak rela-
tive odd wave in the exit channel.

IV. SUMMARY: THE d +d REACTION

We have seen that deuteron polarization causes very
little modification of the branching ratio for the reactions
A(d,p)/ A(d,n) at very low deuteron energies (the OP
effect), because for low Z nuclei polarization of the en-
trance channel wave function is small, and because the
operator that links the exit channel to the polarized part
of the entrance channel is weak.

A more significant Coulomb modification of the
branching ratio can enter through the bound final-state
wave function (the stripping form factor) of the proton,
¥,(r,); this wave function experiences a Coulomb bar-
rier, which causes it to differ from the bound wave func-
tion of the neutron ¥, (r, ). This barrier effect is more im-
portant for weakly bound states. It could matter for
(d,xy)reactions through excited states of heavier target
nuclei.

Although the reaction rate at low energy is drastically
reduced by the Coulomb barrier for the deuteron at large
distances, calculations of the rate must use overlaps near
the target nucleus and, therefore, must have wave func-
tions that are accurate in this region. These can be ob-
tained from the coupled equations in Sec. II, with suit-
able normalization to account for the long-range repul-
sion.

Although a straightforward application of the above
three-body stripping theory to the d +d system is very

unsymmetrical; with one deuteron treated as inert, the
theory can be employed if it is symmetrized. We then
wonder whether the reactions might be dominated by im-
portant selection rules. For example, it is known!? that
at low energy the reaction d +d—a+y encounters a
selection rule against E1 emission; M1 is also greatly re-
duced. Therefore, the process is dominated by E2 emis-
sion, to the extent that it can measure the D state admix-
tures in the d and a wave functions. However, there does
not seem to be a selection rule of similar importance for
the main transitions in deuteron rearrangement reactions.

Selection rules seem possible in d +d rearrangement
because we limit the collision of two deuterons at low en-
ergy to orbital angular momentum zero, and we typically
assume the nuclei involved have relative /=0 internal
wave functions. Then all the angular momentum in the
system comes from the spins. Consider an exit channel
SH+p: The two neutrons in *H are coupled in a singlet
spin state. Since the two protons in the system are as-
sumed to have zero relative orbital angular momentum,
antisymmetrization also requires a spin singlet for them,
and the overall exit channel wave function has a very re-
stricted form. However, this restricted exit channel wave
function still has good overlap with the direct product of
triplet spin functions in the entrance channel and it does
not limit the cross section.

Any three-body model of a deuteron-nucleus reaction
treats the target nucleus as structureless, and thereby it
omits a subtle exchange contribution to the normaliza-
tion of the cross section. Correction for this effect can in-
crease cross sections by roughly 25%. 13

Finally, recoil is important in the structure of the
Hamiltonian of the d +d system. For example, a correct
reduced mass must be used to calculate the relative wave
function F,(K,R).

ACKNOWLEDGMENTS

I am grateful to Dr. T. Congedo, Dr. G. Gibson, Dr.
D. Klein, and Dr. F. Ruddy of the Westinghouse Science
and Technology center for bringing this problem to my
attention, and to Professor C. M. Vincent for discussions
of the formalism. Professor T. W. Donnelly brought Ref.
12 to my attention, and I subsequently discussed it with
Professor H. R. Weller. Finally, I am grateful to Profes-
sor S. E. Koonin for a copy of Ref. 4 and for subsequent
discussions. The research was supported by the National
Science Foundation, under Grant No. PHY-8800717.

IN. Austern, Direct Nuclear Reaction Theories (Wiley-
Interscience, New York, 1970), Sect. 5.9, and references
therein.

2M. Fleischmann, S. Pons, and M. Hawkins, J. Electroanal.
Chem. 261, 301 (1989).

3J. R. Oppenheimer and M. Phillips, Phys. Rev. 48, 500 (1935).

4S. E. Koonin and M. Mukerjee, Phys. Rev. C 42, 1639 (1990).

SF. E. Cecil, R. J. Peterson, and P. D. Kunz, Nucl. Phys. Ad41,
477 (1985).

6. Kleinfeller, J. Bisplinghoff, J. Ernst, T. Mayer Kuckuk, G.
Baur, B. Hoffmann, R. Shyam, F. Rosel, and D. Trautmann,
Nucl. Phys. A370, 205 (1981).

7J. A. Tostevin and R. C. Johnson, Phys. Lett. 85B, 14 (1979).

8F. P. Gibson and A. K. Kerman, Phys. Rev. 145, 758 (1966).

°N. Austern, Y. Iseri, M. Kamimura, M. Kawai, G. Rawitscher,
and M. Yahiro, Phys. Rep. 154, 125 (1987), and references
therein.

10R. M. More and Karen H. Warren, Ann. Phys. (N.Y.) (to be
published).

UIT. Hamada and L. H. Johnston, Nucl. Phys. 34, 382 (1962).

I2H. R. Weller and D. R. Lehman, Annu. Rev. Nucl. Part. Sci.
38, 563 (1988); J. L. Langenbrunner, H. R. Weller, and D. R.
Tilley, Phys. Rev. C 42, 1214 (1990), and references cited
therein.

13K. Varga and R. G. Lovas, Phys. Rev. C (to be published).



