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A study is made of the influence of many-body corrections on the longitudinal response
function for the inclusive quasielastic (e, e ) reaction. This response function is well known
to be suppressed, by about a factor of 2, when compared with theoretical predictions based
on the concept of single nucleon ejection. This is a characteristic of the data that persists
through a wide range of different nuclei and suggests a violation of the Coulomb sum rule. It
is shown here how an estimation of the e8ect of many-body correlations, at large momentum
transfers, including a consistent treatment of inelastic final-state interactions, can be computed
through a relationship to the nuclear optical model. The approximations are such that the
Coulomb sum rule is guaranteed to remain satisfied providing the optical potential is Hermitian
analytic. Calculations of the longitudinal response are carried out within the Fermi-gas model
using phenomenological parametrizations of the nuclear optical potential. The reductions in
both the peak strength and the total integrated response are significant, but not sufhcient to
explain the discrepancy between theory and experiment. The resulting distribution of strength
is characterized by the energy-weighted sum rule which remains satisfied to the level of the
approximations, about 5'PD.

I. INTRODUCTION

Several recent measurements~ 7 of the inclusive
quasielastic (e, e') cross section have spurred consider-
able theoretical eKort to understand them. The need
for such attention is partly a consequence of the failure
of traditional models to explain the separated longitu-
dinal response. Even the simplest model of quasielastic
scattering, the Fermi-gas model in the impulse approxi-
mation, appeared to be extremely successful at explain-
ing the unseparated data. 8 It thus proved surprising that
this model fails by a factor of 2 to fit the longitudinal re-
sponse functions alone. This suppression of the response
is a systematic feature, observed in nuclei ranging from

C to U, for several values of the momentum transfer
between q= 330 and 550 MeV.

Even more importantly, the data suggest a
violation of a sum rule, first proposed by
Heisenberg, that demands the large q limit of the in-
tegrated response for point nucleons be Z, the total nu-
clear charge. This apparent violation of the Coulomb
sum rule has led to considerable speculation on the phys-
ical origin of the observed suppression. Several random-
phase approximation (RPA) calculations have been car-
ried out and have provided a qualitative description
of the longitudinal response at low momentum transfer.

Above momentum transfers of 400MeV, one-particle-
one-hole (lp-lh) RPA effects tend to be very small, ~s

and the need to include more complicated configura-
tions through the second RPA (SRPA) (Refs. 14 and
15) have been recognized. Thus, within the framework
of nonrelativistic physics, the predominant explanation
has been the effect of 2p-2h (Refs. 13—15) and further
many-body " correlations. Recent calculations using the
Thomas-Fermi model at lower values of the momen-
tum transfer have demonstrated that several eA'ects, no-
tably the inclusion of low-lying collectivity, finite-size ef-
fects and momentum-dependent potentials, can signifi-
cantly reduce the longitudinal response. There is some
difhculty in extending those calculations to larger val-
ues of the momentum transfer, where one would antic-
ipate their importance to be reduced, and where a se-
rious discrepancy with experiment still remains. It has
also been suggested that the suppression may be due to
modifications of the nucleon size within the medium (the
"swollen nucleon" hypothesis), ~s s7 quark clustering ex-
change efkcts, and relativistic dynamical eKects.

While the inAuence of these more speculative mecha-
nisms generally improve the agreement with experiment,
they need to be considered cautiously to ensure that their
appealing features are neither accidental nor pathologi-
cal. Relativistic RPA (RRPA) calculations, for example,
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exhibit substantial suppressions that persist to large mo-
mentum transfer, but have relied on the o.—~ model
representation of the residual part, icle-hole interaction;
it has recently been shown that this theory is not even
qualitatively stable with respect to a loop expansion
and it is unclear to what extent, the calculated suppres-
sion will endure a more realistic representation of the
nucleon-nucleon interaction. In addition, renormalized
RRPA calculations that use pointlike interactions are
known to generate unphysical singularities at large mo-
mentum transfers. 7

The assumption that a description of quasielastic scat-
tering can be predicated on the concept of single-nucleon
ejection is difIicult to justify. The momentum and energy
transfers involved in the experiments clearly allow scat-
tering into many final-state channels involving multiple-
nucleon ejection and a calculation of the inclusive re-
sponse should involve contributions from all open final-
state channels. Many calculations have ignored the final-
state interactions because the total Aux must be con-
served; it is important to recognize, however, that the
strength will be redistributed as a function of momentum
and energy transfer due to difI'erences in the coupling to
the available phase space.

Currently, the most satisfactory way of including
the efI'ects of the final-state interactions is the opti-
cal model Green's-function approach originally presented
by Horikawa et a/. : A one-body approximation to
quasielastic electron scattering can be constructed by ex-
ploiting the relationship between forward virtual Comp-
ton scattering and inclusive electron scattering. The re-
sult is a doorway model with the virtual photon being
absorbed initially by a single nucleon that can couple to
more complicated final channels through the final-state
interaction. The original motivation for this approxima-
tion was found in multiple-scattering theory, but, it was
shown in the recent comprehensive study of final-state
interactions by Chinn ef al.ss how this approach can be
derived using projection techniques.

Similar projection techniques have also been used
to account for the infIuence of many-body correlations
on the longitudinal response by constructing an eA'ec-

tive current operator to be used in the evaluation of the
transition matrix element. This eA'ective operator is re-
lated to the optical potential by using the projection tech-
niques to account for the coupling to states more corn-
plicated than 1p-1h in an approximate way. Thus, it is

possible to study the role of many-body correlations in
a more consistent way by including the final-state inter-
actions through the optical-model Green's-function ap-
proach. By exploiting the relationship to forward vir-
tual Compton scattering, the projection techniques can
be used to relate the exact many-body expression to a
simplified version given in terms of the optical potential.

This is the formulation to which this paper is ad-
dressed. Because of the connection with the optical
model, the final-state interaction can be constrained by
means of elastic nucleon-nucleus scattering; also, the sub-
stantial body of work on the derivation and properties

of microscopic optical potentials can be exploited.
By introducing a reasonable set of approximations, the
full many-body problem can be approximated by one in
which the basis states are simply one-body states; this is
at the expense of introducing efI'ective current operators,
but they are related to the energy-dependent optical po-
tential and are not unwieldy. Such a formulation allows
the use of traditional models of quasielastic scattering to
evaluate the full many-body longitudinal response. In
particular, the simplicity of the Fermi-gas model allows
it to be used to study the role of many-body correlations
in a comprehensive fashion.

