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We consider the efFects of nonlocality on the determination of the deuteron radius for model
potentials. We show that the relation between the model values for the radius and the scattering
length which holds for local potentials is not necessarily valid for nonlocal potentials. It is
possible for nonlocal potential models to produce a deuteron of smaller radius as required by
experimental data. In particular, we show that the Reid model can be amended with the
inclusion of an attractive separable term to produce a change in the radius which is of the
correct order of magnitude.

I. INTRODUCTION

The low energy behavior of the two-nucleon system
is an important testing ground for proposed realistic
nucleon-nucleon potential models. The deuteron proper-
ties and the low-energy scattering parameters are known
from experiment to a high precision (see, for example
Refs. 1 and 2) and consequently any interaction sug-
gested to describe the internucleon force ought to pre-
dict these quantities correctly. It is found, by studying a
number of realistic interactions, that there exist impor-
tant empirical relationships between some of these quan-
tities. The origin and the nature of such relationships is
still being investigated.

Since nuclear farce models are fitted to the elastic scat-
tering data as well as the deuteron properties, they are
approximately equivalent on the energy shell. However,
since there are only a limited number of measured prop-
erties that depend on the nuclear wave function within
the potential region, the various nuclear potentials dif-
fer in their aK-shell properties. It is necessary therefore
to study those properties which depend on the details of
the wave function in order to distinguish realistic inter-
actions.

A particular relationship between a pair of low-energy
quantities, first studied by Klarsfeld et a/. , is that of
the triplet scattering length, a~, and the deuteron matter
radius, rD. @~hen these quantities, obtained from the
various realistic potentials available at the time of their

study, are plotted on a scattering length versus matter ra-
dius graph, one obtains practically a straight line which
passes below and to the right of the experimental re-
gion. In other words the predicted matter radius of the
deuteron is too large. The underlying reason for this re-
lationship, which also holds for simple S-state models,
is not yet known. The recent Bonn potential gives a
point which lies oA' the line on the side opposite to the
experimental region and produces an even larger discrep-
ancy between the predicted and experimental radii of the
deuteron.

Explanations for the discrepancy in terms of meson-
exchange-current, efkcts or relativistic eAects have
proved unsuccessful. The potential models considered
by Klarsfeld et al. are predominantly local; it is natural
therefore to investigate the same properties using nonlo-
eal potentials or potentials with a mixture of local and
nonlocal terms. A study of the model (in)dependence of
the a&-ro relationship suggests that one may be able
to fit simultaneously the triplet scattering length and
the deuteron radius, if the potential includes nonlocal
components. By considering a class of phase equivalent
potentials (and thus fixed at), generated by making uni-
tary transformations on the Reid hard core potential,
1VIustafa and Hassan reach a similar conclusion. Fur-
ther and more recent work on simple potential models
by Bhaduri et al. o con6. rms the necessity of nonlocality
in the nuclear force. The latter authors also suggest that
it is unlikely that the L-L component of the nuclear in-
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teraction is the source of the nonlocality that will resolve
the issue,

In this paper we investigate whether it is indeed pos-
sible to obtain the experimental values for the scattering
length and the root-mean-square radius of the deuteron
wit, h realistic potentials. It is well established that the
long-range part of the interaction is properly represented
by the one-pion-exchange potential, fixing the ratio of the
asymptotic D to S states of the deuteron wave function.
The potential model that we choose for the investigation
is one which has both local and nonlocal components.
The functional form of the local part of the potential is
similar to the Reid hard core potential and the nonlocal
component is a short-range separable term in the triplet
S state. Since the S-state wave function is dominant
in the determination of the deuteron radius, the nonlo-
cality is introduced, initially, in the triplet S state only.
Potentials of this type have been studied by McKerrell,
Ikermode, and Mustafa and Mustafa and Zahran.

The graph of the at-rD relation shows that varying the
strength of the nonlocal component with appropriate ad-
justments to the short-range part of the local potential
produces a zero-slope line, because the scattering length
is fixed. It is clear therefore that such nonlocality in a
realistic force will permit a simultaneous fit to the scat-
tering length and the matter radius. Furthermore it is

seen from the position of the experimental point that the
short-range nonlocality is attractive.

