Scattering of ⁶He from ¹⁹⁷Au, ^{nat}Ti, ²⁷Al, ^{nat}C, and ⁹Be at E = 8-9 MeV

R. J. Smith, J. J. Kolata, K. Lamkin, and A. Morsad

Physics Department, University of Notre Dame, Notre Dame, Indiana 46556

K. Ashktorab, F. D. Becchetti, J. A. Brown, J. W. Janecke, W. Z. Liu, and D. A. Roberts Physics Department, University of Michigan, Ann Arbor, Michigan 48109

(Received 3 October 1990)

Beams of ⁶He ions having E = 8.8-9.3 MeV and intensity up to 2×10^4 s⁻¹ have been produced via the ⁹Be(⁷Li, ⁶He)¹⁰B reaction. The beams had an energy resolution of 0.8 MeV full width at half maximum, 1-cm-diam spot size, and $\pm 3^{\circ}$ angular divergence. The first elastic-scattering data for ⁶He from several targets are presented as examples of the use of this radioactive beam in secondary scattering experiments and their potential use for transfer or breakup reactions. Optical model parameters for ⁶He are deduced by comparison with calculations using ^{6,7}Li and ⁴He parameters. The data are well reproduced with ⁶Li or ⁷Li optical model parameters but not with those from ⁴He.

I. INTRODUCTION

The quantitative development of nuclear astrophysics requires the measurement of nuclear reaction rates involving short-lived nuclei such as ⁸Li and ⁶He. As part of our program to produce beams of radioactive ions for these and other studies, and to utilize them for nuclear reactions, ^{1,2} we have measured the scattering of ⁶He from a number of different target nuclei.

Scattering of ⁶He is of considerable interest in nuclear physics. Because of the large binding energy of the alpha particle, the ⁶He nucleus has been considered as an N-N- α nucleus with 3-body breakup from its first (unbound) excited state at 1.2 MeV.^{3,4} In addition, it has been suggested that such a weakly bound neutron-rich nucleus may have a "neutron halo,"⁵ enlarging its interaction radius in nuclear reactions. Initial measurements of ⁶He reaction cross sections have not resolved this issue.⁶ In addition to the theoretical interest in the three-body breakup of ⁶He, there are a whole series of reactions of the type $X({}^{6}\text{He}, {}^{4}\text{He})$ with very large positive Q values. We present here a survey of the yield, energy, and resolution for ⁶He secondary-beam production and the first results of elastic scattering of 8.7–9.3-MeV ⁶He beams (incident energy) from ¹⁹⁷Au, ⁴⁸Ti, ²⁷Al, ¹²C, and ⁹Be. The production reaction was ${}^{9}\text{Be}({}^{7}\text{Li},{}^{6}\text{He}){}^{10}\text{B}$, which has a Q value of -3.38 MeV, and the ⁶He ions were produced as a parasite beam to ⁸Li production.

II. EXPERIMENTS

The experimental apparatus used to collect and focus radioactive beams has been described in detail elsewhere.¹ Recent additions to this apparatus are an adjustable z (beam axis) beam stop in the midplane chamber and a rotating primary target assembly.⁷ The z-movable stop consists of a 3-cm-diameter disk which can be positioned under vacuum at distances between 156 and 190 cm from the primary target. This may be used to filter out lower rigidity ions including primary-beam scattered

particles. Although increasing the magnetic field of the solenoid may achieve the same ends, the improved beam purity often comes at the expense of the secondary-beam focus. The yield and energy resolution of the secondary ⁶He beam was investigated as a function of solenoid current and z-stop position for the ⁹Be(⁷Li, ⁶He) reaction at three ⁷Li bombarding energies. In addition, these beams were used to measure elastic-scattering cross sections from a number of targets and so comprise the most comprehensive set of scattering data for ⁶He so far available.