The paper is organized in the following way. The gen-
eral formalism is presented in Sec. II A. Section II B is
used to show in detail how the adopted set of valid ap-
proximations can be used to simplify the general expres-
sion so that the result is calculable. It is also proved that
the Coulomb sum rule has not been compromised by the
set of approximations. In Sec. III, details of the calcu-
lation within the Fermi-gas model are presented. Some
emphasis is placed on the way in which phenomenologi-
cal optical potentials were used, especially at large mo-
mentum and energy transfers. Attention is drawn to the
limitations of describing the nucleus as a Fermi gas in the
Appendix where the somewhat remarkable result that the
contributions from the single-nucleon knockout channel
vanish is presented. Numerical results of the calculations
are then discussed in Sec. IV. There is some sensitivity
to the choice of optical potential parametrization seen.
In addition, energy-weighted sum rules are used as a test
of the consistency of the method. Section V is used to
summarize the results and inferences that can be drawn
from this study.

II. FORMALISM

A. Many-body corrections
to the longitudinal response

Both the longitudinal and transverse response func-
tions are defined in terms of the nuclear tensor,
W" (q, u), which involves the matrix elements of the
virtual photon's interaction with the nuclear electromag-
netic current,

Rz(q, ur) = W (q, ~)+ W (q, ~),
with

x 6(Eg —E; —~).

The Q is used to denote an average of the A-body ini-
tial states li) while lf) is a particular A-body final nu-
clear state. The electromagnetic current operator J~ is
a function of the four-momentum of the virtual photon
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q = (u, q). Note that only the diagonal components of
the response tensor are needed to define the inclusive
response functions. These components can be written
alternatively as imaginary parts of the virtual forward
Compton amplitude T"", i.e. , the contribution from the
elastic scattering of virtual photons from the bound nu-
cleons,

W» = ——Im(T""),1

P=—) P.

=1 —P. (9)

Note that by their definitions, only U and not h, connects
the two subspaces:

and the orthogonal project, or onto the remainder of the
Hilbert space is

where PhQ = QhP = 0 (10)

T""= ).(ilJ"(—~)G(E*+~)J"(~)li) (4) implies that

PHQ = PVQ and QHP = QVP .
and G(E) is the full A-body propagator.

At this stage, Eq. (4) retains all of the complexities of
the many-body problem. From a practical standpoint it
is useful to try to relate the exact expression to a simpli-
fied version given in terms of the optical model ~ This can
be achieved by using the Feshbach operator projection
method. 5 For simplicity, the derivation given below ne-
glects complications associated with the antisymmetriza-
tion of the wave functions. It has been demonstrated,
however, that a completely antisymmetrized theory can
be constructed which retains the form of the simple un-
symmetrized theory provided that an appropriate iden-
tification of the optical potential be made. The
form of the results obtained here is not, therefore, depen-
dent, upon this assumption and the generalization to a
completely antisymmetric formalism is straightforward.
Furthermore, it is assumed in the following derivation
that the target nucleus has zero spin in order to simplify
the labeling of states and to remove the average over ini-
tial states. This assumption can easily be eliminated and
does not aA'ect the form of the results obtained below.

In the Feshbach approach the A-body Hamiltonian H
is divided into two pieces: the first is an (A—1)-body
interacting Hamiltonian plus a kinetic energy term for
the Ath nucleon, and is denoted by h; the other term is
the residual interaction between the (A—1)-body system
and the Ath nucleon and is denoted by U. That is,

H=h+U.

A projector onto an eigenstate of h can be defined as

P- = ln)(nl

where

Using these definitions, it is possible to project the A-
body Schrodinger equation for the initial state ii) using

H(P+ Q)li) = E;li) . (12)

Projection of Eq. (12) on the left-hand side with P and
Q give the equations

(PHP + PVQ) ii) = E;Pli)

and

(QVP+ QHQ) ii) = E;Qii). (14)

Equation (14) can be solved to give the Q-space projec-
tion of ii) in terms of its P-space projection,

Ql ) = gq(E )QVPI ),
where

1
gQ( ):E QHQ+

describes propagation in the Q space only. Using Fq.
(15), the initial state can be expressed in terms of only
its P-space projection,

li) = Pli) + Qli) = [1+gq(E)QVPjPii)
Furthermore, Eqs. (13) and (14) can be solved to give

[PhP+ PVP+ PVQgq(E;)QVP]P~i) = E;Pii),
(18)

which is an efFective Schrodinger equation for Pii).
A similar, but slightly more complicated, approach can

be used with the A-body propagator G(E). The propa-
gator can be written as

hin) = E in) . (7) G(E) = Gp(E) + Gp(E)VG(E)
= Go(E) + G(E)VGo(E) (19)

In this case a subset of the eigenfunctions of h corre-
sponding to a finite set of excitations of the (A —1)-body
system will be chosen. In interpreting the physical con-
tent of the approximations made below, it, is useful to
think of these states as the result of a hole being placed
in the various filled shells of a closed-shell nucleus. The
projector onto the subspace spanned by these states is

with

Gp(E) = 1

E —h+ig (2o)

Projection of Eq. (19) on the right- and left-hand sides
by P and Q yields a set of coupled equations that can be
solved to give
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G(E) = [1+gq(E)QVP]PG(E)P[1 + PVQgq(E)] + gq(E)

where

PG(E)P = PGQ(E)P+ PGO(E)P[PUP+ PVQgq(E)QVP]PGP .

Using the expressions in Eqs. (17) and (21), the Compton amplitude defined in Eq. (4) can be written as

T"" = {ii( PJ,"~( q, E—, , E; + ~)PG(E; + ~)PJ,"„(q,E; +co, E;)P
+[P+ PVQgq(E )]~"( q)gq—(E'+~)J"(q)[P+ gq(E )QVP]) I&)

where

»,"„(q,E', E)P = [P+—PVQgq(E')]&" (q)IP+ gq(E)QV ]

(22)

(23)

(24)

is an effective current operator in the p space. Note that Eq. (23) consists of two terms. The first of these can be
expressed entirely in terms of effective operators, states and propagators ln the P space, while the second involves
intermediate propagation only in the Q space and is not readily described in terms of effective P-space operators.

At this stage, Eqs. (18), (22), (23), and (24) should be viewed as matrix equations expressing the coupling of
e various P subspaces. The expressions can be simplified considerably by assuming that each of three important

pieces is diagonal in the P s: the effective current operator of Eq. (24); the second term of Eq. (23); »d, fi»iiy,
the effective potential that, appears in both the effective Schrodinger equation, Eq. (18), and the equation for the
projected propagator, Eq. (21). The forward Compton amplitude then becomes

T» = ) (i~( P.J,"„( q, E;, E,—+~)P.G(E. +~)P.J,",(q, E;+~,E,)P.