In Sec. II, we consider a general relation between the
efFective-range parameters and the deuteron radius. Here
we develop an approach initiated by Bhaduri et al. and
Sprung et al. ~s and consider a number of particular mod-
els. For this investigation it is necessary to consider only
an S-state model deuteron. The purpose of this study is
to see whether simple nonlocal potentials lead to a reduc-
tion in the value of rD/aq compared to local potentials as
required by experiment. In Sec. III we introduce a local-
plus-separable model, which required extensive compu-
tation, the results of which are given in Sec. IV.

II. THE RELATION BETWEEN THE
DEUTERON RADIUS AND THE

EFFECTIVE-RANGE PARAMETERS

In this section we analyze the effect of certain prop-
erties of the two-nucleon system on the deuteron radius.
In order to be able to obtain analytic results we will con-
sider S-state interactions only. In the following sections
we discuss a "realistic" interaction model giving S- and
D-state components in the deuteron wave function. For
notational convenience we assume that in the following
the units are chosen so that h /2m = 1 where m is the
reduced two-nucleon mass.

traction just outside, at a distance d = c+ g, and there is

no potential at larger distances. Assuming g to approach
zero, we write the narrow attraction as

V= b(r —d) .
A

(2.1)

At any energy, the S-state radial wave u(r) vanishes in-

side the core, but the logarithmic derivative of the wave

function at the outside edge of the potential,

I'din ul t'u'5

4 dr )&+ ku)~+
(2.2)

is independent of energy. In terms of the potential pa-
rameters

F = —(1+A)/(d —c) . (2 3)

The potential can be characterized by its scattering
length, at. Let the zero-energy wave function outside
the core be u = 1 —r/aq, then

F = 1/(c —a, ) . (2 4)

Suppose that the potential is strong enough to give a
bound state at energy —o, . Then the wave function out-
side the potential region is proportional to exp( —nr), so
that F = —n and naq —1 + nc.

For the sticky core potential, we can calculate the
deuteron matter radius exactly. We obtain

2 ~ -2ar 2
OO

(r ~) = — e z "r~dr/

= (1+2nc+2n c )/Sn

6 dp

(2 5)

—1 1 2o. =at +2o, r~ ) (2.7)

we can express the core radius in terms of the effective
range r to obtain

1
2 0,'P~

1 —-AP1
2 m

(2 8)

Writing z = 2nr we find

at
= /1+ z& = a z = 1+ -z —-z +-i 1 2 1 4

2 8

Now it is convenient (Bhaduri ef al. ,
~o Sprung et at. ~ ) to

work with the ratio ~8rD/aq, where rD ——g(r~). Then

gl + 2nc+ 2n'c'
1+ A'c

= 1+ ~(ne) —(nc) + 's'(nc)4 — . (2.6)

Finally, let us use the effective range, instead of the core
radius, as the independent variable. Using one (r ) of
the three possible effective ranges given in the next sec-
tion, for which

A. Sticky core potential

A sticky core potential has an infinite repulsion inside
a core of radius c and an infinitely deep and narrow at-

(2 9)

with a1 —O, a2 ——2, and a3 ——0. We shall see that the
vanishing of the linear term and the coeKcient 2 of the
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quadratic term is a general result, valid for any potential.
The vanishing of a3, and of any a; where i is odd, is a
specific property of the sticky core potential.

~(n) =—I.(n)/[Io (n)1

We obtain

(2.21)

B. Deuteron radius in terms of
generalized e8'ective-range expansion at

1 —~i+(n)nsrs~(1 ——,'nr )

1 —APg
(2.22)

We follow here the derivation given by Sprung et al. is

with some slight changes. There are at least three dif-
ferent ways to define the effective range. The first one is
the usual effective-range expansion,

which, in terms of ro, is

v 8rL~ [1 ——,
' J(nro)'+ ]

gl —nro —4P(nro)s +
x[1 —qnro —P(nro)s+ .] . (2.23)

1y(k2)—:k cot 6p ———+ ~
rpk~ —Pros k" + . .