III. EXPERIMENTAL RESULTS

Beams of ⁷Li of energy 14.63, 16.1, and 17 MeV were used to produce ⁶He secondary beams. The first excited state of ⁶He is unstable to three-body breakup. Only with a ⁷Li beam energy of 14.63 MeV are the ⁶He and ¹⁰B, populated in their ground states, brought to a focus at the secondary target. At the other ⁷Li energies the ¹⁰B residual nucleus must carry away 2.5–3.5 MeV of excitation energy. This is necessary for the ⁶He to be bent by the solenoid magnetic field to a secondary-target focus. It should be noted that most of the results reported here were obtained with parasite beams to experiments with ⁸Li reported elsewhere^{7–9} and were therefore not particularly optimized for ⁶He production.

The production targets used with the 14.63 and 17.0-MeV ⁷Li beams were 12.7- μ m-thick ⁹Be foils. The yield and energy resolutions are presented in Table I. In all cases the solenoid angular acceptance was 5°-11° corresponding to a solid angle of 94 msr. Also included are the parameters for the 8.2-MeV ⁶He ion beam reported elsewhere.¹⁰ Figure 1 shows the $\Delta E \cdot E_R$ signature and beam profile of ⁶He.

There are essentially two methods employed to measure the yield of a secondary beam (expressed as ⁶He ions s⁻¹ $e\mu$ A⁻¹ ⁷Li). The first method measures the yield directly: a large-area $\Delta E \cdot E_R$ detector is placed at 0°, and the number of secondary ions accepted and transmitted

Solenoid Resolution Run Incident current Yield Solid-state ⁶He energy $(^{6}\text{He s}^{-1} e \text{ mA}^{-1})^{a}$ No. (MeV) (A) detector (Ω) 1 8.84 0.74 113.0 5350±900 13.5 2 9.39 1.19 115.5 11210 ± 1610 6.7

113.0

TABLE I. Experimental parameters for 17-MeV ⁷Li on ${}^{9}Be({}^{7}Li,{}^{6}He){}^{10}B$ using a 12.7- μ m ${}^{9}Be$ primary target and 5°-11° solenoid angular acceptance.

^aThese data represent a conversion efficiency (${}^{6}\text{He}/{}^{7}\text{Li}$) of (2.6–9.2)×10⁻⁹.

0.71

FIG. 1. (a) ΔE vs E_r for the scattering of a 8.9-MeV ⁶He secondary beam on ¹⁹⁷Au at 12°. (b) Energy profile for scattered ⁶He.

through the solenoid is measured. Since the detector is some 12 cm farther back than the secondary-target focal point, the field has to be reduced by around 1.1% to simulate a secondary-target focus. The count rate tolerance of the solid-state detectors greatly restricts this method and makes the method time consuming. The second method (more commonly used) measures the Rutherford scattering of the secondary beam from a gold target at several detector angles. This has the added advantage of providing an on-line secondary-beam flux calibration. However, with ⁶He there is a danger that flux may be lost to Coulomb breakup of the ⁶He ions from their first excited state, giving a false value for both the ⁶He yield and the secondary-beam intensity and, therefore, of the measured cross sections. We have performed a survey of direct versus indirect yields for ⁶He production using a 16.1-MeV ⁷Li beam and 6- μ m ⁹Be target (to simulate ⁶He production from a 17-MeV ⁷Li beam on 12.7 μ m ⁹Be). The results of this survey are 1444±391 ⁶He s⁻¹ e μ A⁻¹ for the indirect yield and 1503±198 ⁶He $s^{-1}e \mu A^{-1}$ for the direct yield. It can be seen that the two values agree, and that therefore there is no indication of significant Coulomb breakup of the ⁶He beam at this energy.

6.7

5760±1330

The ⁶He yields at 8.2–9.3 MeV ranged from 19 000 to 5800 ⁶He ions s⁻¹ $e \mu A^{-1}$ of ⁷Li from 12.7 μm ⁹Be. The largest yields result from production with both ⁶He and ¹⁰B left in their ground states. The maximum ⁶He beam intensity achieved was 2×10^4 s⁻¹.