+[P + P VQgq(E')] J"( q)gq(E—*+~)J"(q)[P + gq(E*)QV P-Bl&) (25)

P~G(E)P—:G p, (E)
= G0 (E) + G0 (E)V.pe(E) Gopt(E)

where

GQ (E) = P Gp(E)P (27)

and the optical potential is defined as

V p, (E) = P VP + P VQgq(E)QVP (28)

Note that the effective Schrodinger equation for the pro-
jected initial state, Eq. (18), then becomes

The projection of the propagator P G(E)P can be iden-
tified as the optical-model Green's-function for the n
channel, and satisfies the equation

I

tic estimate of T, and thus Rl. , using only information
derived from phenomenological optical potentials. This
involves corrections to previous calculations based
on the optical model that used the free charge operator in

place of the eA'ective one and neglected the contributions
represented by the second term of Eq. (25). The approxi-
mations used below are similar to those introduced earlier
in the context of the orthogonality problem in distorted-
wave impulse approximation (DWIA) calculations of the
(e, e'p) reaction. 2 A more distantly related approach5
imposes conditions on the optical-model propagator to
obtain results which bear a superficial resemblence to
those presented below.

The one-body charge-density operator can be written

[P hP + V.„(E,)]P ii) = E;P ii), (29)

where the optical potential is real below the Q-space
threshold.

It is evident from Eq. (25) that a consistent treat-
ment of the Compton amplitude requires a consistent
construction of the optical potential, the effective cur-
rent operators and the contributions represented by the
second term in Eq. (25). While it may be possible to
approximate the theoretical optical potential with some
phenomenological interaction, the other elements in the
calculation of Eq. (25) are not generally amenable to such
treatment. However, the particular characteristics of the
nonrelativistic charge operator allow for a reasonable set
of approximations that permits the calculation of a realis-

= ).c (q), (30)

q ~(q) = [»~(q)l. (31)

where it has been assumed that the Dirac form factor
of the neutron vanishes and that any exchange current
contributions to the charge-density operator are of higher
order in u jc. The operator form of the continuity equa;
tion requires that



586 P. M. BOUCHER AND J. W. VAN ORDEN 43

~(q) = ~&'&(q)+ ~&'&(q)

If the Hamiltonian is written as

H =T+V,

(32)

The current operator can be divided into a one-body con-
tribution and a two-body meson-exchange contribution.
That is,

and because the angle average of the scalar product q p;
vanishes, terms involving it have been neglected. This
is an approximation that can easily be checked numer-
ically and was found to have a negligible eKect on the
calculations presented below.

The final, and most critical assumption, is that the
charge-density operator is diagonal in the P~ subspaces.
That is,

where T is the kinetic energy, and V is the two-body
interaction potential, then the continuity equation for the
free Hamiltonian requires that

[p, P.) =0
which implies that

(38)

q ~"(q) = [T p(q)] .

This implies that

q ~'"(q) = [» p(q)) = o

(34)

(35)

[p P) = [p Q] = o .

These approximations can now be used to simplify the
expression for Too given in Eq. (25). Consider the rela-
tionship

p(q) [P + gq(E, )QVP ]
owing to the fact that the exchange current contributions
to the three-vector current are predominantly transverse.
The only remaining contribution to [H, p] comes from Eq.
(34). The one-body current contains contributions from
the convection and magnetization currents. Since the
magnetization current is totally transverse, the only con-
tribution which remains is that of the convection current.
The commutator can thus be written as

[P + gq(E; + Eq)QV P ] p (q), (40)

where

p (+q)—:P p(+q)P (41)

and Eq. (40) follows from Eqs. (38) and (39), along with
the results

[H, p]=[T, P] =
2 ) P*(q)(q'+2q p*)

).P*(q)q' = E~p(q) (36)
and

p(q)gq(E*) = gq(E*+ E&)p(q)

[V, p(q)] = 0 .

(42)

(43)

where

(37)

The first of these expressions, Eq. (42), is a consequence
of Eqs. (16), (36), (38), and (39), while the second, Eq.
(43), follows immediately from Eq. (35). It can similarly
be shown that

+P VQgQ(E)l p( q) = p ( q) [P +P VQgQ(E +E ))

Using Eq. (40)

p, rr(q, E; + ~, E, ) = P p,n(q, E, + ~, E,)P
= IP-+ P-V QgQ(E*+ ~)]p(q) IP-+ gq(E')QVP-]
= [P + P VQgq(E; + cu)] [P + gq(E, + Eq)QV P ) p (q)

[P + P VQgg(E +co)gg(E +Eq')QV'P ] p (q),

Using

(44)

gq(E, + ~)gq(E; + Eq) = — [gq(E; + ~) —gg(E, + Eq)]

and using the definition of the optical potential in Eq. (28), Eq. (45) can be written as

ps(q E'+~ E) = [1 I (E'+4' E +Ev)]p (q)

where

I" (E, E')=, [V:„(E)—V:„(E')].

Similarly, using Eq. (44)

(47)
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p;fr( q—, E, E +~) = p (—q) [1 —I' (E +~, E +Eq)l

Using Eqs. (40) and (44), the second term contributing to TPP in Eq. (25) can now be rewritten as

[P-+ P-VQg~(E*)] p( q)—W(E*+ ~)p(q) [P-+ g~(E*)QUP-]
p (—q) [P + P VQgq(E +E'q)] gg(E +'cu) [P +gq(E +E'q)QVP ] p (q)

= p ( q) [—P ~ P UQgq(E +E'q)gq(E +w')gq(E +E'q)QVP ] p (q)
1= p ( q) — I'"(E, +~, E;+ E,) —U'i, „(E;+E,)j p (q),

where V, (E) is the derivative of the optical potential with respect to energy and we have used the identity

(49)

(50)

I 1 1g~(E*+ Eq)g~(E*+ ~)g~(E'+ Eq) =
~ [gq(E*+ ~) —gq(E*+ E,)] — g' (E;+ E,)(Ld —Eq ~ —Eq

with gq(E) representing the derivative of the Q-space propagator with respect to the energy.
The forward virtual Cornpton amplitude TP can be written as

T =-) i p ( q) [1——I' (E, +ca, E, +Eq)]G, (E, +~)[1—I' (E, +~, E, +Eq)]

(52)

B. Coulomb sum rule

A nonrelativistic calculation of the type approximated
above can be shown to satisfy the Coulomb sum rule

lim Sp(q) = lim
)q/~oo /qf~oo

Rl. (q, ~)
F'(q2) (53)

In order to establish a simple connection to the op-
tical model in the above derivation, it was convenient
to assume that all effective operators acting in the P
space were diagonal in the P subspaces and that the
single-nucleon charge operator also had this property. As
a result we have eliminated the dynamical coupling of
P subspaces through either effective potentials or the
charge operator. This implies that we have not included
long-range correlations of the RPA type; we therefore
have not included collective excitations of the nucleus
in the calculations of the forward virtual Compton am-
plitude T and thus in the longitudinal response RL, .
Consequently, calculations based on this model will not
properly reproduce the longitudinal response at low val-
ues of the three-momentum transfer where previous cal-
culations have shown the collective degrees of freedom to
be important. Equation (52) is most applicable to the
determination of the effect of short-range correlations on
RL, at relatively large momentum transfers.