Qg

(2.10)

In the last equation we have defined J = P(0). Expand-
ing in powers of 0, up to order o. we obtain our final
result,

A slightly diff'erent definition is to expand about the
deuteron pole, = 1+ -'(-'nrp)2 + as(2inrp)s ~

at
(2.24)

y(k~) = —n+ 2(k2+n2)r + (2»)

(nag) ' = 1 —~inr (2.12)

The three effective ranges difFer only to order n due to
the shape-dependent term P,

r~=rp+4P(n r,)+
= rp + 2P(n2r o) +

(2.13)
(2.14)

The matter radius can be obtained from the expressions

A third way, which is the one we used in the previous
section, and in which the effective range is determined
solely by the scattering length, is

where a3 ——1 —2J+ 8P.
Note that J involves the zero-energy wave function

only, while P can be obtained only from an expansion
of the S-wave phase shift about small k when the po-
tential type, viz. , local or nonlocal, is not specified. No
explicit knowledge of the wave function, other than that
for zero energy is required. This will be discussed in the
following sections, not only for the sticky core, but for a
number of other potentials as well. It will be seen that
two potentials which are phase equivalent, can neverthe-
less have difFerent values of the deuteron radius. This
difference can be traced to difFerences in the zero-energy
wave function, leading to diff'erent values of Iq(0), and
thus j.

1 f u2(n, r)r2dr
4 I u2(n, r)dr

1 f e 2 "r~dr —I2(n)
4 I e-2~"dr —Ip(n)

(2.15)

(2.16)

C. Delta shell potential

As our next example we consider, in some detail, the
delta shell potential

1
[1 —4n Ig(n)]/[1 —2nIo(n)], (2.17) V = —(1+~)b(r —c)/c . (2.25)

where

Io(n) = (2.18)

For c = 0, we get a bound state at zero energy. The
scattering length is given by

(2.28)

I2(n) = r e "—u (n, r) dr, (2 19) The bound-state wave function is given by

where u(n, r) is normalized so that u(n, r) = e " for
r greater than the range of the potential. Evidently,
Io(n) = —,'ra.

Thus

~8rD gl —4nsIg(n)
ai nat gl —2nIo (n)

(2.20)

This expression is exact and approximations to it have
recently been derived by Bhaduri et al. and Sprung et
gj' 13

Define the dimensionless quantity

sinh nr
sinh oc r(c, (2.27)

Note that n is continuous at c, but its derivative is not
and we have

nc(coth nc+ 1) = 1+ ~ . (2.28)

nc = t (1 —sE+ ~96 —is5E' + ) (2.29)

The quantity 0;c can be expanded in terms of e. For
e gg 1,
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Furthermore

alld

2 1 2 8
AQt = 1+ 3E —9C + 135K + (2.30)

(nag) = 1 —-e+ —e
—1 2 5 2 68 3

3 9 135 (2.31)

Ip(n) = ~~c[1 —2nc+ —,'5(nc)2+ . . ], (2.32)

nIP(n) = s2e(1 —see+ ~~~e2+ ), (2.33)

I2(0) = isc and J = 2p, exactly .

Thus, up to order e3,

(2.34)

22 58 3= 1+ 9E 1356 +

In order to evaluate Eq. (2.22) we make the following
expansions,

Note that all the examples, except the sticky core
(and the determination of J and P for the delta shell)
deal with potentials that have infinite scattering lengths.
In fact, the validity of our approximations, i.e. , small
deuteron binding, requires that we are not far from this
limit. It turns out that for infinite at, the expressions
for J and P are simpler than otherwise. Of course, at is
finite, else we would get an infinite rD. However, our ex-
pression for this quantity only needs J and P calculated
for infinite ai (at least up to order ns). Thus, in order
to calculate a3 we do not need to consider the actual po-
tential, which has a state at finite binding energy, but
can scale the potential so as to give a zero-energy bound
state. In fact, the quantities r p and J can be obtained
in terms of the zero-energy wave function. To calculate
P, we need to consider the scattering wave function at fi-
nite k . However, recently Kermode and van Dijk 4 have
shown that, for the special case of a local potential, this
quantity can also be obtained from the zero-energy wave
function.