Finally, the first systematic measurements of elastic scattering of ⁶He beams from ¹⁹⁷Au, ^{nat}Ti²H₂, ²⁷Al, ⁹Be, and ^{nat}C are presented. These are the results of the three sets of experiments defined in Table I. The differential cross sections for the ¹²C and ⁹Be targets, at different nominal scattering angles, are presented in Table II. Since the position-sensitive detectors spanned 5.3° and 7.6°, respectively, they were divided into 1–2° slices to provide more information on the angular distributions.

Unlike the case for conventional nuclear elasticscattering experiments, our beam spans the angular range from $\frac{5}{3}^{\circ}$ to $\frac{11}{3}^{\circ}$ in the laboratory system. (A factor of $\frac{1}{3}$ comes from the angular magnification of the solenoid.) This means that, given the rapid fall in scattering cross section with increasing angle, the effective beam angle is weighted toward a small angle. The nominal detection angles are therefore typically $0.5^{\circ}-2.0^{\circ}$ larger than the cross-section-weighted scattering angles.

The problem then becomes how to correct for this to

3

9.00

	9.18-MeV ⁶ He on ${}^{12}C$ (N	8.79-MeV ⁶ He on 12 C (No. 3)			
θ (lab)	$\frac{d\sigma}{d\Omega}$ (b/sr)	Error	θ (lab)	$\frac{d\sigma}{D\Omega}$ (b/sr)	Error
12.9	22.9	2.64	9.9	81.7	11.4
13.9	17.4	1.81	10.9	45.3	6.68
15.0	9.30	1.27	12.0	18.1	4.04
16.1	5.07	0.98	12.4	13.7	2.11
17.1	4.57	1.18	13.1	11.8	3.41
17.4	3.25	0.38	14.1	11.2	4.24
20.0	1.29	0.29	15.0	6.27	1.74
22.4	0.71	0.15	17.4	2.88	0.53
22.6	1.04	0.21	17.6	3.58	1.08
25.0	0.50	0.15	20.0	2.06	0.55
27.6	0.28	0.09	22.6	0.89	0.30
30.0	0.17	0.06			
	8.20-MeV ⁶ He on ⁹ Be (N	(o. 2)	8.24	-MeV ⁶ He on ⁹ Be (N	Io. 3)
17.3	2.05	0.36	10.9	46.6	6.07
20.0	1.05	0.17	12.0	19.6	3.77
22.7	0.51	0.18	12.9	8.32	1.03
23.3	0.38	0.10	13.1	14.2	3.35
26.0	0.39	0.07	13.9	5.04	0.63
28.7	0.19	0.07	14.1	3.85	2.22
29.3	0.29	0.09	15.0	2.68	0.44
32.0	0.21	0.05	16.1	1.97	0.39
34.7	0.08	0.05	17.1	1.02	0.36
			20.0	0.65	0.09
			25.0	0.25	0.08

TABLE II. Nominal detection angles (θ_{lab}) and laboratory differential cross sections $(mb sr^{-1})$ for ⁶He scattering from ⁹Be and ^{nat}C. ⁶He energies are given for the centers of the target foils. Note that these values have not been corrected for beam divergence or detector width. The true (forward-angle-weighted) angles will be smaller than those quoted here.

 197 Au(⁶ He,⁶ He) at 8.8-9.3 MeV

FIG. 2. Fit to experimental angular distribution for scattering of 7.9-MeV ⁶He from ^{nat}TiH₂. The distribution follows Rutherford scattering within the overall experimental errors. Note that the experimental points have been multiplied by 1.10 for the fit.

FIG. 3. Rutherford scattering of ⁶He:¹⁹⁷Au(⁶He,⁶He) at ⁶He energies of 8.75, 8.9, and 9.3 MeV.

FIG. 4. Elastic scattering of ${}^{6}\text{He}:{}^{12}\text{C}({}^{6}\text{He},{}^{6}\text{He})$ at ${}^{6}\text{He}$ energies of 8.8 and 9.2 MeV with OM angular distributions using the ${}^{7}\text{Li}$ parameters given in Table III. The solid curve is for the global potential; the dashed curve is for the local potential. Both are for 8.99-MeV ${}^{6}\text{He}$ ions.

obtain a true detection angle. To do this, two assumptions have been made: (1) that the angular distribution from 5° to 11° is flat and (2) that the angular distribution is, overall, a smooth function of $1/\sin^n(\theta_{c.m.})$. While, clearly, neither is true, they are fair first approximations.