Re U.„(E)= Re V.„(0)+ P—dE' Im V, (E')
EI (EI E)

(55)

The dispersion integral begins at zo, the threshold energy
for Q-space processes; note that this is appropriate since
we have omitted collectivity from the model and defined
the optical potential so that it is real below the Q-space
threshold. This dispersion relation can be used to deduce
the asymptotic behavior of Re V „(2),which is evidently
logarithmic. Given that the optical potential is changing
at most logarithmically at large energies, it is clear that
the large Eq behavior of I', as defined by Eq. (48) is

dominated by the factor (~ —Eq) i and therefore

satisfies this constraint.
The first step in a proof of this result is to note that

the optical potential as defined by Eq. (28) is Hermitian
analytic; that is,

Uo,t(E) = U.,~(E*) (54)

and the analytic structure of V „(E)can also be deduced
from that of the propagator gq (E) appearing in Eq. (28).
Thus, the optical potential must satisfy a dispersion re-
lation in the energy variable; since the imaginary part of
the potential is asymptotically constant, a subtraction
is necessary:

A reasonable constraint on any approximation to such
a theory should be the requirement that the Coulomb
sum rule remain satisfied. It can be demonstrated that
Eq. (52) leads to a longitudinal response function that

lim I' (E; + ~, E; + Eq) = 0 .
Eq ~OO

Given this and the fact that U' i(E) must vary as E
for large E,
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lim
I [I (E;+au, E;+E,) —V'„(E, +E)] I

=Q. (57)

The remaining contribution to the Coulomb sum rule is then the same as in previous optical-model calculations of
RI. as described in Refs. 32, 33, and 38. That is, we have demonstrated that

1
lirn Sp —— lim —

2 ) Im(ilp (—q)G, (E;+~)p (q)li) .

iqi oo iqi oo vr p+ Fi q2

In this expression the only contribution to the imaginary part of the matrix element is from the discontinuity in the
optical potential. Since the optical potential is FIermitian analytic, the optical-model propagator can be expanded in

a complete biorthogonal set of scattering wave functions.

where

IP I P + &™pi(E)fl@p'+'(E))= Ep lip'+'(E)) (60)

(@p'+'(E)IIP-hP + &:,~(E)l = (&p'+'(E) IEp

Using this,

(6I)

&p —— »m, , ) r p (—q) ) .Igp
+ (E;+~))&(@+~ —Ep)(tt p

+ (E, + ~)lp (q) i
[q)~co )q~~co p+ Fi (q )

(62)

The factor Fi (q ) cancels the form factors in the charge
operator so that the only remaining dependence on ~ is
contained in the 6 function and can be removed trivially
by the integral over ~. The completeness relation for the
scattering wave functions

) .Ilp'+'(E))(&p'+'(E)I = I (63)

can then be used to give

lim Sp —) (ilP 2 (I+ rs) P Ii) = Z
Iq(~oo

(6&)

provided that the set of P~ subspaces is chosen to ap-
proximately saturate the spectral strength. This demon-
strates that the approximation represented by Eq. (52)
will satisfy the Coulomb sum rule.

geous, at this stage, since it can readily be adopted for
application to diferent nuclei and oA'ers an opportunity
to test extensively various features of the formalism, such
as the saturation of the Coulomb sum rule and the degree
to which other sum rules are satisfied. In this section, the
methods used to implement the formalism presented in
the preceding section are described in detail. The nu-
merical results and discussion of them are reserved for
the following section. The wave functions used in the
Fermi-gas model are plane waves. This is because the
model is characterized by the assumption that the nu-
clear system is large with periodic boundary conditions
imposed over some normalization volume.

The final approximation made in evaluating the result
presented in Eq. (52) is that the optical potent, ial for
each channel is the same,

III. CALCULATIONS &.p~(E) = I'opi(E), (65)

The eAect of the many-body correlations on the longi-
tudinal response has been evaluated within the context
of the Fermi-gas model, described in detail in many stan-
dard texts. The use of such a simple model is advanta-

with Vpt; being the specific one-body optical potential
associated eith the initial target nucleus. As a result of
this assumption, Eq. (65), the factor I' defined in Eq.
(48) is also unchanged between different n channels,
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I' (E;+~,E;+ E,)—:I'(E, +~, E;+ E,) = [Vo~ (E;+co) —V (E, +E,)] .
1

~ —Eq
(66)

In the numerical calculations, spin-independent phenomenologically determined potentials are used. Since the system
is infinite, the optical potential should have no radial dependence; for the calculations, the central value of the potential
was adopted.

Inserting complete sets of states into Eq. (52) and introducing the wave functions explicitly, allows the expression
for the Compton amplitude to be written in terms of a simple integral over occupied momentum states. The first
term in Eq. (M) is closely related to the Compton amplitude in the absence of correlations,

00 3 2 2&(.) =
4 ks &r (~ )

7f
dk 8(k~ —~k~) [1 —I'(E; + ur, E; + E,)]G,pg(k + q, k + q, E, + cu)

x [1 —I'(E, + ~, E, + E )]0(~k+ q~
—k~) . (67)

Note that the usual expression for the longitudinal response function in the Fermi-gas model can be recovered by
setting the optical potential to zero; this amounts to replacing the optical-model Green s function with the unperturbed
Green's function Go and setting I' = O. The second term in the Compton amplitude is related to a density-density
correlation function and is calculated in the same way. Within the context of the Fermi-gas model for a spin-
independent optical potential, it takes the form

00
T(g) s Fr (q') dk 0(k~ —~k)) I'(E; + ~, E; + E,) —V', (E, + E,)] 0((k+ q~

—k~) .
W —Eq

The evaluation of the longitudinal response thus becomes
a matter of performing the numerical integration of the
integrals appearing in Eqs. (67) and (68):

It is always judicious to exercise caution when consid-
ering a model that treats the nucleus as an infinite sys-
tem, since there are obvious limitations inherent in such
an approach. In the Appendix, it is demonstrated that
the contribution of the single-nucleon knockout channel
to the response vanishes in the Fermi-gas model. This
seems initially surprising but is merely a reflection of the
impossibility of ejecting a single nucleon from an infinite
system with an absorptive potential.