We now wish to express the right hand side in terms
z = znr, rather than e. From Eq. (2.12), D. Results for simple local

and separable potentials
z = 1 —(nag) = —e —-e—1 2 5 2 68 3

3 9 135 ) (2.36)

from which we obtain

and

6= —Z+ —Z +'3 15 2
2 8 (2.37)

at
=1+-z —-z +.1 2 1 3

2 5 (2.38)

k cot 6p = ——+ 2Ppk PPpk + .1 2 3 4

&t
(2.40)

we see that a, = oo, rp ——4c/3, and P = —sp. Substi-
tuting our values for J and P into the expression for a3,
Q3 —1 —2J + 8P, we reproduce our value a3

As expected, there is no linear term, and the coeFicient
of the quadratic term is 2. The coeKcient a3 ———5.

In order to calculate the shape dependent parameter,
we consider the special case ~ = 0, i.e., a bound state at
zero energy. For this case we have

cot bp
——kc csc kc —cot kc = s kc ~ 45 (kc)

(2.39)

Comparing this with the effective-range expansion,

In this section, we shall list some results for a few sim-
ple potentials. All the potentials are attractive and have
a well depth adjusted so as to give a bound state at zero
energy, i.e. , infinite scattering length. Thus in each case,
the zero-energy wave function equals unity outside the
range of the potential. The results are given in Table I.

Note that the results for a3 vary considerably. In par-
ticular, a3 is much more negative for the exponential and
Hulthen potentials than for the others. Physically, this is
due to the fact that these potentials pull in the wave func-
tion toward the origin more strongly than do the other
potentials. The sticky core is at the other extreme. Here
the wave function is pushed outward as much as possible.

Next we give results for some simple separable poten-
tials (Table II). One of these is the delta shell, which is
bo/h local and separable and may be regarded as provid-
ing the dividing line between local and nonlocal poten-
tials particularly with regard to the quantity J —16P.
This combination of J and P is chosen because, as we
will see in the next section, it has a remarkably simple
form for the core plus delta shell potential. Note that the
square-well equivalent potential is a particular separable
potential whose form is chosen so that the zero-energy

TABLE I. Summary of results for local potentials [I' = 2.4048 is the first root of Jp(1') = 0].

Potentials
Delta shell
Square well
Sticky core
Exponential
Hulthen

u(r ( c)
r/c

sin(n. r/2c)
0

J.(re —"~')
1 —e

TO

4c/3
C

2c
5/2p
3/p

J
0.4500
0.5228
0.3333
0.9207
1.1111

P
—0.0375
—0.0327
—0.0417

0.0119
0.0381

Q3
—0.2000
—0.3069

0.0000
—0.7461
—0.9173

J —16P
1.0500
1.0460
1.0000
0.7303
0.5013
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TABI E II. Summary of results for separable potentials.

Potentials
Delta shell
SW equiv. sep.
Square well
Exponential

u(r ( c)
r/c

sin(xr/2c)
2r/c —(r/c)

1 —e

r0
4c/3

C

14c/15
3/p,

J
0.4500
0.5228
0.5623
1.1111

P
—0.0375
—0.0360
—0.0351
—0.0185

Q3
—0.2000
—0.3333
—0.4057
—1.3704

J —16P
1.0500
1.0988
1.1239
1.4071

wave function is identical to that for a local square well

with infinite scattering length. Thus, although the two
potentials have the same values of ro and J they are not
phase equivalent. The separable potential has a more
negative value of P, which means that the phase shift
is slightly smaller than for the local potential. Thus a3
is lightly smaller and J —16P is slightly larger. Turn-
ing this argument around, we can say that for two phase
equivalent potentials, one local and the other separable,
the latter will give a slightly smaller value of a3, i.e. , a
smaller deuteron radius. (See also Ref. 7.)