FIG. 6. Elastic scattering of ${}^{6}\text{He}{}^{9}\text{Be}({}^{6}\text{He}{})$ at a ${}^{6}\text{He}$ energy of 8.22 MeV with OM angular distributions using the ${}^{7}\text{Li}$ parameters given in Table III. The solid curve is for the global potential; the dashed curve is for the local potential.

For example, a fit to the angular distribution of 7.9-MeV ⁶He on ^{nat}Ti is presented in Fig. 2. The next step is to divide the divergent beam annulus into thin slices and calculate the weighted mean θ_{det} - θ_{beam} . The computed values of the exponent *n* were 4 (as expected) for ¹⁹⁷Au,

FIG. 5. Elastic scattering of ${}^{6}\text{He}:{}^{12}\text{C}({}^{6}\text{He},{}^{6}\text{He})$ at ${}^{6}\text{He}$ energies of 8.8 and 9.2 MeV with OM angular distributions using the ${}^{4}\text{He}$ and ${}^{6}\text{Li}$ parameters given in Table III. The solid curve is for the ${}^{4}\text{He}$ potential; the dashed curve is for the ${}^{6}\text{Li}$ potential. Both are for 8.99-MeV ${}^{6}\text{He}$ ions.

FIG. 7. Elastic scattering of ${}^{6}\text{He}{}^{9}\text{Be}({}^{6}\text{He}{})$ at a ${}^{6}\text{He}$ energy of 8.22 MeV with OM angular distributions using the ${}^{4}\text{He}$ and ${}^{6}\text{Li}$ parameters given in Table III. The solid curve is for the ${}^{4}\text{He}$ potential; the dashed curve is for the ${}^{6}\text{Li}$ potential.

	the second descent second se	Association and a second					
Potential	<i>r</i> ₀ , (fm)	a_r (fm)	<i>r</i> _{0<i>i</i>} (fm)	a_i (fm)	<i>V_r</i> (fm)	<i>W</i> _{<i>i</i>} (fm)	<i>r</i> _{0C} (fm)
⁷ Li global	0.60	0.80	1.31	0.72	167.0	9.57	1.25
⁷ Li	0.64	0.82	1.16	0.77	188.0	13.0	0.69
⁴ He (C)	0.53	0.50	0.53	0.50	150.0	1.50	0.36
⁴ He (Be)	0.47	0.50	0.47	0.50	128.4	3.35	0.46
⁵ Li	0.61	0.79	1.34	0.62	154.0	4.40	1.25

TABLE III. OM potentials for ⁶He elastic scattering.

^{nat}Ti, and ²⁷Al, and 5 for ^{nat}C and ⁹Be.

The elastic-scattering results are presented versus c.m. scattering angle in Figs. 3 (¹⁹⁷Au), 4,5 (^{nat}C), and 6,7 (⁹Be). Illustrated on the plots are the errors propagated from statistical uncertainties. The errors from the absolute normalizations are not included since these will not alter the shape of the angular distributions. The absolute normalization errors vary from 15% to 19%. Elasticscattering cross sections for ⁶He from Au, Ti, and Al follow Rutherford values closely. Scattering from C and Be shows clear deviations from Rutherford scattering. To investigate this behavior we performed some standard optical model (OM) calculations with the programs CUPID (Ref. 11) and PTOLEMY (Ref. 12) with parameters, taken from ⁷Li, ⁶Li, and ⁴He scattering, ¹³⁻¹⁵ which are shown in Table III. The optical model potential is of the form $U(r) = V_{\text{Coul}} - (V_r + iW_i)f(r)$, where W_i is a volume absorption potential. The optical model uses a Woods-Saxon form factor:

$$f(r) = \left[1 + \exp\frac{r-R}{a}\right]^{-1},$$

where R is the sum of the nuclear radii and a is the diffuseness parameter. In all cases the radius parameters r_{0r} (real), r_{0i} (imag) and r_{0C} (Coul) are defined by the

equation

$$R = r_0 (A_n^{1/3} + A_t^{1/3})$$
.