Several comments are needed to make clear the way
in which the phenomenological optical potentials were
handled. Parametrizations of the optical potential rely
on data determined from proton-nucleus and neutron-
nucleus elastic-scattering experiments and are valid only
over the limited range of energies for which the data
have been determined reliably. It is desirable to have
a potential that can be used at larger energies for two
reasons: First, experiments at the largest-momentum-
transfer values have provided data at reasonably large
excitation energies, often beyond the highest energy at
which a parametrization is expected to be reliable; sec-
ond, it is important to understand the large-momentum-
transfer saturation of the Coulomb sum-rule value in the
presence of many-body correlation efFects.

A distinction need naw be drawn between the "gener-
alized optical potential" introduced by Feshbach and
the phenomenological optical potential that is deduced
from experimental data. The nonlocal generalized op-
tical potential must satisfy the dispersion relation, Eq.

(55), but there is no guarantee that the phenomenolog-
ical potential will do so because of the assumption of
locality. The energy dependence of the empirical poten-
tial arises from both nonlocal eA'ects and the dispersive
nature of nuclear matter. At low energies, the construc-
tion of an optical potential depends on an energy aver-

age because the presence of resonances is important. 42

At suKciently high energies, the distinction between the
two potentials disappears. The application of the dis-
persion relation is, thus, justified only if the dispersion
integral is dominated by the high-energy contribution.
The analysis by Passatare was carried out, in part, to
show that this is the case and that the dispersion rela-
tion can be used reliably to extend the optical potential
to larger energies. At the same time, a potential was
constructed semiphenomenologically by fitting only the
imaginary part of the optical potential with data and
calculating the real part directly from the dispersion rela-
tion. Thus, this potential was one adopted for the calcu-
lations of the many-body longitudinal response function.
As a potential constructed specifically to have the correct
analytic structure, it is particularly useful in studying the
large-momentum-transfer behavior of the response and
the saturation to the Coulomb sum-rule value.

In addition, a more realistic low-energy potential, con-
structed by fitting independently the real and imaginary
parts to experimental data, was considered. For this pur-

pose, the more recent parametrization of Schwandt et

al. was adopted. This potential was fit with proton-
scattering data up to 180MeV. The real part of the
potential was lagarithmically parametrized and includes

a small constant symmetry energy term; the imaginary

part was cubically parametrized. Thus, only the real

part is consistent with the asymptotic form demanded

by the dispersion relation. Accepting the parametriza-
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tion of the real part, the dispersion relation dictates the
asymptotic value of the imaginary part to be —54MeV,
a value consistent with the Passatore and other optical
potential analyses. So, in using the Schwandt potential,
the real part was simply extended, but the imaginary
part was artificially bounded to be ) —54MeV.

In the figures presented, a comparison is made between
the present; calculation and a previous calculation to
which allusions were made in the Introduction. It fol-
lows from using the projection scheme directly on the
transition matrix element:

&~'(q, ~) = ) .1(&lc(v)li) I'b(@+~ —&y),
f

(7o)

with

(&l~(~)l~) ™~) .(flP ~(~)(1 F-(&*+~ & +Eq)jp l~)

Evidently the calculation of this quantity both ignores
the contributions of the Anal-state interaction between
the ejected nucleon and the residual nucleus, and does
not treat as consistently the various pieces that enter
into the expression of the full response. That the present
treatment is to be preferred, because all of the pieces of
the calculation are treated equally, will be particularly
evident from the discussion of sum rules presented be-
low. For comparison, the calculations of RL' have been
carried out using the Schwandt parametrization of the
optical potential.

To compare with the available experimental. data, the
fit to the nucleon form factor produced by Hohler et
a/. was used. Substantial difFerences in the predicted
response functions can be produced with alternative
choices of the form factor, but the use of the Hohler fit
provides a fair evaluation of the nonrelativistic response.

IV. RESULTS

In all calculations, a constant Fermi momentum value
of k~ ——268MeV was used. VVhile data are available
for several nuclei, the Fermi-gas model assumption of
an infinite system makes the calculations largely insensi-
tive to diA'erences between nuclei. Further, the Passatore
parametrization of the optical potential makes no distinc-
tion between nuclei and while the Schwandt parametriza-
tion contains a symmetry energy term, it is small. There
are no significant diA'erences in the resulting response
functions of, for example, Ca, Ca, and (except for
a scaling of 26/20) 5sFe. Each of the figures thus focuses

on the calculations for Ca which typify the Fermi-gas
model calculations.

The excitation energy dependence of the response func-
tions is displayed for a range of momentum-transfer val-
ues from 410 to 550 MeV in Fig. 1. The results of
the full many-body calculations are shown by the solid
and short-dashed lines, corresponding to the use of the
Schwandt and Passatore parametrizations of the optical

potential, respectively. These are to be contrasted with
the free Fermi-gas model calculations shown by the dot-
ted lines and the Rl' approximation of Eq. (70) shown

by the long-dashed line. The many-body correlations
redistribute the strength pushing a significant contribu-
tion to large excitation energies. Although very similar,
the results using the two parametrizations show a sig-
nificantly greater tendency for strength to be pushed up
in energy when the Schwandt potential is used; this is a
consequence of the behavior of the imaginary part of the
potential, which, in the Schwandt case, is considerably
deeper in the energy range associated with the experi-
mental results. As the momentum transfer increases, one
can see t, hat the diA'erence between the free and many-
body curves decreases: At 410 MeV, the peak height is
reduced by about 35%, while at 550 MeV it is reduced by
about 25'%%uo.

The role of the diA'erent elements involved in the cal-
culation of the total many-body response function is ex-
hibited by Fig. 2, where only the Schwandt parametriza-
tion is studied. Again the free Ferm~-gas model and RL'
results are shown by the dotted arid long-dashed lines
for comparison. The results show systematically the ef-
fect of including diA'erent pieces: The short-dashed lines
show only t,he role of the final-state interactions deter-
mined from the calculation when I—:0. The tendency
for the strength to be redistributed to higher energies is

partly a consequence of the imaginary part of the optical
potential. There is also a well-known tendency for the
Fermi-gas model response function to spread as a result
of the reactive real part of the potential. The second
term in Eq. (69) has very little influence; the contribu-
tion to the response from it is too small to be seen in
the figures. The solid line shows the final result, with
all of the pieces of the calculation included. The peak of
the response function is only modestly decreased by the
final-state interactions, and the predominant supression
of the response is seen to result from the role of the many-
body correlations. The peak-height supression due to the
final-state interactions is typically about 5 to 10%%uo. The
diA'erence between the results of the preliminary calcula-
tion of R&' and the present, fully consistent calculation,
is also significant.