I'inaliy, the quantity J —16P, which is also listed, is
seen to be much less sensitive to the form of the potential
than J and P separately. It is intelesting to note that
it is consistently larger for the separable potenti=-. 's than
for the local potentials.

E. Potentials mith core plus attraction

We give here some results for two cases: (i) hard core
plus delta shell attraction, and (ii) hard core plus expo-
nential attraction. For both cases, the potential is as-
sumed to have infinite scattering length.

1. Core plus delta shell potential

For a core radius c and a delta shell radius d, the S-
wave phase shift is given by the analytic expression

(cot k(d —c) —1/[k(d —c)])cot kd+ 1
cot bo-

cot kd —cot k(d —c) + 1/[k(d —c)]

(2.41)

For It;d (& 1, we get

cotbo ——s(2d+ c)k+ 4's(4ds+ 8cd2+ 2c2d+ c )ks

+ ~ ~ ~ (2.42)

&'( &
— 5)

10(( —3)s (2.47)

2. Core p/us exponential potential

For the core plus exponential potential we also hold the
effective range constant at 2.5 fm. Thus c has a maximum
value of 1.25 fm. We note that the shape parameter P
(Table III) changes sign for a core radius as small as 0.1
fm. We note also that unlike the previous case, the value
of J —16P first increases, to a maximum of 1.048 which
is almost the value for the delta shell potential, before
decreasing again to the sticky core value of 1.000.

For a hard core plus attractive square well and ro fixed,
J has a particularly simple form,

J = 0.5228 —4z(1 —z)(1 —8/x ) (2.48)

where z = c/d ( 2. Then J ( 0.5228.
Thus local potentials with hard cores behave like those

without, i.e. , J —16P is less than 1.0500. On the other
hand, nonlocal potentials appear to have values greater
than 1.0500. It would appear that if a3 and P could be
determined experimentally then J —16P could be calcu-
lated thus indicating, together with ro, whether or not a
potential is nonlocal.

We observe that in Eq. (2.47) the terms linear in (
cancel for the combination J —16P, whereas they do not
cancel for J and P separately. Furthermore, the value of
J16P f'o—r the sticky core potential (( = 0 corresponds to
a sticky core) is exactly equal to 1. Both as and J —16P
are straightforward to evaluate for particular values of
the ratio c/d. As c/d increases from 0.0 to 0.5 to 1.0,
a3 ranges from —0.2000 to —0.0368 to 0.0, respectively,
and J —16P changes very little, decreasing slightly from
1.050 to 1.015 to 1.000, respectively.

po= 3d+3c)4 2

3 4d3+ 8cd~ + 2c~d + c3

40 (2d+ c)s

9 4d + 3cd + 2cd + c
10 (2d + c)s

1 (~(7( —15)
as ——1 —2J+ 8P = ——

where c = d(1 —() and

(2.43)

(2.44)

(2.45)

(2.46)

C

0.0
0.1
0.2
0.4
0.6
0.8
1.0
1,25

P
0.012

—0.001
—0.010
—0.026
—0.036
—0.040
—0.042
—0.042

J
0.921
0.821
0.732
0.584
0.473
0.397
0.351
0.334

Q3
—0.746
—0.650
—0.543
—0.375
—0.234
—0.114
—0.038
—0.000

J —16P
0.730
0.836
0.892
1.000
1.048
1.036
1.024
1.000

TABLE III. a3 and J —16P for the core plus exponential
potential.
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III. THE NONLOCAL POTENTIAL MODEL

VVe now turn to a nonlocal interaction model which in-
cludes S- and D-state components in the deuteron wave
function. One method of generating a nonlocal potential
model is to perform a unitary transformation on a wave
function obtained from a local potential. This has been
considered in connection with the matter radius of the
deuteron by van Dijk and Mustafa and Hassan. They
show that it is possible to reduce the value of rD from
the local potential model value for particular transforma-
tions. However, there is not a gradual change between
the local and nonlocal potentials —the unitary transfor-
mation is either on or oA'; it cannot be turned on grad-
ually. With the unitary transformation parameter e (see
van Dijk7), it is possible to make gradual changes be-
tween the wave functions for the nonlocal potentials.