From these calculations it appears that the angular distributions for ⁶He scattering are very similar to those predicted using ⁷Li or ⁶Li OM parameters. Angular distributions using ⁴He OM potentials reproduce the data much less well.

IV. CONCLUSIONS

Beams of ⁶He were produced from the ⁹Be(⁷Li, ⁶He) reaction between 5° and 11° outgoing angle, with a rate of $6000-19\,000$ ions s⁻¹ $e\,\mu$ A⁻¹ and with an energy resolution of 0.8 MeV. These beams have allowed us to perform the first systematic study of ⁶He elastic scattering from a variety of targets. The angular distributions for ⁶He elastic scattering are well reproduced using ⁷Li or ⁶Li optical model parameters. Angular distributions using ⁴He optical model parameters do not reproduce the data well.

It is hoped, with the aid of an energy-loss absorber to improve our ⁶He yield, and that future experiments will pursue a new generation of ⁶He-induced reactions such as $({}^{6}\text{He}, {}^{4}\text{He})$, for example.

- ¹J. J. Kolata, A. Morsad, X. J. Kong, R. E. Warner, F. D. Becchetti, W. Z. Liu, D. A. Roberts, and J. W. Janecke, Nucl. Instrum. Methods B 40/41, 503 (1989).
- ²F. D. Becchetti, W. Z. Liu, D. A. Roberts, J. W. Janecke, J. J. Kolata, A. Morsad, X. J. Kong, and R. E. Warner, Phys. Rev. C 40, 1104 (1989).
- ³W. C. Parke and D. R. Lehman, Phys. Rev. C 29, 2319 (1984).
- ⁴J. J. Bevelacqua, Phys. Rev. C **33**, 699 (1986).
- ⁵P. G. Hanson and B. Jonson, Europhys. Lett. 4, 409 (1987).
- ⁶M. C. Saint-Laurent et al., Z. Phys. A 332, 457 (1989).
- ⁷J. Brown, F. D. Becchetti, W. Z. Liu, J. W. Janecke, D. A. Roberts, J.J. Kolata, R. J. Smith, K. Lamkin, and A. Morsad, in *Proceedings of The First International Conference on Radioactive Nuclear Beams, 1989,* edited by W. D. Myers, J. M. Nitschke, and E. D. Norman (World Scientific, Singapore, 1990), p. 201.
- ⁸F. D. Becchetti, J. Brown, W. Z. Liu, D. A. Roberts, J. J. Ko-

lat, R. J. Smith, K. Lamkin, A. Morsad, and R. E. Warner, in Ref. 7, p. 305.

- ⁹W. Z. Liu, F. D. Becchetti, J. Brown, D. A. Roberts, J. J. Kolata, A. Morsad, R. J. Smith, and X. J. Kong, in Ref. 7, p. 499.
- ¹⁰W. Liu, Ph.D thesis, University of Michigan, 1990 (unpublished).
- ¹¹J. R. Comfort, Comput. Phys. Commun. 16, 35 (1978).
- ¹²M. H. MacFarlane and S. C. Pieper, PTOLEMY: A program for Heavy Ion Direct-Reaction Calculations, Report No. ANL-76-11. Rev. 1, 1978.
- ¹³M. F. Vineyard, J. Cook, K. W. Kemper, and M. N. Stephens, Phys. Rev. C **30**, 916 (1984).
- ¹⁴P. Schumacher, N. Ueta, H. H. Duhm, K. I. Kubo, and W. J. Klages, Nucl. Phys. A212, 573 (1973).
- ¹⁵C. M. Perey and F. G. Perey, At. Data Nucl. Data Tables 17, 80 (1976).