The final figure, Fig. 3, is used to show the result-
ing sum-rule values for the full calculations as functions
of the momentum transfer. In Fig. 3(a), the integrated
response in the absence of form factors, Eq. (53), has
been normalized to Z. The saturation of the sum rule
with increasing g is seen to be retained. In Fig. 3(b),
the response function has been integrated with the form
factor to allow a comparison with experiment. As antic-
ipated, the influence of the many-body efFects is greatest
at lower momentum-transfer values and s1owly die as q
is increased. A careful examination of the figures will
reveal some features that may at first appear peculiar.
First, there is an apparent cusp in the Schwandt po-
tential results; this is an artifact of the arbitrary Boor
imposed on its imaginary part. Notice that this occurs
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~+i(q) —=
RL, (q, ») q'
Fi~ (q2) 2m

(72)

The EWSR has been normalized by (q2/2m) Z for display
in the figure. The present calculations are much more
satisfactory than those which follow from Eq. (70) since
they show a suppression of the response at lower energy
while clearly showing how it must be redistributed and
reappear at larger energy. The deviations of the present
calculations from the sum-rule value are less than 5%%uo and
are greater when the Schwandt potential is used. This

only near the greatest momentum-transfer values tested
experimentally and that the general trend is still man-
ifest. Second, the results using the Passatore potential
appear to be converging to a Coulomb sum-rule (CSR)
value slightly less than Z; this is because the imaginary
part of the Passatore potential more slowly reaches its
asymptotic value, achieving it only well above 1 GeV.

In Fig. 3(c) a further test of the consistency of the
technique is carried out. The energy-weighted sum rule
(EWSR) is a construction that depends on the complete-
ness of the set of excited states reached by the density
operator acting on the ground state, subject to the ap-
proximations made in the evaluation of the response:

should be viewed together with the findings of Horikawa
et al.ss which indicated that sum-rule violations up to
10% could be expected when using phenomenological po-
tentials. That the Passatore potential was constructed on
the basis of its theoretical analytic structure is the reason
why it does so much better.

Maintaining the sum rules means that the many-body
correlations redistribute the energy-weighted strength in
a way that reduces the total non-energy-weighted inte-
grated response. It has been suggested by Noble that
such a mechanism is inconsistent with existing experi-
mental data. His argument is based on the relationship
between the Coulomb and energy-weighted sum rules,
defined in Eqs. (53) and (72). Since the effect of cor-
relations is to push the strength to higher energies, it is
frequently argued that reductions in the quasielastic re-
gion should be accompanied by a corresponding increase
at energies larger than have been measured. Noble has
used the fact that this mechanism will affect the ratio
Si/So to determine from experiment the efFective energy
at which missing strength should reappear:

1 ('Si1 Sil».n. = — (& + x) I
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where g is the fraction of the non-energy-weighted
strength that is missing. Simple calculations then reveal
that u,~ lies in the experimental region. Data were avail-
able far Noble to perform his calculations at momentum-
transfer values C 410MeV; using recent data at larger
values of the momentum transfer, the effective energy is
larger (relative to q2/2m) but still within the experimen-
tal region. To some degree this has been corroborated
by the present calculation which shows explicitly that
substantial strength remains in the experimental region,
although there are some long high-energy tails that would
be diFicult to measure. It should be emphasized, how-
ever, that the reductions in the integrated response are
significant and that the discrepancy from experiment is
reduced by the inclusion of correlations. The correlations
also broaden the response functions so that their shape
is more in line with experiment.

V. SUMMARY AND CONCLUSIONS

The effects of many-body correlations on the longi-
tudinal response in the quasielastic (e, e') reaction have
been studied. Using standard projection techniques, an
approximation to the longitudinal response function, in-

eluding many-body correlations and final-state interac-
tions in a consistent way, has been derived. The tech-
nique relates full A-body states, through an optical po-
tential, to the projection of those states on a subspace
spanned by a finite set of excitations of an (A —1)-body
system. The principal result of the paper is summarized
by Eq. (52).

A numerical study of the contributions from different
effects has been carried out within the Fermi-gas model,
using phenomenological parametrizations of the optical
potential. The rale of the correlations is significant. i'he
integrated longitudinal response is suppressed by about
30%%up at a momentum transfer of 330 MeV. The suppres-
sion decreases steadily with q, reaching about 15% at
550 MeV, the largest momentum transfer studied exper-
imentally. This trend is in line with both physical in-
tuition and the general formalism: It has been shown
that the effect of the correlations must vanish asymptot-
ically if the aptical potential is Hermitian analytic. This
is borne out by the numerical calculations, which heal
above 1 GeV.

The effect of the correlations can be characterized in
terms of the EWSR, which demands that the energy-
weighted integral of the response, at a fixed momentum-
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transfer value, not vary as a consequence of their inclu-
sion. This sum rule has been tested numerically and is
satisfied to the level of the approximations made, about
5%. To simultaneously reduce the non-energy-weighted
strength and still satisfy this sum rule, the strength is
redistributed to higher excitation; substantial contribu-
tions appear in long high-energy tails that would be dif-
ficult to measure.

The choice of optical potential is important. Two

parametrizations have been compared, one determined
entirely from phenomenology (Schwandt ef af.~~) and the
other (Passatore ) determined semiphenomenologically
with a dispersion relation. While the qualitative features
of the results using each of them are similar, their partic-
ular characteristics manifest themselves in the resulting
response functions. For example, the Schwandt potential
was fitted only up to 180 MeV; the asymptotic behavior
can be deduced from the dispersion relation, but there
is an influential region in the extension above 180MeV
that has a deep imaginary part. This tends to push more
strength to high energy than the other parametrization.
By contrast, since the Passatore potential was fitted only
to the imaginary part, it is not as reliable in the energy
region accessible experimentally.