In the remainder of this section, we consider an
approach that allows the nonlocal component to be
switched on gradually. The nonlocal potential model we
use consists of a Reid-type local component, i.e. , a sum

of Yukawa terms for the central (C), spin-orbit (LS),
and part of the tensor (T) interactions plus a regularized
one-pion-exchange tensor term to avoid difficulties in the
absence of a hard core. Thus,

V;(r) = r ' ) A(;)„e ""' (i = C, I,S, T),

3 3

pr (pr)2)+

3 3—v ~1+ + e
(~S r) (~S r)')

where p i is the pion Cornpton wavelength. The coeffi-
cients A~1.~~ ~

——0, A~~~ ~ ——0, A~~~ ~, and B are fixed
by the pion-nucleon coupling constant (—14.947 MeV fm)
and the remaining parameters are determined by fitting
the appropriate data. The constant v is chosen arbitrar-

5.50

5.48
0

5.46

5.44
0

5.42
QO

5.40
X X 0Q&XXQ

5.38
0

5.36

I

1.95 1.96 1.97
r (fm)

I

1.98 1.99 2.00

FIG. 1. The scattering length as a function of the deuteron matter radius. Circles give results of realistic potentials; see
Ref. 3. Crosses indicate results when a separable nonlocal component is included in the interaction.
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ily and in this paper we take it to have the value 5.
In addition there is a rank one separable 9'-wave central

potential, which we write in the form A„f(r)f(s) I.t is
also possible to introduce separable potential components
into the central D state, and the spin-orbit and tensor
interactions. The latter is particularly interesting, but
for simplicity we shall concentrate only on the S-wave
component in this paper.

With these potentials, the coupled, radial Schrodinger
equation for the Sz Dq -state may be written

—u" (r) + Vj gu(r) + Vj hara(r)

&(c)~
—1.4947(1)
—1.9660(3)

3.9874(4)
—2.5692(5)

7.2581(5)
—6.7975(5)

&(z,s)~

0.0
—1.1596(2)

3.2574(3)
—1.9346(4)

6.4184(4)
—6.3857(4)

A(z )„
O.0

—3.1274(2)
4.2246 (3)

—1.2056(4)
1.0239(2)
1.8421(4)

TABLE IV. The coeKcients A(;)„ for the local potential
component of the interaction, in units of MeV frn, for the case
when A„= —300 fm . (Also, B = —14.947 Mev fm. )

+A„f(r) f(s)u(s)ds = k'u(r)

—tU (p) + Uj2u(p) + V22w(p): k rU(p), p ) c (3 4)

of fm, are related to the customary central potential
V~, tensor potential VT, and spin-orbit potential VL, p by

Vgg(r) = Vc(r), Vj2(r) = 2V2UT(r),

where c is the hard core radius.
The local potentials Uqq(r), Vjq(r), and V22(r ), in units

6
Vgg(r) = —+ Vo(r) —2' (r) —3VI.s(r) .

0.6
Deuteron Wave Functions

0.5

0.4

0.3

0.2

0.1

0.0 0.0
I

1.0
I

2.0 3.0
r(fm)

I

4.0
I

5.0 6.0

FIG 2 D t P ( pp ) d D- (I ) t t f tio . Th mh&
with the nonlocal component; the dashed curves show the Reid hard core wave function.
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The strength A„of the nonlocal term is measured in
units of fm s. We take f(r) = e ~", with P = 2.1
fm, as previously . Because of the separability of rank
1, this equation may be solved numerically as a con-
strained third-order de'erence equation. The details of
the method have been previously described .