In conclusion, it should be emphasized again that
many-body correlation eA'ects make substantial reduc-
tions in the longitudinal response, but not suKciently to
account for the discrepancy with experiment. The dis-
agreement that remains is unsurprising since this study is
not intended to be a comprehensive theory of quasielas-
tic electron scattering. For example, the omission of low-
lying collectivity in the model makes it inappropriate for
describing reactions too near the Fermi surface. Rather,
we have demonstrated, particularly, that projection tech-
niques can be usefully exploited to determine the impor-
tance of many-body corrections in a simpler way than
has been used in the past. Other eKects are also known
to quench the longitudinal response considerably, and a
full explanation of the problem is certainly a combination
of them. The model presented here can now be used to
incorporate those eA'ects, in conjunction with many-body
corrections, in a full finite nucleus calculation.
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FIG. 3. The saturation of the Coulomb sum rule (CSR)
and the energy-weighted sum rule are examined for the case
of Ca. In (a), the form factor has been divided out and
the integrated response function has been normalized by Z
(=20). In (b), the form factor has been retained for compar-
ison with the experimental data. In (c), the energy-weighted
sum rule (EWSR) has been tested by evaluating the integral
of the energy-weighted response without the form factor and
normalized to the sum-rule value, q j2rn. The data are taken
from Ref. 5; in the case of (a) and (c), the deForest prescrip-
tion has been used to remove form-factor eR'ects from the data
(Ref. 32).

It is worthwhile emphasizing that the Fermi-gas model
is inherently limited as a model of the nucleus, and that
one must be cautious in interpreting results of calcula-
tions using it. An example of this is proved in this ap-
pendix: the Fermi-gas model predicts that the contri-
bution to the response from the single-nucleon knock-
out channel is zero. This is surprising, especially since
the free Fermi-gas model calculations were predicated on
single-nucleon knockout. To see that this is the case, con-
sider operator discont, inuities, defined to be the difference
between operators and their Hermitian adjoints,

LA= A —A~,

(AI)
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In this expression, T is the operator sandwiched be-
tween states in Eq. (52). After noting that the one-body
current operator is Hermitian, the term that need be con-
sidered is the discontinuity of the optical-model Green s
function, deduced from the second resolvent identity, Eq.

&G»t ——(I + V»tG»t)'&Go(I + V»tG»t)
+G,AV p, G pt .

It is the first term in this expression that contributes to
the single-nucleon knockout channel. The second term,
as well as other contributions to AT, involve the dis-
continuity of the optical potential. This is just twice the
imaginary part of the optical potential and contains infor-
mation about all channels other than the single-nucleon
knockout channel. The discontinuity of the free propa-
gator is simple,

1 1
LGp ——

E;+co —6+zg E;+~ —h —zg
= —2z.ib(E, +su —h) .

The operator (I + V&tG &t) is the Moiler operator and
distorts plane waves. In the Fermi-gas model, however,
the states must be plane waves and only the wave number
can be shifted. Writing the Moiler operator as

Gp E, +~ —h
1 + +optoopt =

G —V, E;+~ —/t —V»t

(A4)

makes this more clear. In the Fermi-gas model, the only
contribution to the single-nucleon knockout channel thus
comes from terms proportional to

E +~ —EI
~

b(E, +~ —Ek)E; + ~ —Ek —V»tJ

E, +~ —Ekx
i

' =0, (A5)(E, + sr —Ek —V»t

and so the total contribution to the response comes from
other channels. This is a reQection of the impossibility
of ejecting a single nucleon from an infinite system with
an absorptive potential.

C. C. Blatchley 3. 3. LeRose, O. E. Pruet, P. D. Zimmer-
man, C. F. Williamson, and M. Deady, Phys. Rev. C 34,
1243 (1986).
M. Deady, C. F. Williamson, P. D. Zimmerman, R. Alte-
mus, and R. R. Whitney, Phys. Rev. C 33, 1897 (1986);
M. Deady et a/. , ibid. 28, 631 (1983).
B. Frois, Nucl. Phys. A434, 57c (1985).
A. Hotta, P. j.Ryan, H. Ogino, B. Parker, G. A. Peterson,
and R. P. Singhal, Phys. Rev. C 30, 87 (1984).
Z. E. Meziani et a/. , Phys. Rev. Lett. 52, 2130 (1984); 54,
1233 (1985); Nucl. Phys. A446, 113c (1985).
P. Barreau et a/. , Nucl. Phys. A402, 515 (1983); A358,
287c (1981).
R. Altemus, A. Cafolla, D. D ay, j. S. McCarthy,
R. R. Whitney, and j. W. Wise, Phys. Rev. Lett. 44, 965
(1980).
E. 3. Moniz, Phys. Rev. 184, 1154 (1969); E. J. Moniz,
I. Sick, R. R. Whitney, j. Ficenec, R. D. Kephart, and
W. P. Trower, Phys. Rev. Lett. 26, 445 (1971);R. R. Whit-
ney, I. Sick, 3. Ficenec, R. D. Kephart, and W. P. Trover,
Phys. Rev. C 9, 2230 (1974); J. W. Van Orden, Ph. D. the-
sis, Stanford University, 1978.
G. Do Dang, M. L'Huillier, N. Van Giai, and J. W. Van Or-
den, Phys. Rev. C 35, 1637 (1987).
G. Orlandini and M. Traini, Phys. Rev. C 31, 280 (1985).
W. Heisenberg, Z. Phys. 32, 737 (1931).
T. deForest and 3. D. Walecka, Ann. Phys. (N.Y.) 15, 1

(1966); W. Donnelly and J. D. Walecka, Annu. Rev. Nucl.
Sci. 25, 729 (1975).
U. Stroth, R. W. Hasse, and P. Schuck, Nucl. Phys. A462,
45 (1987); Phys. Lett. B 171, 339 (1986); W. M. Alberico,

A. Molinari, A. DePace, M. Ericson, and M. B. 3ohnson,
Phys. Rev. C 34, 977 (1986); F. A. Brieva and A. Dellafiore,
ibid. 36, 899 (1987); C. Co and S. Krewald, Nucl. Phys.
A433, 392 (1985); M. Cavinato et a/. , ibid. A423, 376
(1984).
G. Co, K. F. Quader, R. D. Smith, and J. Wambach, Nucl.
Phys. A485, 61 (1988); R. D. Smith and J. Wambach,
Phys. Rev. C 38, 100 (1988); C. Drozdz, G. Co,
3. Wambach, and J. Speth, Phys. Lett. 185B, 287 (1987);
G. Co, K. Quader, and J. Wambach, Proceedings of the
Second Workshop on Problems of Theoretical Nuclear
Physics, Cortona, Italy (1987) [University of Illinois Re-
port Ill-(NU)-87-58, 1987].
S. Fantoni and V. R. Pandharipande, Nucl. Phys. A473,
234 (1987).
3. Jaenicke, P. Schuck, U. Stroth, and R. W. Hasse, 3. Phys.
C 2, 71 (1987); J. Jaenicke, P. Schuck, and R. W. Hasse,
Phys. Lett. B 214, 1 (1988); P. Schuck, R. W. Hasse,
3. jaenicke, C. Gregoire, B. Remaud, I'. Sebille, and E.
Suraud, Prog. Part. Nucl. Phys. 22, 181 (1989).
P. M. Boucher, B. Castel, Y. Okuhara, and H. Sagawa,
Ann. Phys. (N.Y.) 196, 150 (1989); H. Sagawa. ,
P. M, Boucher, B. Castel, and Y. Okuhara, Phys. Lett.
B 219, 10 (1989).
J'. V. Noble, Phys. Rev. Lett. 46, 412 (1981); Phys. Lett.
B 178, 285 (1986).
H. I(urasawa and T. Suzuki, Phys. Lett. B 208, 160 (1988);
211, 500(E) (1988); L. S. Celenza, A. Rosenthal, and
C. M. Shakin, Phys. Rev. Lett. 53, 892 (1984); Phys. Rev.
C 31, 232 (1985).
I. Sick, Phys. Lett. 157B, 13 (1985).



MANY-BODY CORRELATION EFFECTS ON THE. . . 595

L. S. Celenza, A. Harindranath, and C. M. Shakin, Phys.
Rev. C 33, 1012 (1986).
P. J. Mulders, Nucl. Phys. A459, 525 (1986).
G. van der Steenhoven et a/. , Phys. Rev. Lett. 57, 182
(1986).
M. Traini, Phys. Lett. B 171, 266 (1986).
T. D. Cohen, J. W. Van Orden, and A. Picklesimer, Phys.
Rev. Lett. 59, 1267 (1987)
P. J. Mulders, Phys. Rev. Lett. 54, 2560 (1985); T. de-
Forest and P. J. Mulders, Phys. Rev. D 35, 2849 (1987);
P. j. Mulders and A. E. L. Dieperink, Nucl. Phys. A483,
461 (1988); P. J. Mulders, Phys. Rep. 159, 83 (1990).
G. Da Dang and Nguyen Van Giai, Phys. Rev. C 30, 731
(1984)
R. Rosenfelder, Ann. Phys. (N.Y.) 128, 188 (1980).
H. Kurasawa a.nd T. Suzuki, Phys. Lett. B 173, 377
(1986); A454, 527 (1986); S. Nishizaki, H. Kurasawa. , and
Toshio Suzuki, Phys. Lett. B 171, 1 (1986); S. Nishizaki,
T. Maruyama, H. Kurasawa, and T. Suzuki, Nucl. Phys.
A485, 515 (1988)
C. J. Horowitz, in Proceedings of the Workshop on Rel
ativistic Nuclear Many-Body Physics, Columbus, 1988,
edited by B. C. Clark, R. J. Perry, and J. P. Vary (World
Scientific, Singapore, 1989).
K. Wehrberger and F. Beck, Phys. Rev. C 35, 298 (1987);
37, 1148 (19SS).
C. R. Chinn, A. Picklesimer, and j. W. Van Orden, Phys.
Rev. C 40, 1159 (1989).
C. R. Chinn, A. Picklesimer, and j. W. Van Orden, Phys.
Rev. C 40, 790 (1989).
X. Ji, Phys. Rev. C 39, 1668 (1989); Phys. Lett. B 219,
143 (1989).
J. D. Walecka, Ann. Phys. (N.Y.) 83, 491 (1974);
B. D. Serot and 3. D. Walecka, Adv. Nucl. Phys. 16, 1
(1986).
R. 3. Furnstahl, R. J, Perry, and B. D. Serot, Phys. Rev.
C 40, 321 (1989).
T. D. Cohen, M. K. Banerjee, and C. Y. Ren, Phys. Rev.
C 36, 1653 (1987).
Y. Horikawa, F. Lenz, and Nimai C. Mukhopadhyay, Phys.

Rev. C 22, 1680 (1980).
K. Nakayama and W. G. Love, Phys. Rev. C 38, 51 (1988).
M. M. Giannini, G. Ricco, and A. Zucchiatti, Ann. Phys.
(N.Y.) 124, 208 (1980).

'P. Schwandt„, H. O. Meyer, W. W. Jacobs, A. D. Bacher,
S. E. Vigdor, and T. R. Donoghue, Phys. Rev. C 26, 55
(19S2).
G. Passatore, Nucl. Phys. A95, 694 (1967).
A. Picklesimer, P. C. Tandy, R. M. Thaler, and D. H. Walfe,
Phys. Rev. C 29, 1582 (1984); 30, 1861 (1984).
M. V. Hynes, A. Picklesimer, P. C. Tandy, and
R. M. Thaler, Phys. Lett. 52, 978 (1984); Phys. Rev. C
31, 1438 (1985).
J. A. McNeil, J. R. Shepard, and S. J. Wallace, Phys. Rev.
Lett. 50, 1429 (1983); J. R. Shepard, J. A. McNeil, and
S. J. Wallace, ibid. 50, 1443 (1983); B. C. Clark, S. Hama,
R. L. Mercer, L. Ray, and B.D. Serot, ibid. 50, 1644 (1983).
E. D. Cooper et al. , Phys. Rev. C 36, 2170 (1987);
E. D. Cooper, B. C. Clark, S. Hama, and R. L. Mercer,
Phys. Lett. B 206, 588 (1988); 220, 658(E) (1989).
EK. L. Kowalski and A. Picklesimer, Phys. Rev. Lett. 46,
228 (1981); Nucl. Phys. A369, 336 (1981).
R. Goldfiam and K. L. Kowalski, Phys. Rev. Lett. 44, 1044
(1980); Phys. Rev. C 22, 949 (1980).
A. Picklesimer, Phys. Rev. C 24, 1400 (1981).
E, R. Siciliano and R. M. Thaler, Phys. Rev. C 16, 1322
(1977); A. Picklesimer and R. M. Thaler, ibid. 23, 42

(1981).
H. Feshbach, Ann. Phys. (N. Y.) 5, 357 (1958); 19, 287
(1962); Annu. Rev. Nucl. Sci. 8, 49 (1958).
S. Bo%, F. Cannata, , F. Capuzzi, G. Giusti, and
F. D. Pacati, Nucl. Phys. A379, 509 (1982).
F. Capuzzi, C. Giusti, and F. D. Pacati, University of Pavia
Report No. FNT/T-90 f03, 1990 (unpublished).
A. Bohr and B.R. Mottelson, Nuclear Structure (Benjamin,
New York, 1969), Vol. I, p. 139ff.
G. Hohler, E. Pietarinen, I. Sabha-Stefanescu,
F. Borkowski, G. G. Simon, V. H. Walther, and
R. D. Wendling, Nucl. Phys. B114, 505 (1976).
J. V. Noble, Phys. Rev. C 27, 423 (1983).