Since this investigation is only to see what effects non-
locality may have rather than to obtain a detailed fit to
the experimental point, we choose the Reid hard core po-
tential model to generate the Sq- Dr phase parameters,
which we then take to be the actual phase parameters.
Keeping the hard core fixed and choosing various values
for the sign and strength of the nonlocality A„, we adjust
the force coeKcients A~;~„ to reproduce these phase pa-
rameters. Accordingly, the scattering length a& is fixed
but the deuteron radius may change. It is this change
that is one of the basic considerations of this paper. In
particular, can the change be suFiciently large to give a
reasonable deviation from the aq-rD line?

IV. RESULTS

For a fixed value of A„, the free coefIicients A~;~„were
varied until the deuteron binding energy (n ) and the
phase parameters (i.e. , two phase shifts and one mixing
parameter for each energy) for the Heid potential were
reproduced as closely as possible, using the appropriate
Numerical Algorithm library least-squares routine. Then
the resulting value of A~;)2 was slightly adjusted to re-
produce the scattering length for the Reid potential to
an accuracy of four significant figures. We note that the
Reid phase parameters cannot be reproduced exactly be-
cause of the fairly small dimension of the parameter space
for Eq. (3.1) since the N;'s were restricted to 6.

It was found that for positive values of A„, i.e. , repul-
sive nonlocality in that the local part alone supports a
deeper bound state than that of the deuteron, the value
of the deuteron radius increased as A„ increased, For
negative values of A„(attractive nonlocality), the radius
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decreased from that for the Reid potential itself. For the
value of A„= —300 fm, the "experimental" value of
the deuteron radius is obtained although, of course, the
experimental value of the scattering length is not repro-
duced because that for the Reid potential it is too small.
The results of the least-squares Ats are shown in Fig. 1

where the A„range in values from 0 to —350 fm
For the value of A„= —300 fm, the coeKcients for

the local potential were adjusted in order to fit the phase
shifts of Amdt ef at. " instead of those of Reid. In Ta-
ble IV we give the values of the coeKcients A~, ~„ for this
potential, which yields a deuteron radius of 1.955 fm.
In Fig. 2, we show the deuteron wave function obtained
with this potential together with the Reid wave function.
The structure of the new wave function is particularly in-

teresting and is a consequence of the nonlocality of the
interaction. This shape would not be obtained from a
local potential unless it was particularly pathological.

In view of the range of the separable term (P
p /3, i.e. , one third the pion wavelength) it is a little
surprising that the wave function for the nonlocal poten-
tial deviates from that of the local potential as far out as
3 fm. To see whether this is a consequence mainly of the
separable term or of the change in the local part, we inte-
grated the Schrodinger equation inwards from large dis-
tances with the separable term switched off (i.e., A„= 0).
For the starting values, we used the asymptotic values
u = Age " and to = AD[1+3/(or)+3/(nv)~je " with
r = 12 fm and Ag, AD from the Reid wave functions. In
Fig. 3, we show the results of this calculation. We note
that the solutions start to deviate from the Reid wave
functions at about 2.5 fm, which is smaller than the 3 fm
mentioned above but larger than the 1.4 fm suggested by
Sprung. is The increase from the latter is probably due

to the n = 2 terms in Eq. (3.1).
We do not regard the apparently long range of the

nonlocal wave functions particularly important at this
stage. The important results of this work are that (i)
the model value of rD may be reduced with an attractive
nonlocal component, (ii) the wave function is increased
at smaller r and reduced at slightly larger r (to maintain
the normalization), and (iii) the wave function contains
more structure than local wave functions.

We see from Fig. 2 that by increasing P, but with
considerable further computation, it should be possible
to construct a nonlocal potential that gives a wave func-
tion closer to the Reid's wave function at about 2 fm
and smaller than our wave function from about 1 to 1.5
fm. This is an important point and is the indicator to-
wards the solution of the aq-rD problem raised by Klars-
feld et al.3 The nonlocal model in this paper produces
wave functions that behave exactly the way one would
expect if a local model radius of the deuteron is to be
reduced.
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